Pydantic get a fields type hint - python

I want to store metadata for my ML models in pydantic. Is there a proper way to access a fields type? I know you can do BaseModel.__fields__['my_field'].type_ but I assume there's a better way.
I want to make it so that if a BaseModel fails to instantiate it is very clear what data is required to create this missing fields and which methods to use. Something like this :
from pydantic import BaseModel
import pandas as pd
# basic model
class Metadata(BaseModel):
peaks_per_day: float
class PeaksPerDayType(float):
data_required = pd.Timedelta("180D")
data_type = "foo"
#classmethod
def determine(cls, data):
return cls(data)
# use our custom float
class Metadata(BaseModel):
peaks_per_day: PeaksPerDayType
def get_data(data_type, required_data):
# get enough of the appropriate data type
return [1]
# Initial data we have
metadata_json = {}
try:
metadata = Metadata(**metadata_json)
# peaks per day is missing
except Exception as e:
error_msg = e
missing_fields = error_msg.errors()
missing_fields = [missing_field['loc'][0] for missing_field in missing_fields]
# For each missing field use its type hint to find what data is required to
# determine it and access the method to determine the value
new_data = {}
for missing_field in missing_fields:
req_data = Metadata[missing_field].data_required
data_type = Metadata[missing_field].data_type
data = get_data(data_type=data_type, required_data=req_data)
new_data[missing_field] = Metadata[missing_field].determine(data)
metadata = Metadata(**metadata_json, **new_data)

In the case you dont need to handle nested classes, this should work
from pydantic import BaseModel, ValidationError
import typing
class PeaksPerDayType(float):
data_required = 123.22
data_type = "foo"
#classmethod
def determine(cls, data):
return cls(data)
# use our custom float
class Metadata(BaseModel):
peaks_per_day: PeaksPerDayType
def get_data(data_type, required_data):
# get enough of the appropriate data type
return required_data
metadata_json = {}
try:
Metadata(**metadata_json)
except ValidationError as e:
field_to_type = typing.get_type_hints(Metadata)
missing_fields = []
for error in e.errors():
if error['type']=='value_error.missing':
missing_fields.append(error['loc'][0])
else:
raise
new_data = {}
for field in missing_fields:
type_ = field_to_type[field]
new_data[field] = get_data(type_.data_type, type_.data_required)
print(Metadata(**metadata_json, **new_data))
peaks_per_day=123.22
Im not really sure whats the point of data_type or get_data, but I assume its some internal logic that you want to add

Related

Object oriented programming with abstract class

I want to achieve the below:
def do_something(request):
company_name = request.get("company_name", DEFAULT_COMPANY)
data = request.get("data")
response = transform_data_according_to(data, company_name)
return response
I did the following for it:
class Transform(ABC):
def __init__(self, data):
self.data = data
#abstractmethod
def transform(self):
pass
class CompanyA(Transform):
def transform(self):
# do_transformation
return transformed_data
def do_something(request):
company_name = request.get("company_name", DEFAULT_COMPANY)
data = request.get("data")
if company_name == CompanyA:
response = CompanyA.transform(data)
return response
Instead i would like to do something like this using correct object oriented principles:
def do_something(request):
company_name = request.get("company_name", DEFAULT_COMPANY)
data = request.get("data")
response = Transform(data, company_name)
return response
I want to know where I might be thinking wrong in terms of the desired approach versus the implemented approach. Is the implemented approach correct, the if else checks can grow quite big in that case.
Thanks to teraflop
The simple, idiomatic way to do this in Python would be to look up the Transform subclass in a dictionary:
transform_classes = {
"CompanyA": CompanyA,
# ...
}
def do_something(request):
company_name = request.get("company_name", DEFAULT_COMPANY)
data = request.get("data")
transformer = transform_classes[company_name](data)
return transformer.transform()
If you prefer to be more rigorously object-oriented, you could wrap the dictionary in an object (e.g. TransformLookupByName) instead of accessing it directly.
There are also various kinds of metaprogramming magic you can use to build the dictionary automatically without having to name each subclass explicitly. For example, this will collect all of the Transform subclasses in the current source file:
transform_classes = {
k:v for k,v in globals().items()
if isinstance(v, type) and issubclass(v, Transform) and v != Transform
}

Look up items in list of dataclasses by value

I'm using python to filter data in elasticsearch based on request params provided. I've got a working example, but know it can be improved and am trying to think of a better way. The current code is like this:
#dataclass(frozen=True)
class Filter:
param: str
custom_es_field: Optional[str] = None
is_bool_query: bool = False
is_date_query: bool = False
is_range_query: bool = False
def es_field(self) -> str:
if self.custom_es_field:
field = self.custom_es_field
elif "." in self.param:
field = self.param.replace(".", "__")
else:
field = self.param
return field
filters = [
Filter(param="publication_year", is_range_query=True),
Filter(param="publication_date", is_date_query=True),
Filter(param="venue.issn").
...
