I have written the following code with function animation with plot_surface which is not drawing, just giving the first picture
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.animation import FuncAnimation
x = np.outer(np.linspace(-2, 2, 50), np.ones(50))
#print(x)
y = x.copy().T # transpose
fig = plt.figure()
ax = plt.axes(projection='3d')
def animation_frame(i):
z = np.cos(x ** 2 + y ** 2) + np.cos(x ** (2*i) + y ** (2*i))
# print (z)
ax.plot_surface(x, y, z,cmap='viridis', edgecolor='none')
# return ax,
animation = FuncAnimation(fig, func=animation_frame, frames=np.arange(0, 10, 1), interval=1000, blit=False)
#plt.show()
animation
You should call the plt.show() method at the end. Moreover, you should erase the previous plot with ax.cla() at the beginning of the animation_frame.
Whole code
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.animation import FuncAnimation
x = np.outer(np.linspace(-2, 2, 50), np.ones(50))
y = x.copy().T
fig = plt.figure()
ax = plt.axes(projection = '3d')
def animation_frame(i):
ax.cla()
z = np.cos(x**2 + y**2) + np.cos(x**(2*i) + y**(2*i))
ax.plot_surface(x, y, z, cmap = 'viridis', edgecolor = 'none')
animation = FuncAnimation(fig, func = animation_frame, frames = np.arange(0, 10, 1), interval = 250, blit = False)
plt.show()
Related
I have the following code which creates a graph animation. The graph should start from 0, but the 1st interval graph isn't coming.
Below is the code:
import matplotlib.pylab as plt
import matplotlib.animation as animation
import numpy as np
fig, ax = plt.subplots()
left = -1
right = 2*np.pi - 1
def animate(i):
global left, right
left = left + 1
right = right + 1
x = np.linspace(left, right, 50)
y = np.cos(x)
ax.cla()
ax.set_xlim(left, right)
ax.plot(x, y, lw=2)
ani = animation.FuncAnimation(fig, animate, interval = 1000)
plt.show()
For the 1st interval [0, 2π] the graph isn't coming.
What's the mistake?
I changed a little bit your code:
first of all I plot the first frame outside the animate function and I generate a line object from it
then I update the line data within animate function
I suggest to use i counter (which starts from 0 and increases by 1 in each frame) to update your data, in place of calling global variables and change them
Complete Code
import matplotlib.pylab as plt
import matplotlib.animation as animation
import numpy as np
fig, ax = plt.subplots()
left = 0
right = 2*np.pi
x = np.linspace(left, right, 50)
y = np.cos(x)
line, = ax.plot(x, y)
ax.set_xlim(left, right)
def animate(i):
x = np.linspace(left + i, right + i, 50)
y = np.cos(x)
line.set_data(x, y)
ax.set_xlim(left + i, right + i)
return line,
ani = animation.FuncAnimation(fig = fig, func = animate, interval = 1000)
plt.show()
I can use the set_xdata and set_ydata functions to update an existing matplotlib plot. But after updating I want to recenter the plot so that all the points fall into the "view" of the plot.
In the below example, the y data keeps getting bigger but the zoom level of the plot remains same so the data points quickly get out of the scope.
