Use map to evaluate a given polynomial at a specific x-value.
Input:
p: A list of coefficients for increasing powers of x
x: The value of x to evaluate
Output: Number representing the value of the evaluated polynomial
Example: poly_eval([1, 2, 3], 2) = 1(2)^0 + 2(2)^1 + 3(2)^2 = 17
def poly_eval(coeff_list, x):
total = 0
for i, coeff in enumerate(coeff_list):
total += coeff * x**i
return total
or if you really want to use map :
def poly_eval(coeff_list, x):
n = len(coeff_list)
return sum(map(lambda coeff, x, y: coeff*x**y, coeff_list, [x]*n, range(n)))
This is actually an interesting question. Since the answer is relatively simple and the pen and paper solution is known by everybody the real thing is kind of overlooked.
As mentioned, normally most people would approach like how it's done by pen and paper. However there is a better way which is more suitable for coding purposes, known as the Ruffini Horner method. This is a perfect case for reducing.
Write your polynomial in an array. So y = x^3-7x+7 would be var y = [1,0,-7,7].
Then a simple function;
var calcP = (y,x) => y.reduce((p,c) => p*x+c);
That's it.
Related
I'm trying to do one task, but I just can't figure it out.
This is my function:
1/(x**1/n) + 1/(y**1/n) + 1/(z**1/n) - 1
I want that sum to be as close to 1 as possible.
And these are my input variables (x,y,z):
test = np.array([1.42, 5.29, 7.75])
So n is the only decision variable.
To summarize:
I have a situation like this right now:
1/(1.42**1/1) + 1/(5.29**1/1) + 1/(7.75**1/1) = 1.02229
And I want to get the following:
1/(1.42^(1/0.972782944446024)) + 1/(5.29^(1/0.972782944446024)) + 1/(7.75^(1/0.972782944446024)) = 0.999625
So far I have roughly nothing, and any help is welcome.
import numpy as np
from scipy.optimize import minimize
def objectiv(xyz):
x = xyz[0]
y = xyz[1]
z = xyz[2]
n = 1
return 1/(x**(1/n)) + 1/(y**(1/n)) + 1/(z**(1/n))
test = np.array([1.42, 5.29, 7.75])
print(objectiv(test))
OUTPUT: 1.0222935270013889
How to properly define a constraint?
def conconstraint(xyz):
x = xyz[0]
y = xyz[1]
z = xyz[2]
n = 1
return 1/(x**(1/n)) + 1/(y**(1/n)) + 1/(z**(1/n)) - 1
And it is not at all clear to me how and what to do with n?
EDIT
I managed to do the following:
def objective(n,*args):
x = odds[0]
y = odds[1]
z = odds[2]
return abs((1/(x**(1/n)) + 1/(y**(1/n)) + 1/(z**(1/n))) - 1)
odds = [1.42,5.29,7.75]
solve = minimize(objective,1.0,args=(odds))
And my output:
fun: -0.9999999931706812
x: array([0.01864994])
And really when put in the formula:
(1/(1.42^(1/0.01864994)) + 1/(5.29^(1/0.01864994)) + 1/(7.75^(1/0.01864994))) -1 = -0.999999993171
Unfortunately I need a positive 1 and I have no idea what to change.
We want to find n that gets our result for a fixed x, y, and z as close as possible to 1. minimize tries to get the lowest possible value for something, without negative bound; -3 is better than -2, and so on.
So what we actually want is called least-squares optimization. Similar idea, though. This documentation is a bit hard to understand, so I'll try to clarify:
All these optimization functions have a common design where you pass in a callable that takes at least one parameter, the one you want to optimize for (in your case, n). Then you can have it take more parameters, whose values will be fixed according to what you pass in.
In your case, you want to be able to solve the optimization problem for different values of x, y and z. So you make your callback accept n, x, y, and z, and pass the x, y, and z values to use when you call scipy.optimize.least_squares. You pass these using the args keyword argument (notice that it is not *args). We can also supply an initial guess of 1 for the n value, which the algorithm will refine.