]
def filter_records(filter_params, s):
for filter in filters:
# range query
if filter.param in filter_params and filter.is_range_query:
param = filter_params[filter.param]
if "<" in param:
param = param[1:]
validate_range_param(filter, param)
kwargs = {filter.es_field(): {"lte": int(param)}}
s = s.filter("range", **kwargs)
elif filter.param in filter_params and filter.is_bool_query:
....
The thing I think is slow is I am looping through all of the filters in order to use the one that came in as a request variable. I'm tempted to convert this to a dictionary so I can do filter["publication_year"], but I like having the extra methods available via the dataclass. Would love to hear any thoughts.

Python generic with union

I have a Document and Page types, both containing data and metadata parts. They are looking the same:
class Document:
__data: DocumentData
__meta: DocumentMeta
def __init__(self, part: Union[DocumentData, DocumentMeta, None] = None, data: Optional[DocumentData] = None,
meta: Optional[DocumentMeta] = None):
super().__init__()
self.data: Optional[DocumentData] = data
self.meta: Optional[DocumentMeta] = meta
if part is not None:
if type(part) == DocumentData:
data = part
meta = DocumentMeta()
elif type(part) == DocumentMeta:
meta = part
data = DocumentData()
class Page:
__data: PageData
__meta: PageMeta
def __init__(self, part: Union[PageData, PageMeta, None] = None, data: Optional[PageData] = None,
meta: Optional[PageMeta] = None):
super().__init__()
self.data: Optional[PageData] = data
self.meta: Optional[PageMeta] = meta
if part is not None:
if type(part) == PageData:
data = part
meta = PageMeta()
elif type(part) == PageMeta:
meta = part
data = PageData()
I would like now to refactor these 2 types to use a generic type. I did it that way:
from typing import Generic, Optional, TypeVar, Union
DataStruct = TypeVar('DataStruct')
MetaStruct = TypeVar('MetaStruct')
class MetaDataStruct(Generic[DataStruct, MetaStruct]):
__data: DataStruct
__meta: MetaStruct
def __init__(
self,
part: Union[DataStruct, MetaStruct, None] = None,
data: Optional[DataStruct] = None,
meta: Optional[MetaStruct] = None
):
super().__init__()
self.data: Optional[DataStruct] = data
self.meta: Optional[MetaStruct] = meta
if part is not None:
if type(part) == DataStruct:
data = part
meta = MetaStruct()
elif type(part) == MetaStruct:
meta = part
data = DataStruct()
class DocumentData:
pass
class DocumentMeta:
pass
class PageData:
pass
class PageMeta:
pass
class Document(MetaDataStruct[DocumentData, DocumentMeta]):
pass
class Page(MetaDataStruct[PageData, PageMeta]):
pass
Now there's few problems with type checking.
if type(part) == DataStruct: returns False all the time. In runtime a type(part) is one of: DocumentData, DocumentMeta, PageData, PageMeta. I understand that I have to compare type(part) with actual type of DataStruct. What is the right way to resolve the runtime type of DataStruct?
In python hints manual it's written: At runtime, isinstance(x, T) will raise TypeError. In general, isinstance() and issubclass() should not be used with types. I believe the same issue is here.
I can use type(self).orig_bases[0].args[0] to infer DataStruct, but it is conceptually incorrect. It will retrieve the first generic argument instead DataStruct. So, if a MetaDataStruct base class signature will change to class MergedStruct(Struct, Generic[MetaStruct, DataStruct]) (swapped TypeVar arguments), MetaStruct will be retrieved instead DataStruct.
For some reason, when I tried to intialize Document(part=1), it passed. In practice I expected the code to raise TypeError.
Python doesn't do type checking at runtime; you need to use a static analysis tool like mypy. Running mypy over the code you've given shows these errors:
22: error: 'DataStruct' is a type variable and only valid in type context
23: error: Incompatible types in assignment (expression has type "Union[DataStruct, MetaStruct]", variable has type "Optional[DataStruct]")
24: error: 'MetaStruct' is a type variable and only valid in type context
25: error: 'MetaStruct' is a type variable and only valid in type context
26: error: Incompatible types in assignment (expression has type "Union[DataStruct, MetaStruct]", variable has type "Optional[MetaStruct]")
27: error: 'DataStruct' is a type variable and only valid in type context
If you add a line trying to initialize Document(part=1), you won't get a runtime error (there's nothing in your code that would raise an error; your if/elif will just be a no-op), but you will get a typechecking error from mypy that looks like:
54: error: Argument "part" to "Document" has incompatible type "int"; expected "Union[DocumentData, DocumentMeta, None]"
The problem with the type() check you're trying to do (and with an equivalent isinstance) is that a TypeVar has no runtime value, so you can't invoke it as a constructor. See: Instantiate a type that is a TypeVar
One way to fix this is to require that the subclass provide the actual types:
from abc import ABC, abstractclassmethod
from typing import Generic, Optional, Type, TypeVar, Union
DataStruct = TypeVar('DataStruct')
MetaStruct = TypeVar('MetaStruct')
class MetaDataStruct(Generic[DataStruct, MetaStruct], ABC):
#abstractclassmethod
def _data_type(cls) -> Type[DataStruct]:
pass
#abstractclassmethod
def _meta_type(cls) -> Type[MetaStruct]:
pass
def __init__(
self,
part: Union[DataStruct, MetaStruct, None] = None,
data: Optional[DataStruct] = None,
meta: Optional[MetaStruct] = None
):
super().__init__()
self.data: Optional[DataStruct] = data
self.meta: Optional[MetaStruct] = meta
if part is not None:
if isinstance(part, self._data_type()):
data = part
meta = self._meta_type()()
elif isinstance(part, self._meta_type()):
meta = part
data = self._data_type()()
class DocumentData:
pass
class DocumentMeta:
pass
class Document(MetaDataStruct[DocumentData, DocumentMeta]):
#classmethod
def _data_type(cls) -> Type[DocumentData]:
return DocumentData
#classmethod
def _meta_type(cls) -> Type[DocumentMeta]:
return DocumentMeta
The above typechecks correctly (you'll get mypy errors if you don't implement the _data_type and _meta_type methods correctly in the subclass), and is able to use the class methods to call the appropriate constructors at runtime.