import time
import matplotlib.pyplot as plt
import numpy as np
x = np.linspace(0, 10, 100)
y = np.sin(x)
plt.ion()
figure, ax = plt.subplots(figsize=(10, 8))
(line1,) = ax.plot(x, y)
plt.xlabel("X-axis")
plt.ylabel("Y-axis")
for i in range(1000):
new_y = np.sin(x - 0.5 * i) * i
line1.set_xdata(x)
line1.set_ydata(new_y)
figure.canvas.draw()
figure.canvas.flush_events()
time.sleep(0.1)
Adding ax.relim() and ax.autoscale() fixes the issue
import time
import matplotlib.pyplot as plt
import numpy as np
x = np.linspace(0, 10, 100)
y = np.sin(x)
plt.ion()
ax: plt.Axes
figure, ax = plt.subplots(figsize=(10, 8))
(line1,) = ax.plot(x, y)
ax.autoscale(True)
plt.xlabel("X-axis")
plt.ylabel("Y-axis")
for i in range(1000):
new_y = np.sin(x - 0.5 * i) * i
line1.set_xdata(x)
line1.set_ydata(new_y)
# Rescale axes limits
ax.relim()
ax.autoscale()
figure.canvas.draw()
figure.canvas.flush_events()
time.sleep(0.1)
np.sin(x - 0.5 * i) has multiplied by i, which can be 1000. One alternative is to make the y-axis have a limit greater than 1000. So, you can include plt.ylim([-1100,1100]):
import time
import matplotlib.pyplot as plt
import numpy as np
x = np.linspace(0, 10, 100)
y = np.sin(x)
plt.ion()
figure, ax = plt.subplots(figsize=(10, 8))
(line1,) = ax.plot(x, y)
plt.xlabel("X-axis")
plt.ylabel("Y-axis")
plt.ylim([-1100,1100])
for i in range(1000):
new_y = np.sin(x - 0.5 * i) * i
line1.set_xdata(x)
line1.set_ydata(new_y)
figure.canvas.draw()
figure.canvas.flush_events()
time.sleep(0.1)
I use Windows 10 / 64 / Google chrome
I found a good set-up for animation over Jupyter with the call %matplotlib notebook as here :
import numpy as np
import scipy.stats as st
%matplotlib notebook
import matplotlib.pyplot as plt
import matplotlib.animation as animation
For exemple, this one is working pretty well :
n = 100
X = st.norm(0,1).rvs(200)
number_of_frames = np.size(X)
def update_hist(num, second_argument):
plt.cla()
plt.hist(X[:num], bins = 20)
plt.title("{}".format(num))
plt.legend()
fig = plt.figure()
hist = plt.hist(X)
ani = animation.FuncAnimation(fig, update_hist, number_of_frames, fargs=(X, ), repeat = False )
plt.show()
But, weirdly the code below doesn't work while it's the same structure, it puzzles me :
X = np.linspace(-5,5, 150)
number_of_frames = np.size(X)
N_max = 100
N = np.arange(1,N_max+1)
h = 1/np.sqrt(N)
def update_plot(n, second_argument):
#plt.cla()
plt.plot(X, [f(x) for x in X], c = "y", label = "densité")
plt.plot(X, [fen(sample_sort[:n],h[n],x) for x in X], label = "densité")
plt.title("n = {}".format(n))
fig = plt.figure(6)
plot = plt.plot(X, [f(x) for x in X], c = "y", label = "densité")
ani = animation.FuncAnimation(fig, update_plot, number_of_frames, fargs=(X, ), repeat = False )
plt.show()
Thanks for your help, best regards.
EDIT : You don't have the funciton fen(sample_sort[:n],h[n],x) it is a function from float to float taking a x in argument and returning a flot. The argument sample_sort[:n],h[n] it is just maths things I'm trying to understand some statistics anyway, you can remplace with line with what you want np.cos(N[:n]) for exemple.
EDIT : New code according to the suggestion :
N_max = 100
X = np.linspace(-5,5, N_max )
number_of_frames = np.size(X)
N = np.arange(1,N_max+1)
h = 1/np.sqrt(N)
def update_plot(n):
#plt.cla()
lines.set_data(X, np.array([fen(sample_sort[:n],h[n],x) for x in X]))
ax.set_title("n = {}".format(n))
return lines
fig = plt.figure()
ax = plt.axes(xlim=(-4, 4), ylim=(-0.01, 1))
ax.plot(X, np.array([f(x) for x in X]), 'y-', lw=2, label="d")
lines, = ax.plot([], [], 'b--', lw=3, label="f")
ani = animation.FuncAnimation(fig, update_plot, number_of_frames, repeat = False )
plt.show()
EDIT 2:
I found a code over internet which does exactly what I would like
# Fermi-Dirac Distribution
def fermi(E: float, E_f: float, T: float) -> float:
return 1/(np.exp((E - E_f)/(k_b * T)) + 1)
# Create figure and add axes
fig = plt.figure(figsize=(6, 4))
ax = fig.add_subplot(111)
# Get colors from coolwarm colormap
colors = plt.get_cmap('coolwarm', 10)
# Temperature values
T = np.array([100*i for i in range(1,11)])
# Create variable reference to plot
f_d, = ax.plot([], [], linewidth=2.5)
# Add text annotation and create variable reference
temp = ax.text(1, 1, '', ha='right', va='top', fontsize=24)
# Set axes labels
ax.set_xlabel('Energy (eV)')
ax.set_ylabel('Fraction')
# Animation function
def animate(i):
x = np.linspace(0, 1, 100)
y = fermi(x, 0.5, T[i])
f_d.set_data(x, y)
f_d.set_color(colors(i))
temp.set_text(str(int(T[i])) + ' K')
temp.set_color(colors(i))
# Create animation
ani = animation.FuncAnimation(fig, animate, frames=range(len(T)), interval=500, repeat=False)
# Ensure the entire plot is visible
fig.tight_layout()
# show animation
plt.show()
What I want to draw is a curve at random because the actual state of the function is unknown. The basic structure looks like this, so please modify it based on this.