The rest is customization that is not relevant for our purposes.
So, first let us make the callback:
def objective(n, x, y, z):
return 1/(x**(1/n)) + 1/(y**(1/n)) + 1/(z**(1/n))
Now our call looks like:
best_n = least_squares(objective, 1.0, args=np.array([1.42, 5.29, 7.75]))
(You can call minimize the same way, and it will instead look for an n value to make the objective function return as low a value as possible. If I am thinking clearly: the guess for n should trend towards zero, making the denominators increase without bound, making the sum of the reciprocals go towards zero; negative values are not possible. However, it will stop when it gets close to zero, according to the default values for ftol, xtol and gtol. To understand this part properly is beyond the scope of this answer; please try on math.stackexchange.com.)
fuction takes two list(having tuples as values) as input
i got in my mind following algorithm to write code for this, but to write it properly.
-->firstly make required no. of dictionary to store coefficient of each power is multiplied with all coefficient of polynomial p2.
then all dictionary coefficient are added which having same power.
def multpoly(p1,p2):
dp1=dict(map(reversed, p1))
dp2=dict(map(reversed, p2))
kdp1=list(dp1.keys())
kdp2=list(dp2.keys())
rslt={}
if len(kdp1)>=len(kdp2):
kd1=kdp1
kd2=kdp2
elif len(kdp1)<len(kdp2):
kd1=kdp2
kd2=kdp1
for n in kd2:
for m in kd1:
rslt[n]={m:0}
if len(dp1)<=len(dp2):
rslt[n][m+n]=rslt[n][m+n] + dp1[n]*dp2[m]
elif len(dp1)>len(dp2):
rslt[n][m+n]=rslt[n][m+n] + dp2[n]*dp1[m]
return(rslt)
If I understand correctly, you want a function to multiply two polynomials and return the result. In the future, try and post a specific question. Here is code that will work for you:
def multiply_terms(term_1, term_2):
new_c = term_1[0] * term_2[0]
new_e = term_1[1] + term_2[1]
return (new_c, new_e)
def multpoly(p1, p2):
"""
#params p1,p2 are lists of tuples where each tuple represents a pair of term coefficient and exponent
"""
# multiply terms
result_poly = []
for term_1 in p1:
for term_2 in p2:
result_poly.append(multiply_terms(term_1, term_2))
# collect like terms
collected_terms = []
exps = [term[1] for term in result_poly]
for e in exps:
count = 0
for term in result_poly:
if term[1] == e:
count += term[0]
collected_terms.append((count, e))
return collected_terms
Note however, there are definitely much better ways to represent these polynomials such that the multiplication is faster and easier to code. Your idea with the dict is slightly better but still messy. You could use a list where the index represents the exponent and the value represents the coefficient. For ex. you could represent 2x^4 + 3x + 1 as [1, 3, 0, 0, 2].
I need to repeatedly evaluate a polynomial of the form
f(x)=c(0)+c(1)*x+...+c(k-1)*x^(k-1) mod p
where k is an integer, p is a large prime number and c(0),...,c(p) are between 1 and p.
For my applications, k=10, p should be greater than 1000.
I would prefer to do this in Python and as fast as possible. I don't know enough about modulo arithmetic in Python to implement this efficiently (e.g. how to exploit that we can use Mersenne primes p=2^q-1 in which case about should use that multiplication is a register shift, avoid trouble by adding integers over different orders of magnitude,...).
Motivation: k-independent hashing, see https://en.wikipedia.org/wiki/K-independent_hashing. This seems to a very popular academic subject but I was not able to find any implementations for k>2.
In general, you can compute the value of a polynomial using the following construction:
def value(poly, x):
"""Evaluates a polynomial POLY for a given x.
The polynomial is expressed as a list of coefficients, with
the coefficient for x ** N at poly[N].