Temporarily, I used this solution:
actual_data_struct = getattr(type(self), '__orig_bases__')[0].__args__[0]
actual_meta_struct = getattr(type(self), '__orig_bases__')[0].__args__[1]
if part is not None:
if type(part) == actual_data_struct:
data = part
meta = actual_meta_struct()
elif type(part) == actual_meta_struct:
meta = part
data = actual_data_struct()

GAE converting dictionary to NDB datastore entity

I would like to ask some guidelines on a small task that I am trying to solve.
I am experimenting with a small app that uses JSON data to save entities.
I know that you can easily convert a dict to an entity by just creating the model but, I am trying to build a more generic approach that would convert any dict to an entity.
My steps are:
Get the dict.
Validate that the dict keys correspond to an entitys model definitions by reading the class.dict of the model.
Try to unpack the validated properties in the model class contructor (create the model instance)
return it.
So far I am ok but lack of my python knowledge, is either constraining me, or confusing me.
Maybe I am as well forgetting or unaware of more simple way to do it.
So here is it:
#classmethod
def entity_from_dict(cls, parent_key, dict):
valid_properties = {}
logging.info(cls.__dict__)
for property,value in dict.iteritems():
if property in cls.__dict__: # should not iterate over functions, classmethods, and #property
logging.info(cls.__dict__[property]) # this outputs eg: StringProperty('title', required=True)
logging.info(type(cls.__dict__[property])) #this is more interesting <class 'google.appengine.ext.ndb.model.StringProperty'>
valid_properties.update({property: value})
# Update the id from the dict
if 'id' in dict: # if not creating a new entity
valid_properties['id'] = dict['id']
# Add the parent
valid_properties['parent'] = parent_key
#logging.info(valid_properties)
try:
entity = cls(**valid_properties)
except Exception as e:
logging.exception('Could not create entity \n' + repr(e))
return False
return entity
My problem is that I want only to validate ndb. Properties and not #classmethods, #property as well because this causes a conflict.
I am also using expando classes, so any property in the dict that is extra gets stored.
How can I check against these specific types?
Solved it as #Tim Hoffman proposed using the ._properties of the Ndb model.
A thing I didn't know is that via the ._properties I could get the model definition properties and I thought that it would only return the instance properties :-).
Also I did not use populate because I find that it does the same as passing the valid dict unpacked in the model's contructor ;-)
So here it is:
#classmethod
def entity_from_dict(cls, parent_key, data_dict):
valid_properties = {}
for cls_property in cls._properties:
if cls_property in data_dict:
valid_properties.update({cls_property: data_dict[cls_property]})
#logging.info(valid_properties)
# Update the id from the data_dict
if 'id' in data_dict: # if creating a new entity
valid_properties['id'] = data_dict['id']
# Add the parent
valid_properties['parent'] = parent_key
try:
entity = cls(**valid_properties)
except Exception as e:
logging.exception('Could not create entity \n' + repr(e))
return False
return entity
The JSON dump method in python which we using during the converting models to JSON for export converts non-strings into strings. Therefore Jimmy Kane methods throw the error due to model incompatibility. To avoid this problem I updated his method and added a method named prop_literal just for converting non-string characters which capsuled in the string into their literal type.