import numpy as np
import scipy.stats as st
# %matplotlib notebook
import matplotlib.pyplot as plt
import matplotlib.animation as animation
# from IPython.display import HTML
# from matplotlib.animation import PillowWriter
X = np.linspace(-5,5, 100)
number_of_frames = np.size(X)
N_max = 100
N = np.arange(1,N_max+1)
h = 1/np.sqrt(N)
def update_plot(n):
#plt.cla()
lines.set_data(X[:n], h[:n])
lines2.set_data(X[:n], h[:n]*-1)
ax.set_title("n = {}".format(n))
return lines, lines2
fig = plt.figure()
ax = plt.axes(xlim=(-5, 5), ylim=(-1, 1))
lines, = ax.plot([], [], 'y-', lw=2, label="densité")
lines2, = ax.plot([], [], 'b--', lw=3, label="densité2")
ani = animation.FuncAnimation(fig, update_plot, frames=number_of_frames, repeat=False )
plt.show()
# ani.save('lines_ani2.gif', writer='pillow')
# plt.close()
# HTML(ani.to_html5_video())
I have an animation where the range of the data varies a lot. I would like to have a colorbar which tracks the max and the min of the data (i.e. I would like it not to be fixed). The question is how to do this.
Ideally I would like the colorbar to be on its own axis.
I have tried the following four things
1. Naive approach
The problem: A new colorbar is plottet for each frame
#!/usr/bin/env python
"""
An animated image
"""
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.animation as animation
fig = plt.figure()
ax = fig.add_subplot(111)
def f(x, y):
return np.exp(x) + np.sin(y)
x = np.linspace(0, 1, 120)
y = np.linspace(0, 2 * np.pi, 100).reshape(-1, 1)
frames = []
for i in range(10):
x += 1
curVals = f(x, y)
vmax = np.max(curVals)
vmin = np.min(curVals)
levels = np.linspace(vmin, vmax, 200, endpoint = True)
frame = ax.contourf(curVals, vmax=vmax, vmin=vmin, levels=levels)
cbar = fig.colorbar(frame)
frames.append(frame.collections)
ani = animation.ArtistAnimation(fig, frames, blit=False)
plt.show()
2. Adding to the images
Changing the for loop above to
initFrame = ax.contourf(f(x,y))
cbar = fig.colorbar(initFrame)
for i in range(10):
x += 1
curVals = f(x, y)
vmax = np.max(curVals)
vmin = np.min(curVals)
levels = np.linspace(vmin, vmax, 200, endpoint = True)
frame = ax.contourf(curVals, vmax=vmax, vmin=vmin, levels=levels)
cbar.set_clim(vmin = vmin, vmax = vmax)
cbar.draw_all()
frames.append(frame.collections + [cbar])
The problem: This raises
AttributeError: 'Colorbar' object has no attribute 'set_visible'
3. Plotting on its own axis
The problem: The colorbar is not updated.
#!/usr/bin/env python
"""
An animated image
"""
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.animation as animation
fig = plt.figure()
ax1 = fig.add_subplot(121)
ax2 = fig.add_subplot(122)
def f(x, y):
return np.exp(x) + np.sin(y)
x = np.linspace(0, 1, 120)
y = np.linspace(0, 2 * np.pi, 100).reshape(-1, 1)
frames = []
for i in range(10):
x += 1
curVals = f(x, y)
vmax = np.max(curVals)
vmin = np.min(curVals)
levels = np.linspace(vmin, vmax, 200, endpoint = True)
frame = ax1.contourf(curVals, vmax=vmax, vmin=vmin, levels=levels)
cbar = fig.colorbar(frame, cax=ax2) # Colorbar does not update
frames.append(frame.collections)
ani = animation.ArtistAnimation(fig, frames, blit=False)
plt.show()
A combination of 2. and 4.
The problem: The colorbar is constant.
A similar question is posted here, but it looks like the OP is satisfied with a fixed colorbar.
While I'm not sure how to do this specifically using an ArtistAnimation, using a FuncAnimation is fairly straightforward. If I make the following modifications to your "naive" version 1 it works.
