I implemented a async function in python's asynchronous framework FastAPI
The function looks like:
async def func2(num):
time.sleep(3)
return num
async def func1():
text = await func2(5)
print(text)
print('inside func1')
async def my_async_func():
print('start')
await func1()
print('finish')
Here, when I execute my_async_func I'm expecting asyn behavior and values to be printed as
start
finish
inside func1
5
But it prints synchronously as
start
5
inside func1
finish
How to handle concurrent operation and implementation of coroutines asynchronously?
do asyncio.create_task, (note: you can't make sure print 5 after inside func1 by the order of print.)
Try code below:
import asyncio
import time
async def func2(num):
time.sleep(3)
return num
async def func1():
text = await func2(5)
print(text)
print('inside func1')
async def my_async_func():
print('start')
asyncio.create_task(func1())
print('finish')
asyncio.run(my_async_func())
Result:
start
finish
5
inside func1
Also notice that sleep would make your thread sleep.
Asynchronous behavior shows up when several independent(ish) tasks take turns executing in an event loop, but here you only run the 1 task my_async_func. my_async_func then calls func1, which then calls func2; your program is executing in exactly the order you wrote.
This chain of function calls shouldn't really be called synchronous because there is only 1 independent task. You can see asynchronous behavior if you queue up 2 my_async_func tasks, actually.
Related
Im trying to run a blocking task asynchronously with ProcessPoolExecutor (It works with ThreadPoolExecutor but I need ProcessPoolExecutor for CPU-bound task). Here is my code :
import asyncio
import time
from concurrent.futures import ProcessPoolExecutor
async def run_in_thread(task, *args):
with ProcessPoolExecutor() as process_pool:
loop = asyncio.get_event_loop()
result = await loop.run_in_executor(process_pool, task, *args)
return result
async def main_task():
while True:
await asyncio.sleep(1)
print("ticker")
async def main():
asyncio.create_task(main_task())
global blocking_task
def blocking_task():
time.sleep(5)
print("blocking task done!")
await run_in_thread(blocking_task)
if __name__ == "__main__":
asyncio.run(main())
And I get this error :
result = await loop.run_in_executor(process_pool, task, *args)
concurrent.futures.process.BrokenProcessPool: A process in the process pool was terminated abruptly while the future was running or pending.
I don't understand where is the issue, can someone please help me?
I'd also like to understand why it works with ThreadPoolExecutor but not ProcessPoolExecutor
I was expecting the code to print :
ticker
ticker
ticker
ticker
ticker
blocking task done!
Move the definition of blocking_task to the outer level of the module. As the script stands this function is invisible to other Processes. The code of the function isn't sent directly to the other Process, only its name. The other Process performs its own separate import of the script but the name isn't defined at the top level.
It's the same logic as if you tried to import this script into another script. Let's say this script is in a file named foo.py. After you do import foo, there is no function named foo.blocking_task so you would be unable to call it.
This is a little bit more clear if you looked at the whole traceback, instead of just the last line.
Incidentally, using the global statement in front of the function definition isn't the same thing as moving the definition to the top level. In your script the name blocking_task does not exist at module level until the main() function actually runs (which the secondary Process never does). In the working script below, the name blocking_task exists as soon as the module is imported.
import asyncio
import time
from concurrent.futures import ProcessPoolExecutor
async def run_in_thread(task, *args):
with ProcessPoolExecutor() as process_pool:
loop = asyncio.get_event_loop()
result = await loop.run_in_executor(process_pool, task, *args)
return result
async def main_task():
while True:
await asyncio.sleep(1)
print("ticker")
def blocking_task():
time.sleep(5)
print("blocking task done!")
async def main():
asyncio.create_task(main_task())
await run_in_thread(blocking_task)
if __name__ == "__main__":
asyncio.run(main())
This prints exactly what you were expecting.
Can you help me see what I have understood wrong here please. I have two functions and I would like the second one to run regardless of the status of the first one (whether it is finished or not). Hence I was thinking to make the first function asynchronous. This is what I have done
import os
import asyncio
from datetime import datetime
async def do_some_iterations():
for i in range(10):
print(datetime.now().time())
await asyncio.sleep(1)
print('... Cool!')
async def main():
task = asyncio.create_task (do_some_iterations())
await task
def do_something():
print('something...')
if __name__ == "__main__":
asyncio.run(main())
do_something()
The output is:
00:46:00.145024
00:46:01.148533
00:46:02.159751
00:46:03.169868
00:46:04.179915
00:46:05.187242
00:46:06.196356
00:46:07.207614
00:46:08.215997
00:46:09.225066
Cool!
something...
which looks like the traditional way where one function has to finish and then move to the next call.
I was hoping instead to execute do_something() before the asynchronous function started generating the print statements (or at lease at the very top of those statements..)
What am I doing wrong please? How I should edit the script?
They both need to be part of the event loop the you created. asyncio.run() itself is not async, which means it will run until the loop ends. One easy way to do this is to use gather()
import asyncio
from datetime import datetime
async def do_some_iterations():
for i in range(10):
print(datetime.now().time())
await asyncio.sleep(1)
print('... Cool!')
async def do_something():
print('something...')
async def main():
await asyncio.gather(
do_some_iterations(),
do_something()
)
if __name__ == "__main__":
asyncio.run(main())
print("done")
This will print:
16:08:38.921879
something...