I also added the entity.put() to add the entity to datastore because the aim was that :)
def prop_literal(prop_type,prop_val):
"""
Convert non-string encapsulated in the string into literal type
"""
if "Integer" in prop_type:
return int(prop_val)
elif "Float" in prop_type:
return float(prop_val)
elif "DateTime" in prop_type:
# bos gecsin neticede locale
return None
elif ("String" in prop_type) or ("Text" in prop_type):
return prop_val
elif "Bool" in prop_type:
return True if prop_val == True else False
else:
return prop_val
def entity_from_dict(cls, parent_key, data_dict):
valid_properties = {}
for cls_property in cls._properties:
if cls_property in data_dict:
prop_type = str(cls._properties[cls_property])
# logging.info(prop_type)
real_val = prop_literal(prop_type,data_dict[cls_property])
try:
valid_properties.update({cls_property: real_val})
except Exception as ex:
# logging.info("Veri aktariminda hata:"+str(ex))
else:
# logging.info("prop skipped")
#logging.info(valid_properties)
# Update the id from the data_dict
if 'id' in data_dict: # if creating a new entity
valid_properties['id'] = data_dict['id']
# Add the parent
valid_properties['parent'] = parent_key
try:
entity = cls(**valid_properties)
logging.info(entity)
entity.put()
except Exception as e:
logging.exception('Could not create entity \n' + repr(e))
return False
return entity

How to serialize SqlAlchemy result to JSON?

Django has some good automatic serialization of ORM models returned from DB to JSON format.
How to serialize SQLAlchemy query result to JSON format?
I tried jsonpickle.encode but it encodes query object itself.
I tried json.dumps(items) but it returns
TypeError: <Product('3', 'some name', 'some desc')> is not JSON serializable
Is it really so hard to serialize SQLAlchemy ORM objects to JSON /XML? Isn't there any default serializer for it? It's very common task to serialize ORM query results nowadays.
What I need is just to return JSON or XML data representation of SQLAlchemy query result.
SQLAlchemy objects query result in JSON/XML format is needed to be used in javascript datagird (JQGrid http://www.trirand.com/blog/)
You could just output your object as a dictionary:
class User:
def as_dict(self):
return {c.name: getattr(self, c.name) for c in self.__table__.columns}
And then you use User.as_dict() to serialize your object.
As explained in Convert sqlalchemy row object to python dict
A flat implementation
You could use something like this:
from sqlalchemy.ext.declarative import DeclarativeMeta
class AlchemyEncoder(json.JSONEncoder):
def default(self, obj):
if isinstance(obj.__class__, DeclarativeMeta):
# an SQLAlchemy class
fields = {}
for field in [x for x in dir(obj) if not x.startswith('_') and x != 'metadata']:
data = obj.__getattribute__(field)
try:
json.dumps(data) # this will fail on non-encodable values, like other classes
fields[field] = data
except TypeError:
fields[field] = None
# a json-encodable dict
return fields
return json.JSONEncoder.default(self, obj)
and then convert to JSON using:
c = YourAlchemyClass()
print json.dumps(c, cls=AlchemyEncoder)
It will ignore fields that are not encodable (set them to 'None').
It doesn't auto-expand relations (since this could lead to self-references, and loop forever).
A recursive, non-circular implementation
If, however, you'd rather loop forever, you could use:
from sqlalchemy.ext.declarative import DeclarativeMeta
def new_alchemy_encoder():
_visited_objs = []
class AlchemyEncoder(json.JSONEncoder):
def default(self, obj):
if isinstance(obj.__class__, DeclarativeMeta):
# don't re-visit self
if obj in _visited_objs:
return None
_visited_objs.append(obj)
# an SQLAlchemy class
fields = {}
for field in [x for x in dir(obj) if not x.startswith('_') and x != 'metadata']:
fields[field] = obj.__getattribute__(field)
# a json-encodable dict
return fields
return json.JSONEncoder.default(self, obj)
return AlchemyEncoder
And then encode objects using:
print json.dumps(e, cls=new_alchemy_encoder(), check_circular=False)
This would encode all children, and all their children, and all their children... Potentially encode your entire database, basically. When it reaches something its encoded before, it will encode it as 'None'.
A recursive, possibly-circular, selective implementation
Another alternative, probably better, is to be able to specify the fields you want to expand:
def new_alchemy_encoder(revisit_self = False, fields_to_expand = []):
_visited_objs = []
class AlchemyEncoder(json.JSONEncoder):
def default(self, obj):
if isinstance(obj.__class__, DeclarativeMeta):
# don't re-visit self
if revisit_self:
if obj in _visited_objs:
return None
_visited_objs.append(obj)
# go through each field in this SQLalchemy class
fields = {}
for field in [x for x in dir(obj) if not x.startswith('_') and x != 'metadata']:
val = obj.__getattribute__(field)
# is this field another SQLalchemy object, or a list of SQLalchemy objects?
if isinstance(val.__class__, DeclarativeMeta) or (isinstance(val, list) and len(val) > 0 and isinstance(val[0].__class__, DeclarativeMeta)):
# unless we're expanding this field, stop here
if field not in fields_to_expand:
# not expanding this field: set it to None and continue
fields[field] = None
continue
fields[field] = val
# a json-encodable dict
return fields
return json.JSONEncoder.default(self, obj)
return AlchemyEncoder
You can now call it with:
print json.dumps(e, cls=new_alchemy_encoder(False, ['parents']), check_circular=False)
To only expand SQLAlchemy fields called 'parents', for example.