Modified Version 1
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.animation as animation
from mpl_toolkits.axes_grid1 import make_axes_locatable
fig = plt.figure()
ax = fig.add_subplot(111)
# I like to position my colorbars this way, but you don't have to
div = make_axes_locatable(ax)
cax = div.append_axes('right', '5%', '5%')
def f(x, y):
return np.exp(x) + np.sin(y)
x = np.linspace(0, 1, 120)
y = np.linspace(0, 2 * np.pi, 100).reshape(-1, 1)
frames = []
for i in range(10):
x += 1
curVals = f(x, y)
frames.append(curVals)
cv0 = frames[0]
cf = ax.contourf(cv0, 200)
cb = fig.colorbar(cf, cax=cax)
tx = ax.set_title('Frame 0')
def animate(i):
arr = frames[i]
vmax = np.max(arr)
vmin = np.min(arr)
levels = np.linspace(vmin, vmax, 200, endpoint = True)
cf = ax.contourf(arr, vmax=vmax, vmin=vmin, levels=levels)
cax.cla()
fig.colorbar(cf, cax=cax)
tx.set_text('Frame {0}'.format(i))
ani = animation.FuncAnimation(fig, animate, frames=10)
plt.show()
The main difference is that I do the levels calculations and contouring in a function instead of creating a list of artists. The colorbar works because you can clear the axes from the previous frame and redo it every frame.
Doing this redo is necessary when using contour or contourf, because you can't just dynamically change the data. However, as you have plotted so many contour levels and the result looks smooth, I think you may be better off using imshow instead - it means you can actually just use the same artist and change the data, and the colorbar updates itself automatically. It's also much faster!
Better Version
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.animation as animation
from mpl_toolkits.axes_grid1 import make_axes_locatable
fig = plt.figure()
ax = fig.add_subplot(111)
# I like to position my colorbars this way, but you don't have to
div = make_axes_locatable(ax)
cax = div.append_axes('right', '5%', '5%')
def f(x, y):
return np.exp(x) + np.sin(y)
x = np.linspace(0, 1, 120)
y = np.linspace(0, 2 * np.pi, 100).reshape(-1, 1)
# This is now a list of arrays rather than a list of artists
frames = []
for i in range(10):
x += 1
curVals = f(x, y)
frames.append(curVals)
cv0 = frames[0]
im = ax.imshow(cv0, origin='lower') # Here make an AxesImage rather than contour
cb = fig.colorbar(im, cax=cax)
tx = ax.set_title('Frame 0')
def animate(i):
arr = frames[i]
vmax = np.max(arr)
vmin = np.min(arr)
im.set_data(arr)
im.set_clim(vmin, vmax)
tx.set_text('Frame {0}'.format(i))
# In this version you don't have to do anything to the colorbar,
# it updates itself when the mappable it watches (im) changes
ani = animation.FuncAnimation(fig, animate, frames=10)
plt.show()
I have a three-variable function myfunc that is generated inside three for loops. I want to draw a contour plot of y vs x and animate this for different times t. However, I've looked at the various matplotlib examples on the webpage, and am still unsure of how to do this.
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.animation import animation
def myfunc(x,y,t):
w = 0.5*x + y + 4*np.sin(1.8*t)
return w
xlist = np.linspace(0,10,10)
ylist = np.linspace(-1,1,10)
tlist = np.linspace(0,50,50)
plt.figure()
for t in tlist:
for x in xlist:
for y in ylist:
w = myfunc(x,y,t)
w_vec = np.array(w)
w_contour = w_vec.reshape((xlist.size, ylist.size))
w_plot = plt.contourf(ylist,xlist,w_contour)
plt.xlabel('x', fontsize=16)
plt.ylabel('y', fontsize=16)
plt.show()
Edit: I quite like the look of dynamic_image2.py in this tutorial. This seems to get things moving, but the axes are wrong:
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.animation as animation
fig = plt.figure()
def f(x,y,t):
return 0.5*x + np.sin(y) + 4*np.sin(1.8*t)
x = np.linspace(0, 10, 10)
y = np.linspace(-1, 1, 10).reshape(-1, 1)
tlist = np.linspace(0,50,50)
ims = []
for t in tlist:
x += np.pi / 15.0
y += np.pi / 20.0
im = plt.imshow(f(x,y,t))
ims.append([im])
ani = animation.ArtistAnimation(fig, ims, interval=20, blit=True,
repeat_delay=1000)
plt.show()