python does not solve an ode system properly - python

I have an ODE which I need to solve and plot. This is my code so far:
import numpy as np
import math
from scipy.integrate import odeint
import matplotlib.pyplot as plt
import math
from scipy import integrate
##############################
# Constants
#α = 1,β = 12,μ = 0.338,Vb = 0.01,ω = 0.5,
alpha = 1#p1
beta = 12#p2
mu = 0.338#p3
omega = 0.5#p5
gamma = 0.25#p6
Acoef=0.5
tmax = 1000
t = np.arange(0.0, tmax, 0.001)
################################
# Initial conditions vector
X0=0
I0=0
Z0=0.06
H0=0.04
E0=0
O0=0.02
# The model differential equations.
def deriv(y,t):
X, I, Z, H, E, O = y
dXdt = I
dIdt = -(alpha)*(X)-(beta)*(X**3)-(mu)*I+gamma*(1/(1-X)**2)-gamma*(1/(1+X)**2)+Acoef*(1/(1-X)**2)*(np.sin(omega*t))
dZdt = H
dHdt =-(alpha)*(Z)-(beta)*(Z**3)-(mu)*I+gamma*(1/(1-Z)**2)-gamma*(1/(1+Z)**2)+Acoef*(1/(1-Z)**2)*(np.sin(omega*t))
dEdt=O
dOdt=-(alpha)*(X)-(beta)*(X**3)-(mu)*I+gamma*(1/(1-X)**2)-gamma*(1/(1+X)**2)+Acoef*(1/(1-X)**2)*(np.sin(omega*t))-(-(alpha)*(Z)-(beta)*(Z**3)-(mu)*I+gamma*(1/(1-Z)**2)-gamma*(1/(1+Z)**2)+Acoef*(1/(1-Z)**2)*(np.sin(omega*t)))
return dXdt, dIdt, dZdt, dHdt, dEdt,dOdt
# Initial conditions vector
y0 = X0,I0,Z0,H0,E0,O0
# Integrate the SIR equations over the time grid, t.
ret = odeint(deriv, y0, t)
X, I, Z, H, E, O = ret.T
# Plot the data on three separate curves for S(t), I(t) and R(t)
plt.xlim([-10, 10])
plt.plot(ret[:,4], ret[:,5])
plt.show()
e1=ret[:,4]
e2=ret[:,5]
Unfortunately, it produces the following warning:
File "C:\Users\user\AppData\Local\Programs\Python\Python37\lib\site-packages\scipy\integrate\odepack.py", line 247
warnings.warn(warning_msg, ODEintWarning)
ODEintWarning: Excess work done on this call (perhaps wrong Dfun type). Run with full_output = 1 to get quantitative information.
And the result is not as expected. I cannot here post graphical result probably.
Does anyone know how I can fix it, please?

Related

Fitting peaks with Scipy curve_fit, error optimal parameters not found

I recently started with Python because I have an enormous amount of data where I want to automatically fit a Gaussian to the peaks in spectra. Below is an example of three peaks that I want to fit with three individual peaks.
I have found a question where someone is looking for something very similar, How can I fit multiple Gaussian curved to mass spectrometry data in Python?, and adopted it to my script.
I have added my code at the bottom and when I run the last section I get the error "RuntimeError: Optimal parameters not found: Number of calls to function has reached maxfev = 800." What am I missing?
The data can be downloaded at https://www.dropbox.com/s/zowawljcjco70yh/data_so.h5?dl=0
#%%
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from scipy import sparse
from scipy.sparse.linalg import spsolve
from scipy.optimize import curve_fit
#%% Read data
path = 'D:/Python/data_so.h5'
f = pd.read_hdf(path, mode = 'r')
t = f.loc[:, 'Time stamp']
d = f.drop(['Time stamp', 'Name spectrum'], axis = 1)
#%% Extract desired wavenumber range
wn_st=2000
wn_ed=2500
ix_st=np.argmin(abs(d.columns.values-wn_st))
ix_ed=np.argmin(abs(d.columns.values-wn_ed))
d = d.iloc[:, ix_st:ix_ed+1]
#%% AsLS baseline correction
spectrum = 230
y = d.iloc[spectrum]
niter = 10
lam = 200000
p = 0.005
L = len(y)
D = sparse.diags([1,-2,1],[0,-1,-2], shape=(L,L-2))
w = np.ones(L)
for i in range(niter):
W = sparse.spdiags(w, 0, L, L)
Z = W + lam * D.dot(D.transpose())
z = spsolve(Z, w*y)
w = p * (y > z) + (1-p) * (y < z)
corr = d.iloc[spectrum,:] - z
#%% Plot spectrum, baseline and corrected spectrum
plt.clf()
plt.plot(d.columns, d.iloc[spectrum,:])
plt.plot(d.columns, z)
plt.plot(d.columns, corr)
plt.gca().invert_xaxis()
plt.show()
#%%
x = d.columns.values
def gauss(x, a, mu, sig):
return a*np.exp(-(x.astype(float)-mu)**2/(2*sig**2))
fitx = x[(x>2232)*(x<2252)]
fity = y[(x>2232)*(x<2252)]
mu=np.sum(fitx*fity)/np.sum(fity)
sig=np.sqrt(np.sum(fity*(fitx-mu)**2)/np.sum(fity))
popt, pcov = curve_fit(gauss, fitx, fity, p0=[max(fity),mu, sig])
plt.plot(x, gauss(x, popt[0],popt[1],popt[2]), 'r-', label='fit')