Python 3.7+ and Flask 1.1+ can use the built-in dataclasses package
from dataclasses import dataclass
from datetime import datetime
from flask import Flask, jsonify
from flask_sqlalchemy import SQLAlchemy
app = Flask(__name__)
db = SQLAlchemy(app)
#dataclass
class User(db.Model):
id: int
email: str
id = db.Column(db.Integer, primary_key=True, auto_increment=True)
email = db.Column(db.String(200), unique=True)
#app.route('/users/')
def users():
users = User.query.all()
return jsonify(users)
if __name__ == "__main__":
users = User(email="user1#gmail.com"), User(email="user2#gmail.com")
db.create_all()
db.session.add_all(users)
db.session.commit()
app.run()
The /users/ route will now return a list of users.
[
{"email": "user1#gmail.com", "id": 1},
{"email": "user2#gmail.com", "id": 2}
]
Auto-serialize related models
#dataclass
class Account(db.Model):
id: int
users: User
id = db.Column(db.Integer)
users = db.relationship(User) # User model would need a db.ForeignKey field
The response from jsonify(account) would be this.
{
"id":1,
"users":[
{
"email":"user1#gmail.com",
"id":1
},
{
"email":"user2#gmail.com",
"id":2
}
]
}
Overwrite the default JSON Encoder
from flask.json import JSONEncoder
class CustomJSONEncoder(JSONEncoder):
"Add support for serializing timedeltas"
def default(o):
if type(o) == datetime.timedelta:
return str(o)
if type(o) == datetime.datetime:
return o.isoformat()
return super().default(o)
app.json_encoder = CustomJSONEncoder
You can convert a RowProxy to a dict like this:
d = dict(row.items())
Then serialize that to JSON ( you will have to specify an encoder for things like datetime values )
It's not that hard if you just want one record ( and not a full hierarchy of related records ).
json.dumps([(dict(row.items())) for row in rs])
I recommend using marshmallow. It allows you to create serializers to represent your model instances with support to relations and nested objects.
Here is a truncated example from their docs. Take the ORM model, Author:
class Author(db.Model):
id = db.Column(db.Integer, primary_key=True)
first = db.Column(db.String(80))
last = db.Column(db.String(80))
A marshmallow schema for that class is constructed like this:
class AuthorSchema(Schema):
id = fields.Int(dump_only=True)
first = fields.Str()
last = fields.Str()
formatted_name = fields.Method("format_name", dump_only=True)
def format_name(self, author):
return "{}, {}".format(author.last, author.first)
...and used like this:
author_schema = AuthorSchema()
author_schema.dump(Author.query.first())
...would produce an output like this:
{
"first": "Tim",
"formatted_name": "Peters, Tim",
"id": 1,
"last": "Peters"
}
Have a look at their full Flask-SQLAlchemy Example.
A library called marshmallow-sqlalchemy specifically integrates SQLAlchemy and marshmallow. In that library, the schema for the Author model described above looks like this:
class AuthorSchema(ModelSchema):
class Meta:
model = Author
The integration allows the field types to be inferred from the SQLAlchemy Column types.
marshmallow-sqlalchemy here.
You can use introspection of SqlAlchemy as this :
mysql = SQLAlchemy()
from sqlalchemy import inspect
class Contacts(mysql.Model):
__tablename__ = 'CONTACTS'
id = mysql.Column(mysql.Integer, primary_key=True)
first_name = mysql.Column(mysql.String(128), nullable=False)
last_name = mysql.Column(mysql.String(128), nullable=False)
phone = mysql.Column(mysql.String(128), nullable=False)
email = mysql.Column(mysql.String(128), nullable=False)
street = mysql.Column(mysql.String(128), nullable=False)
zip_code = mysql.Column(mysql.String(128), nullable=False)
city = mysql.Column(mysql.String(128), nullable=False)
def toDict(self):
return { c.key: getattr(self, c.key) for c in inspect(self).mapper.column_attrs }
#app.route('/contacts',methods=['GET'])
def getContacts():
contacts = Contacts.query.all()
contactsArr = []
for contact in contacts:
contactsArr.append(contact.toDict())
return jsonify(contactsArr)
#app.route('/contacts/<int:id>',methods=['GET'])
def getContact(id):
contact = Contacts.query.get(id)
return jsonify(contact.toDict())
Get inspired from an answer here :
Convert sqlalchemy row object to python dict
Flask-JsonTools package has an implementation of JsonSerializableBase Base class for your models.
Usage:
from sqlalchemy.ext.declarative import declarative_base
from flask.ext.jsontools import JsonSerializableBase
Base = declarative_base(cls=(JsonSerializableBase,))
class User(Base):
#...
Now the User model is magically serializable.
If your framework is not Flask, you can just grab the code
For security reasons you should never return all the model's fields. I prefer to selectively choose them.