16:08:39.922565
16:08:40.923709
16:08:41.924823
16:08:42.926004
16:08:43.927044
16:08:44.927877
16:08:45.928724
16:08:46.929589
16:08:47.930453
... Cool!
done
You can also simply add another task:
async def main():
task = asyncio.create_task(do_some_iterations())
task2 = asyncio.create_task(do_something())
In both cases the function needs to be awaitable.
In my simple asyncio Python program below, bar_loop is supposed to run continuously with a 1 second delay between loops.
Things run as expected when we have simply
async def bar_loop(self):
while True:
print('bar')
However, when we add a asyncio.sleep(1), the loop will end instead of looping.
async def bar_loop(self):
while True:
print('bar')
await asyncio.sleep(1)
Why does asyncio.sleep() cause bar_loop to exit immediately? How can we let it loop with a 1 sec delay?
Full Example:
import asyncio
from typing import Optional
class Foo:
def __init__(self):
self.bar_loop_task: Optional[asyncio.Task] = None
async def start(self):
self.bar_loop_task = asyncio.create_task(self.bar_loop())
async def stop(self):
if self.bar_loop_task is not None:
self.bar_loop_task.cancel()
async def bar_loop(self):
while True:
print('bar')
await asyncio.sleep(1)
if __name__ == '__main__':
try:
foo = Foo()
asyncio.run(foo.start())
except KeyboardInterrupt:
asyncio.run(foo.stop())
Using Python 3.9.5 on Ubuntu 20.04.
This behavior has nothing to do with calling asyncio.sleep, but with the expected behavior of creating a task and doing nothing else.
Tasks will run in parallel in the the asyncio loop, while other code that uses just coroutine and await expressions can be thought as if run in a linear pattern - however, as the are "out of the way" of the - let's call it "visible path of execution", they also won't prevent that flow.
In this case, your program simply reaches the end of the start method, with nothing left being "awaited", the asyncio loop simply finishes its execution.
If you have no explicit code to run in parallel to bar_loop, just await for the task. Change your start method to read:
async def start(self):
self.bar_loop_task = asyncio.create_task(self.bar_loop())
try:
await self.bar_loop_task
except XXX:
# handle excptions that might have taken place inside the task
This code should print "hi" 3 times, but it doesn't always print.
I made a gif that shows the code being executed:
from asyncio import get_event_loop, wait_for, new_event_loop
from threading import Thread
class A:
def __init__(self):
self.fut = None
def start(self):
"""
Expects a future to be created and puts "hi" as a result
"""
async def foo():
while True:
if self.fut:
self.fut.set_result('hi')
self.fut = None
new_event_loop().run_until_complete(foo())
async def make(self):
"""
Create a future and print your result when it runs out
"""
future = get_event_loop().create_future()
self.fut = future
print(await future)
a = A()
Thread(target=a.start).start()
for _ in range(3):
get_event_loop().run_until_complete(a.make())
This is caused by await future, because when I change
print(await future)
by
while not future.done():
pass
print(future.result())
the code always prints "hi" 3 times.
Is there anything in my code that causes this problem in await future?
Asyncio functions are not thread-safe, except where explicitly noted. For set_result to work from another thread, you'd need to call it through call_soon_threadsafe.
But in your case this wouldn't work because A.start creates a different event loop than the one the main thread executes. This creates issues because the futures created in one loop cannot be awaited in another one. Because of this, and also because there is just no need to create multiple event loops, you should pass the event loop instance to A.start and use it for your async needs.
But - when using the event loop from the main thread, A.start cannot call run_until_complete() because that would try to run an already running event loop. Instead, it must call asyncio.run_coroutine_threadsafe to submit the coroutine to the event loop running in the main thread. This will return a concurrent.futures.Future (not to be confused with an asyncio Future) whose result() method can be used to wait for it to execute and propagate the result or exception, just like run_until_complete() would have done. Since foo will now run in the same thread as the event loop, it can just call set_result without call_soon_threadsafe.
One final problem is that foo contains an infinite loop that doesn't await anything, which blocks the event loop. (Remember that asyncio is based on cooperative multitasking, and a coroutine that spins without awaiting doesn't cooperate.) To fix that, you can have foo monitor an event that gets triggered when a new future is available.
Applying the above to your code can look like this, which prints "hi" three times as desired:
import asyncio
from asyncio import get_event_loop
from threading import Thread
class A:
def __init__(self):
self.fut = None
self.have_fut = asyncio.Event()
def start(self, loop):
async def foo():
while True:
await self.have_fut.wait()
self.have_fut.clear()
if self.fut:
self.fut.set_result('hi')
self.fut = None
asyncio.run_coroutine_threadsafe(foo(), loop).result()
async def make(self):
future = get_event_loop().create_future()
self.fut = future
self.have_fut.set()
print(await future)
a = A()
Thread(target=a.start, args=(get_event_loop(),), daemon=True).start()
for _ in range(3):
get_event_loop().run_until_complete(a.make())
I was experimenting with Asyncio in python, and thought what will happen if call 2 different Asyncio functions running concurrently to non-async fuction.
so did like this `
def calc(number):
while True:
return(number * number)
async def one():
while True:
a = calc(5)
print(a)
await asyncio.sleep(0)
async def two():
while True:
a = calc(2)
print(a)
await asyncio.sleep(0)
if __name__=='__main__':
import os
import uvloop
import asyncio
loop = uvloop.new_event_loop()
asyncio.set_event_loop(loop)
loop.create_task(one())
loop.create_task(two())
loop.run_forever()
I thought program will freeze in cal function (while loop), but the program is printing results concurrently.Could any one explain me why this is not getting stuck in the while loop, Thanks.
`