Solving an ODE Numerically with SciPy

I'm trying to find a numerical solution and eventually graph, the Gyllenberg-Webb model (cancer cell growth model). This model looks like:
Where β is the reproduction rate of proliferating cells, µp is the death rate of proliferating cells, µq is the death rate of quiescent cells, and r0 and ri are functions (transition rates) of N(t). Also N(t) = P(t)+Q(t).
For my purposes here I defined r_0(N) = bN and r_i(N) = aN to make things more simple.
My problem is when I try and plot my solution with pyplot I get
ValueError: x and y must have same first dimension
which I guess is self-explanatory, but I'm not sure how to go about fixing it without breaking everything else.
My code, which I've done only for the first equation so far, is:
import numpy as np
import matplotlib.pyplot as plt
import scipy.integrate
def fun(P,t, params):
beta, mp,b,N,Q = params
return(beta-mp-(b*N))*P+(a*N)*Q
params = (0.5,0.6,0.7,0.8,0.9)
tvec = np.arange(0,6,0.1)
s1 = scipy.integrate.odeint(
fun,
y0 = 1,
t = tvec,
args = (params,))
#print(s1)
plt.plot(fun,tvec)
In the end you will want to solve the coupled system. This is not complicated, just make the state object a vector and return the derivatives in the correct order.
def fun(state,t, params):
P, Q = state
beta, mp, mq, a, b = params
N = P+Q
r0N, riN = b*N, a*N
return [ (beta-mp-r0N)*P + riN*Q, r0N*P - (riN+mq)*Q ]
params = (0.5,0.6,0.7,0.8,0.9)
tsol = np.arange(0,6,0.1)
sol = odeint( fun, y0 = [ 1, 0], t = tsol, args = (params,))
Psol, Qsol = sol.T; plt.plot(tsol, Psol, tsol, Qsol)
You are currently plotting fun vs. tvec. What you actually want is to plot tvec vs s1. You will also have to define the parameter a in fun; I set it to 1 in the code below:
import numpy as np
import matplotlib.pyplot as plt
import scipy.integrate
def fun(P, t, params):
beta, mp, b, N, Q = params
return (beta-mp-(b*N))*P + (1.0 * N)*Q
params = (0.5, 0.6, 0.7, 0.8, 0.9)
tvec = np.arange(0, 6, 0.1)
s1 = scipy.integrate.odeint(
fun,
y0=1.,
t=tvec,
args=(params,))
plt.plot(tvec, s1)
plt.show()
This will plot:

Plotting multiple subplots on same graph

from __future__ import division
import numpy as np
import matplotlib.pyplot as plt
import math
from scipy.integrate import odeint
from scipy.fftpack import fft, ifft
def pend(y, t, a, b, ohm):
theta, omega, phi = y
dydt = [omega, -b*omega-np.sin(theta)-a*np.cos(phi), ohm]
return dydt
b = 1.0/2.0 #beta
ohm = 2.0/3.0 #capital Omega
period = 2.0*math.pi/ohm #driving period
t0 = 0.0 #initial time
t = np.linspace(t0,t0+period*10**3,10**3+1) #time for Poincare map
theta0 = 0.75
omega0 = 1.6
phi0 = 0.8
y0 = [theta0,omega0,phi0] #initial conditions
N = 100 #number of transient points to delete
a_array = np.linspace(0,1.15,50) #varying parameter of a values
for a in a_array:
sol = odeint(pend,y0,t,args=(a,b,ohm)) #numerical integration of differential equation
sol = sol[N:10**3-N] #removing transients
w = sol[:,1] #frequency
A = np.full(len(w),a) #array of a-values
plt.plot(A, w)
plt.draw()
I'm trying to construct a bifurcation diagram currently. In the system of equations we're using, a is the control parameter, which we're plotting for values between 0 and 1.15 on the x-axis vs. an array of values (called w) for a particular value of a. I'm not really sure how to plot things from within a for loop like this. I've heard that subplots are the best way to go, but I'm unfamiliar with implementation and could use some help. Thanks!
Unindenting the last command worked for me.
from __future__ import division
import numpy as np
import matplotlib.pyplot as plt
import math
from scipy.integrate import odeint
from scipy.fftpack import fft, ifft
def pend(y, t, a, b, ohm):
theta, omega, phi = y
dydt = [omega, -b*omega-np.sin(theta)-a*np.cos(phi), ohm]
return dydt
b = 1.0/2.0 #beta
ohm = 2.0/3.0 #capital Omega
period = 2.0*math.pi/ohm #driving period
t0 = 0.0 #initial time
t = np.linspace(t0,t0+period*10**3,10**3+1) #time for Poincare map
theta0 = 0.75
omega0 = 1.6
phi0 = 0.8
y0 = [theta0,omega0,phi0] #initial conditions
N = 100 #number of transient points to delete
a_array = np.linspace(0,1.15,50) #varying parameter of a values
for a in a_array:
sol = odeint(pend,y0,t,args=(a,b,ohm)) #numerical integration of differential equation
sol = sol[N:10**3-N] #removing transients
w = sol[:,1] #frequency
A = np.full(len(w),a) #array of a-values
plt.plot(A, w)
plt.show()

scipy.optimize.curve_fit unable to fit shifted skewed gaussian curve

I am trying to fit a skewed and shifted Gaussian curve using scipy's curve_fit function, but I find that under certain conditions the fitting is quite poor, often giving me close to or exactly a straight line.
The code below is derived from the curve_fit documentation. The code provided is an arbitrary set of data for test purposes but displays the issue quite well.
import numpy as np
from scipy.optimize import curve_fit
import matplotlib.pyplot as plt
import math as math
import scipy.special as sp
#def func(x, a, b, c):
# return a*np.exp(-b*x) + c
def func(x, sigmag, mu, alpha, c,a):
#normal distribution
normpdf = (1/(sigmag*np.sqrt(2*math.pi)))*np.exp(-(np.power((x-mu),2)/(2*np.power(sigmag,2))))
normcdf = (0.5*(1+sp.erf((alpha*((x-mu)/sigmag))/(np.sqrt(2)))))
return 2*a*normpdf*normcdf + c
x = np.linspace(0,100,100)
y = func(x, 10,30, 0,0,1)
yn = y + 0.001*np.random.normal(size=len(x))
popt, pcov = curve_fit(func, x, yn,) #p0=(9,35,0,9,1))
y_fit= func(x,popt[0],popt[1],popt[2],popt[3],popt[4])
plt.plot(x,yn)
plt.plot(x,y_fit)
The issue seems to pop up when I shift the gaussian too far from zero (using mu). I have tried giving initial values, even those identical to my original function, but it does not solve the problem. For a value of mu=10, curve_fit works perfectly, but if I use mu>=30 it not longer fits the data.
Giving starting points for minimization often works wonders. Try giving the minimizer some information on the position of the maximum and the width of the curve:
popt, pcov = curve_fit(func, x, yn, p0=(1./np.std(yn), np.argmax(yn) ,0,0,1))
Changing this single line in your code with sigma=10 and mu=50 produces
You can call curve_fit many times with random initial guess, and choose the parameters with minimum error.
import numpy as np
from scipy.optimize import curve_fit
import matplotlib.pyplot as plt
import math as math
import scipy.special as sp
def func(x, sigmag, mu, alpha, c,a):
#normal distribution
normpdf = (1/(sigmag*np.sqrt(2*math.pi)))*np.exp(-(np.power((x-mu),2)/(2*np.power(sigmag,2))))
normcdf = (0.5*(1+sp.erf((alpha*((x-mu)/sigmag))/(np.sqrt(2)))))
return 2*a*normpdf*normcdf + c
x = np.linspace(0,100,100)
y = func(x, 10,30, 0,0,1)
yn = y + 0.001*np.random.normal(size=len(x))
results = []
for i in xrange(50):
p = np.random.randn(5)*10
try:
popt, pcov = curve_fit(func, x, yn, p)
except:
pass
err = np.sum(np.abs(func(x, *popt) - yn))
results.append((err, popt))
if err < 0.1:
break
err, popt = min(results, key=lambda x:x[0])
y_fit= func(x, *popt)
plt.plot(x,yn)
plt.plot(x,y_fit)
print len(results)