This means that x ** 2 + 2*x + 3 is expressed as [3, 2, 1].
"""
v = 0
# Bit messy, but we're basically generating the indexes of
# our polynomial coefficients from highest to lowest
for coeff in reverse(poly):
v = v * x + coeff
return v
To evaluate this modulo a value, we can simply change the inner loop to v = v * x + poly[ix] % p (and pass our modulus as the parameter p).
We can show that the example polynom (x^2 + 2x + 3) is computed correctly by unwinding the loop and see that what we have is (((1) * x + 2) * x + 3) (each parenthesis level is one iteration through the loop), this can be simplified to 1 * x * x + 2 * x + 3, which is clearly the expected polynomial.
By using this, we should never end up with an intermediate value larger than p * x.
I'm solving a one dimensional non-linear equation with Newton's method. I'm trying to figure out why one of the implementations of Newton's method is converging exactly within floating point precision, wheres another is not.
The following algorithm does not converge:
whereas the following does converge:
You may assume that the functions f and f' are smooth and well behaved. The best explanation I was able to come up with is that this is somehow related to what's called iterative improvement (Golub and Van Loan, 1989). Any further insight would be greatly appreciated!
Here is a simple python example illustrating the issue
# Python
def f(x):
return x*x-2.
def fp(x):
return 2.*x
xprev = 0.
# converges
x = 1. # guess
while x != xprev:
xprev = x
x = (x*fp(x)-f(x))/fp(x)
print(x)
# does not converge
x = 1. # guess
while x != xprev:
xprev = x
dx = -f(x)/fp(x)
x = x + dx
print(x)
Note: I'm aware of how floating point numbers work (please don't post your favourite link to a website telling me to never compare two floating point numbers). Also, I'm not looking for a solution to a problem but for an explanation as to why one of the algorithms converges but not the other.
Update:
As #uhoh pointed out, there are many cases where the second method does not converge. However, I still don't know why the second method converges so much more easily in my real world scenario than the first. All the test cases have very simple functions f whereas the real world f has several hundred lines of code (which is why I don't want to post it). So maybe the complexity of f is important. If you have any additional insight into this, let me know!
None of the methods is perfect:
One situation in which both methods will tend to fail is if the root is about exactly midway between two consecutive floating-point numbers f1 and f2. Then both methods, having arrived to f1, will try to compute that intermediate value and have a good chance of turning up f2, and vice versa.
/f(x)
/
/
/
/
f1 /
--+----------------------+------> x
/ f2
/
/
/
"I'm aware of how floating point numbers work...". Perhaps the workings of floating-point arithmetic are more complicated than imagined.
This is a classic example of cycling of iterates using Newton's method. The comparison of a difference to an epsilon is "mathematical thinking" and can burn you when using floating-point. In your example, you visit several floating-point values for x, and then you are trapped in a cycle between two numbers. The "floating-point thinking" is better formulated as the following (sorry, my preferred language is C++)
std::set<double> visited;
xprev = 0.0;
x = 1.0;
while (x != prev)
{
xprev = x;
dx = -F(x)/DF(x);
x = x + dx;
if (visited.find(x) != visited.end())
{
break; // found a cycle
}
visited.insert(x);
}
I'm trying to figure out why one of the implementations of Newton's method is converging exactly within floating point precision, wheres another is not.
Technically, it doesn't converge to the correct value. Try printing more digits, or using float.hex.
The first one gives
>>> print "%.16f" % x
1.4142135623730949
>>> float.hex(x)
'0x1.6a09e667f3bccp+0'
whereas the correctly rounded value is the next floating point value:
>>> print "%.16f" % math.sqrt(2)
1.4142135623730951
>>> float.hex(math.sqrt(2))
'0x1.6a09e667f3bcdp+0'
The second algorithm is actually alternating between the two values, so doesn't converge.