Flask's json encoding now supports UUID, datetime and relationships (and added query and query_class for flask_sqlalchemy db.Model class). I've updated the encoder as follows:
app/json_encoder.py
from sqlalchemy.ext.declarative import DeclarativeMeta
from flask import json
class AlchemyEncoder(json.JSONEncoder):
def default(self, o):
if isinstance(o.__class__, DeclarativeMeta):
data = {}
fields = o.__json__() if hasattr(o, '__json__') else dir(o)
for field in [f for f in fields if not f.startswith('_') and f not in ['metadata', 'query', 'query_class']]:
value = o.__getattribute__(field)
try:
json.dumps(value)
data[field] = value
except TypeError:
data[field] = None
return data
return json.JSONEncoder.default(self, o)
app/__init__.py
# json encoding
from app.json_encoder import AlchemyEncoder
app.json_encoder = AlchemyEncoder
With this I can optionally add a __json__ property that returns the list of fields I wish to encode:
app/models.py
class Queue(db.Model):
id = db.Column(db.Integer, primary_key=True)
song_id = db.Column(db.Integer, db.ForeignKey('song.id'), unique=True, nullable=False)
song = db.relationship('Song', lazy='joined')
type = db.Column(db.String(20), server_default=u'audio/mpeg')
src = db.Column(db.String(255), nullable=False)
created_at = db.Column(db.DateTime, server_default=db.func.now())
updated_at = db.Column(db.DateTime, server_default=db.func.now(), onupdate=db.func.now())
def __init__(self, song):
self.song = song
self.src = song.full_path
def __json__(self):
return ['song', 'src', 'type', 'created_at']
I add #jsonapi to my view, return the resultlist and then my output is as follows:
[
{
"created_at": "Thu, 23 Jul 2015 11:36:53 GMT",
"song":
{
"full_path": "/static/music/Audioslave/Audioslave [2002]/1 Cochise.mp3",
"id": 2,
"path_name": "Audioslave/Audioslave [2002]/1 Cochise.mp3"
},
"src": "/static/music/Audioslave/Audioslave [2002]/1 Cochise.mp3",
"type": "audio/mpeg"
}
]
A more detailed explanation.
In your model, add:
def as_dict(self):
return {c.name: str(getattr(self, c.name)) for c in self.__table__.columns}
The str() is for python 3 so if using python 2 use unicode(). It should help deserialize dates. You can remove it if not dealing with those.
You can now query the database like this
some_result = User.query.filter_by(id=current_user.id).first().as_dict()
First() is needed to avoid weird errors. as_dict() will now deserialize the result. After deserialization, it is ready to be turned to json
jsonify(some_result)
While the original question goes back awhile, the number of answers here (and my own experiences) suggest it's a non-trivial question with a lot of different approaches of varying complexity with different trade-offs.
That's why I built the SQLAthanor library that extends SQLAlchemy's declarative ORM with configurable serialization/de-serialization support that you might want to take a look at.
The library supports:
Python 2.7, 3.4, 3.5, and 3.6.
SQLAlchemy versions 0.9 and higher
serialization/de-serialization to/from JSON, CSV, YAML, and Python dict
serialization/de-serialization of columns/attributes, relationships, hybrid properties, and association proxies
enabling and disabling of serialization for particular formats and columns/relationships/attributes (e.g. you want to support an inbound password value, but never include an outbound one)
pre-serialization and post-deserialization value processing (for validation or type coercion)
a pretty straightforward syntax that is both Pythonic and seamlessly consistent with SQLAlchemy's own approach
You can check out the (I hope!) comprehensive docs here: https://sqlathanor.readthedocs.io/en/latest
Hope this helps!
Custom serialization and deserialization.
"from_json" (class method) builds a Model object based on json data.
"deserialize" could be called only on instance, and merge all data from json into Model instance.
"serialize" - recursive serialization
__write_only__ property is needed to define write only properties ("password_hash" for example).
class Serializable(object):
__exclude__ = ('id',)
__include__ = ()
__write_only__ = ()
#classmethod
def from_json(cls, json, selfObj=None):
if selfObj is None:
self = cls()
else:
self = selfObj
exclude = (cls.__exclude__ or ()) + Serializable.__exclude__
include = cls.__include__ or ()
if json:
for prop, value in json.iteritems():
# ignore all non user data, e.g. only
if (not (prop in exclude) | (prop in include)) and isinstance(
getattr(cls, prop, None), QueryableAttribute):
setattr(self, prop, value)
return self
def deserialize(self, json):
if not json:
return None
return self.__class__.from_json(json, selfObj=self)
#classmethod
def serialize_list(cls, object_list=[]):
output = []
for li in object_list:
if isinstance(li, Serializable):
output.append(li.serialize())
else:
output.append(li)
return output
def serialize(self, **kwargs):
# init write only props
if len(getattr(self.__class__, '__write_only__', ())) == 0:
self.__class__.__write_only__ = ()
dictionary = {}
expand = kwargs.get('expand', ()) or ()
prop = 'props'
if expand:
# expand all the fields
for key in expand:
getattr(self, key)
iterable = self.__dict__.items()
is_custom_property_set = False
# include only properties passed as parameter
if (prop in kwargs) and (kwargs.get(prop, None) is not None):
is_custom_property_set = True
iterable = kwargs.get(prop, None)
# loop trough all accessible properties
for key in iterable:
accessor = key
if isinstance(key, tuple):
accessor = key[0]
if not (accessor in self.__class__.__write_only__) and not accessor.startswith('_'):
# force select from db to be able get relationships
if is_custom_property_set:
getattr(self, accessor, None)
if isinstance(self.__dict__.get(accessor), list):
dictionary[accessor] = self.__class__.serialize_list(object_list=self.__dict__.get(accessor))
# check if those properties are read only
elif isinstance(self.__dict__.get(accessor), Serializable):
dictionary[accessor] = self.__dict__.get(accessor).serialize()
else:
dictionary[accessor] = self.__dict__.get(accessor)
return dictionary
Here is a solution that lets you select the relations you want to include in your output as deep as you would like to go.