Fitting data to system of ODEs using Python via Scipy & Numpy

I am having some trouble translating my MATLAB code into Python via Scipy & Numpy. I am stuck on how to find optimal parameter values (k0 and k1) for my system of ODEs to fit to my ten observed data points. I currently have an initial guess for k0 and k1. In MATLAB, I can using something called 'fminsearch' which is a function that takes the system of ODEs, the observed data points, and the initial values of the system of ODEs. It will then calculate a new pair of parameters k0 and k1 that will fit the observed data. I have included my code to see if you can help me implement some kind of 'fminsearch' to find the optimal parameter values k0 and k1 that will fit my data. I want to add whatever code to do this to my lsqtest.py file.
I have three .py files - ode.py, lsq.py, and lsqtest.py
ode.py:
def f(y, t, k):
return (-k[0]*y[0],
k[0]*y[0]-k[1]*y[1],
k[1]*y[1])
lsq.py:
import pylab as py
import numpy as np
from scipy import integrate
from scipy import optimize
import ode
def lsq(teta,y0,data):
#INPUT teta, the unknowns k0,k1
# data, observed
# y0 initial values needed by the ODE
#OUTPUT lsq value
t = np.linspace(0,9,10)
y_obs = data #data points
k = [0,0]
k[0] = teta[0]
k[1] = teta[1]
#call the ODE solver to get the states:
r = integrate.odeint(ode.f,y0,t,args=(k,))
#the ODE system in ode.py
#at each row (time point), y_cal has
#the values of the components [A,B,C]
y_cal = r[:,1] #separate the measured B
#compute the expression to be minimized:
return sum((y_obs-y_cal)**2)
lsqtest.py:
import pylab as py
import numpy as np
from scipy import integrate
from scipy import optimize
import lsq
if __name__ == '__main__':
teta = [0.2,0.3] #guess for parameter values k0 and k1
y0 = [1,0,0] #initial conditions for system
y = [0.000,0.416,0.489,0.595,0.506,0.493,0.458,0.394,0.335,0.309] #observed data points
data = y
resid = lsq.lsq(teta,y0,data)
print resid
For these kind of fitting tasks you could use the package lmfit. The outcome of the fit would look like this; as you can see, the data are reproduced very well:
For now, I fixed the initial concentrations, you could also set them as variables if you like (just remove the vary=False in the code below). The parameters you obtain are:
[[Variables]]
x10: 5 (fixed)
x20: 0 (fixed)
x30: 0 (fixed)
k0: 0.12183301 +/- 0.005909 (4.85%) (init= 0.2)
k1: 0.77583946 +/- 0.026639 (3.43%) (init= 0.3)
[[Correlations]] (unreported correlations are < 0.100)
C(k0, k1) = 0.809
The code that reproduces the plot looks like this (some explanation can be found in the inline comments):
import numpy as np
import matplotlib.pyplot as plt
from scipy.integrate import odeint
from lmfit import minimize, Parameters, Parameter, report_fit
from scipy.integrate import odeint
def f(y, t, paras):
"""
Your system of differential equations
"""
x1 = y[0]
x2 = y[1]
x3 = y[2]
try:
k0 = paras['k0'].value
k1 = paras['k1'].value
except KeyError:
k0, k1 = paras
# the model equations
f0 = -k0 * x1
f1 = k0 * x1 - k1 * x2
f2 = k1 * x2
return [f0, f1, f2]
def g(t, x0, paras):
"""
Solution to the ODE x'(t) = f(t,x,k) with initial condition x(0) = x0
"""
x = odeint(f, x0, t, args=(paras,))
return x
def residual(paras, t, data):
"""
compute the residual between actual data and fitted data
"""
x0 = paras['x10'].value, paras['x20'].value, paras['x30'].value
model = g(t, x0, paras)
# you only have data for one of your variables
x2_model = model[:, 1]
return (x2_model - data).ravel()
# initial conditions
x10 = 5.
x20 = 0
x30 = 0
y0 = [x10, x20, x30]
# measured data
t_measured = np.linspace(0, 9, 10)
x2_measured = np.array([0.000, 0.416, 0.489, 0.595, 0.506, 0.493, 0.458, 0.394, 0.335, 0.309])
plt.figure()
plt.scatter(t_measured, x2_measured, marker='o', color='b', label='measured data', s=75)