The problem is due to catastrophic cancellation in f(x): as x*x will be very close to 2, when you subtract 2, the result will be dominated by the rounding error incurred in computing x*x.
I think trying to force an exact equal (instead of err < small) is always going to fail frequently. In your example, for 100,000 random numbers between 1 and 10 (instead of your 2.0) the first method fails about 1/3 of the time, the second method about 1/6 of the time. I'll bet there's a way to predict that!
This takes ~30 seconds to run, and the results are cute!:
def f(x, a):
return x*x - a
def fp(x):
return 2.*x
def A(a):
xprev = 0.
x = 1.
n = 0
while x != xprev:
xprev = x
x = (x * fp(x) - f(x,a)) / fp(x)
n += 1
if n >100:
return n, x
return n, x
def B(a):
xprev = 0.
x = 1.
n = 0
while x != xprev:
xprev = x
dx = - f(x,a) / fp(x)
x = x + dx
n += 1
if n >100:
return n, x
return n, x
import numpy as np
import matplotlib.pyplot as plt
n = 100000
aa = 1. + 9. * np.random.random(n)
data_A = np.zeros((2, n))
data_B = np.zeros((2, n))
for i, a in enumerate(aa):
data_A[:,i] = A(a)
data_B[:,i] = B(a)
bins = np.linspace(0, 110, 12)
hist_A = np.histogram(data_A, bins=bins)
hist_B = np.histogram(data_B, bins=bins)
print "A: n<10: ", hist_A[0][0], " n>=100: ", hist_A[0][-1]
print "B: n<10: ", hist_B[0][0], " n>=100: ", hist_B[0][-1]
plt.figure()
plt.subplot(1,2,1)
plt.scatter(aa, data_A[0])
plt.subplot(1,2,2)
plt.scatter(aa, data_B[0])
plt.show()
I have these problems about polynomials and I've spent about 4 hours on this, but I just can't get it. I'm new to Python and programming and I've tried working it out on paper, but I just don't know.
Write and test a Python function negate(p) that negates the polynomial represented by the list of its coeffeicients p and returns a new polynomial (represented as a list). In other words, write a function that makes the list of numbers negative.
Write a Python function eval_polynomial(p, x) that returns the value of P(x), where P is the polynomial represented by the list of its coefficients p. For example, eval_polynomial([1, 0, 3], 2) should return 1*2^2 + 0*2 + 3 = 7. Use a single while loop.
Write and test a function multiply_by_one_term(p, a, k) that multiplies a given polynomial p, represented by a list of coefficients, by ax^k and returns the product as a new list.
I would really appreciate it if someone could help me.
I'd recommend using numpy.poly1d and numpy.polymul, where the coefficients are a0*x2 + a1*x + a2.
For example, to represent 3*x**2 + 2*x + 1:
p1 = numpy.poly1d([3,2,1])
And with the resulting poly1d object you can operate using *, / and so on...:
print(p1*p1)
# 4 3 2
#9 x + 12 x + 10 x + 4 x + 1
If you want to build your own functions, assuming that p contains the coefficients in order: a0 + a1*x + a2*x**2 + ...:
def eval_polynomial(p,x):
return sum((a*x**i for i,a in enumerate(p)))
def multiply_by_one_term(p, a, k):
return [0]*k + [a*i for i in p]
Note
My evaluate function uses exponentials, which can be avoided with Horner's rule, as posted in another answer, which is available in Numpy's polyval function
Please use Horner's Method instead!
For polynomials, you should consider Horner's Method. Its main feature is that computing a polynomial of order N requires only N multiplies and N additions -- no exponentials:
def eval_polynomial(P, x):
'''
Compute polynomial P(x) where P is a vector of coefficients, highest
order coefficient at P[0]. Uses Horner's Method.
'''
result = 0
for coeff in P:
result = x * result + coeff
return result
>>> eval_poly([1, 0, 3], 2)
7
You can work through it by hand, or follow the link to see how it works.