NOTE: This is a complete re-write taking a dict/str as an arg rather than a list. fixes some stuff..
def deep_dict(self, relations={}):
"""Output a dict of an SA object recursing as deep as you want.
Takes one argument, relations which is a dictionary of relations we'd
like to pull out. The relations dict items can be a single relation
name or deeper relation names connected by sub dicts
Example:
Say we have a Person object with a family relationship
person.deep_dict(relations={'family':None})
Say the family object has homes as a relation then we can do
person.deep_dict(relations={'family':{'homes':None}})
OR
person.deep_dict(relations={'family':'homes'})
Say homes has a relation like rooms you can do
person.deep_dict(relations={'family':{'homes':'rooms'}})
and so on...
"""
mydict = dict((c, str(a)) for c, a in
self.__dict__.items() if c != '_sa_instance_state')
if not relations:
# just return ourselves
return mydict
# otherwise we need to go deeper
if not isinstance(relations, dict) and not isinstance(relations, str):
raise Exception("relations should be a dict, it is of type {}".format(type(relations)))
# got here so check and handle if we were passed a dict
if isinstance(relations, dict):
# we were passed deeper info
for left, right in relations.items():
myrel = getattr(self, left)
if isinstance(myrel, list):
mydict[left] = [rel.deep_dict(relations=right) for rel in myrel]
else:
mydict[left] = myrel.deep_dict(relations=right)
# if we get here check and handle if we were passed a string
elif isinstance(relations, str):
# passed a single item
myrel = getattr(self, relations)
left = relations
if isinstance(myrel, list):
mydict[left] = [rel.deep_dict(relations=None)
for rel in myrel]
else:
mydict[left] = myrel.deep_dict(relations=None)
return mydict
so for an example using person/family/homes/rooms... turning it into json all you need is
json.dumps(person.deep_dict(relations={'family':{'homes':'rooms'}}))
step1:
class CNAME:
...
def as_dict(self):
return {item.name: getattr(self, item.name) for item in self.__table__.columns}
step2:
list = []
for data in session.query(CNAME).all():
list.append(data.as_dict())
step3:
return jsonify(list)
Even though it's a old post, Maybe I didn't answer the question above, but I want to talk about my serialization, at least it works for me.
I use FastAPI,SqlAlchemy and MySQL, but I don't use orm model;
# from sqlalchemy import create_engine
# from sqlalchemy.orm import sessionmaker
# engine = create_engine(config.SQLALCHEMY_DATABASE_URL, pool_pre_ping=True)
# SessionLocal = sessionmaker(autocommit=False, autoflush=False, bind=engine)
Serialization code
import decimal
import datetime
def alchemy_encoder(obj):
"""JSON encoder function for SQLAlchemy special classes."""
if isinstance(obj, datetime.date):
return obj.strftime("%Y-%m-%d %H:%M:%S")
elif isinstance(obj, decimal.Decimal):
return float(obj)
import json
from sqlalchemy import text
# db is SessionLocal() object
app_sql = 'SELECT * FROM app_info ORDER BY app_id LIMIT :page,:page_size'
# The next two are the parameters passed in
page = 1
page_size = 10
# execute sql and return a <class 'sqlalchemy.engine.result.ResultProxy'> object
app_list = db.execute(text(app_sql), {'page': page, 'page_size': page_size})
# serialize
res = json.loads(json.dumps([dict(r) for r in app_list], default=alchemy_encoder))
If it doesn't work, please ignore my answer. I refer to it here
https://codeandlife.com/2014/12/07/sqlalchemy-results-to-json-the-easy-way/
install simplejson by
pip install simplejson and the create a class
class Serialise(object):
def _asdict(self):
"""
Serialization logic for converting entities using flask's jsonify
:return: An ordered dictionary
:rtype: :class:`collections.OrderedDict`
"""
result = OrderedDict()
# Get the columns
for key in self.__mapper__.c.keys():
if isinstance(getattr(self, key), datetime):
result["x"] = getattr(self, key).timestamp() * 1000
result["timestamp"] = result["x"]
else:
result[key] = getattr(self, key)
return result
and inherit this class to every orm classes so that this _asdict function gets registered to every ORM class and boom.
And use jsonify anywhere
It is not so straighforward. I wrote some code to do this. I'm still working on it, and it uses the MochiKit framework. It basically translates compound objects between Python and Javascript using a proxy and registered JSON converters.
Browser side for database objects is db.js
It needs the basic Python proxy source in proxy.js.