# set parameters including bounds; you can also fix parameters (use vary=False)
params = Parameters()
params.add('x10', value=x10, vary=False)
params.add('x20', value=x20, vary=False)
params.add('x30', value=x30, vary=False)
params.add('k0', value=0.2, min=0.0001, max=2.)
params.add('k1', value=0.3, min=0.0001, max=2.)
# fit model
result = minimize(residual, params, args=(t_measured, x2_measured), method='leastsq') # leastsq nelder
# check results of the fit
data_fitted = g(np.linspace(0., 9., 100), y0, result.params)
# plot fitted data
plt.plot(np.linspace(0., 9., 100), data_fitted[:, 1], '-', linewidth=2, color='red', label='fitted data')
plt.legend()
plt.xlim([0, max(t_measured)])
plt.ylim([0, 1.1 * max(data_fitted[:, 1])])
# display fitted statistics
report_fit(result)
plt.show()
If you have data for additional variables, you can simply update the function residual.
The following worked for me:
import pylab as pp
import numpy as np
from scipy import integrate, interpolate
from scipy import optimize
##initialize the data
x_data = np.linspace(0,9,10)
y_data = np.array([0.000,0.416,0.489,0.595,0.506,0.493,0.458,0.394,0.335,0.309])
def f(y, t, k):
"""define the ODE system in terms of
dependent variable y,
independent variable t, and
optinal parmaeters, in this case a single variable k """
return (-k[0]*y[0],
k[0]*y[0]-k[1]*y[1],
k[1]*y[1])
def my_ls_func(x,teta):
"""definition of function for LS fit
x gives evaluation points,
teta is an array of parameters to be varied for fit"""
# create an alias to f which passes the optional params
f2 = lambda y,t: f(y, t, teta)
# calculate ode solution, retuen values for each entry of "x"
r = integrate.odeint(f2,y0,x)
#in this case, we only need one of the dependent variable values
return r[:,1]
def f_resid(p):
""" function to pass to optimize.leastsq
The routine will square and sum the values returned by
this function"""
return y_data-my_ls_func(x_data,p)
#solve the system - the solution is in variable c
guess = [0.2,0.3] #initial guess for params
y0 = [1,0,0] #inital conditions for ODEs
(c,kvg) = optimize.leastsq(f_resid, guess) #get params
print "parameter values are ",c
# fit ODE results to interpolating spline just for fun
xeval=np.linspace(min(x_data), max(x_data),30)
gls = interpolate.UnivariateSpline(xeval, my_ls_func(xeval,c), k=3, s=0)
#pick a few more points for a very smooth curve, then plot
# data and curve fit
xeval=np.linspace(min(x_data), max(x_data),200)
#Plot of the data as red dots and fit as blue line
pp.plot(x_data, y_data,'.r',xeval,gls(xeval),'-b')
pp.xlabel('xlabel',{"fontsize":16})
pp.ylabel("ylabel",{"fontsize":16})
pp.legend(('data','fit'),loc=0)
pp.show()
Look at the scipy.optimize module. The minimize function looks fairly similar to fminsearch, and I believe that both basically use a simplex algorithm for optimization.
# cleaned up a bit to get my head around it - thanks for sharing
import pylab as pp
import numpy as np
from scipy import integrate, optimize
class Parameterize_ODE():
def __init__(self):
self.X = np.linspace(0,9,10)
self.y = np.array([0.000,0.416,0.489,0.595,0.506,0.493,0.458,0.394,0.335,0.309])
self.y0 = [1,0,0] # inital conditions ODEs
def ode(self, y, X, p):
return (-p[0]*y[0],
p[0]*y[0]-p[1]*y[1],
p[1]*y[1])
def model(self, X, p):
return integrate.odeint(self.ode, self.y0, X, args=(p,))
def f_resid(self, p):
return self.y - self.model(self.X, p)[:,1]
def optim(self, p_quess):
return optimize.leastsq(self.f_resid, p_guess) # fit params
po = Parameterize_ODE(); p_guess = [0.2, 0.3]
c, kvg = po.optim(p_guess)
# --- show ---
print "parameter values are ", c, kvg
x = np.linspace(min(po.X), max(po.X), 2000)
pp.plot(po.X, po.y,'.r',x, po.model(x, c)[:,1],'-b')
pp.xlabel('X',{"fontsize":16}); pp.ylabel("y",{"fontsize":16}); pp.legend(('data','fit'),loc=0); pp.show()

Categories