On the Python side there is the base proxy module.
Then finally the SqlAlchemy object encoder in webserver.py.
It also depends on metadata extractors found in the models.py file.
def alc2json(row):
return dict([(col, str(getattr(row,col))) for col in row.__table__.columns.keys()])
I thought I'd play a little code golf with this one.
FYI: I am using automap_base since we have a separately designed schema according to business requirements. I just started using SQLAlchemy today but the documentation states that automap_base is an extension to declarative_base which seems to be the typical paradigm in the SQLAlchemy ORM so I believe this should work.
It does not get fancy with following foreign keys per Tjorriemorrie's solution, but it simply matches columns to values and handles Python types by str()-ing the column values. Our values consist Python datetime.time and decimal.Decimal class type results so it gets the job done.
Hope this helps any passers-by!
I know this is quite an older post. I took solution given by #SashaB and modified as per my need.
I added following things to it:
Field ignore list: A list of fields to be ignored while serializing
Field replace list: A dictionary containing field names to be replaced by values while serializing.
Removed methods and BaseQuery getting serialized
My code is as follows:
def alchemy_json_encoder(revisit_self = False, fields_to_expand = [], fields_to_ignore = [], fields_to_replace = {}):
"""
Serialize SQLAlchemy result into JSon
:param revisit_self: True / False
:param fields_to_expand: Fields which are to be expanded for including their children and all
:param fields_to_ignore: Fields to be ignored while encoding
:param fields_to_replace: Field keys to be replaced by values assigned in dictionary
:return: Json serialized SQLAlchemy object
"""
_visited_objs = []
class AlchemyEncoder(json.JSONEncoder):
def default(self, obj):
if isinstance(obj.__class__, DeclarativeMeta):
# don't re-visit self
if revisit_self:
if obj in _visited_objs:
return None
_visited_objs.append(obj)
# go through each field in this SQLalchemy class
fields = {}
for field in [x for x in dir(obj) if not x.startswith('_') and x != 'metadata' and x not in fields_to_ignore]:
val = obj.__getattribute__(field)
# is this field method defination, or an SQLalchemy object
if not hasattr(val, "__call__") and not isinstance(val, BaseQuery):
field_name = fields_to_replace[field] if field in fields_to_replace else field
# is this field another SQLalchemy object, or a list of SQLalchemy objects?
if isinstance(val.__class__, DeclarativeMeta) or \
(isinstance(val, list) and len(val) > 0 and isinstance(val[0].__class__, DeclarativeMeta)):
# unless we're expanding this field, stop here
if field not in fields_to_expand:
# not expanding this field: set it to None and continue
fields[field_name] = None
continue
fields[field_name] = val
# a json-encodable dict
return fields
return json.JSONEncoder.default(self, obj)
return AlchemyEncoder
Hope it helps someone!
Use the built-in serializer in SQLAlchemy:
from sqlalchemy.ext.serializer import loads, dumps
obj = MyAlchemyObject()
# serialize object
serialized_obj = dumps(obj)
# deserialize object
obj = loads(serialized_obj)
If you're transferring the object between sessions, remember to detach the object from the current session using session.expunge(obj).
To attach it again, just do session.add(obj).
Under Flask, this works and handles datatime fields, transforming a field of type
'time': datetime.datetime(2018, 3, 22, 15, 40) into
"time": "2018-03-22 15:40:00":
obj = {c.name: str(getattr(self, c.name)) for c in self.__table__.columns}
# This to get the JSON body
return json.dumps(obj)
# Or this to get a response object
return jsonify(obj)
following code will serialize sqlalchemy result to json.
import json
from collections import OrderedDict
def asdict(self):
result = OrderedDict()
for key in self.__mapper__.c.keys():
if getattr(self, key) is not None:
result[key] = str(getattr(self, key))
else:
result[key] = getattr(self, key)
return result
def to_array(all_vendors):
v = [ ven.asdict() for ven in all_vendors ]
return json.dumps(v)
Calling fun,
def all_products():
all_products = Products.query.all()
return to_array(all_products)
The AlchemyEncoder is wonderful but sometimes fails with Decimal values. Here is an improved encoder that solves the decimal problem -
class AlchemyEncoder(json.JSONEncoder):
# To serialize SQLalchemy objects
def default(self, obj):
if isinstance(obj.__class__, DeclarativeMeta):
model_fields = {}
for field in [x for x in dir(obj) if not x.startswith('_') and x != 'metadata']:
data = obj.__getattribute__(field)
print data
try:
json.dumps(data) # this will fail on non-encodable values, like other classes
model_fields[field] = data
except TypeError:
model_fields[field] = None
return model_fields
if isinstance(obj, Decimal):
return float(obj)
return json.JSONEncoder.default(self, obj)
When using sqlalchemy to connect to a db I this is a simple solution which is highly configurable. Use pandas.
import pandas as pd
import sqlalchemy
#sqlalchemy engine configuration
engine = sqlalchemy.create_engine....
def my_function():
#read in from sql directly into a pandas dataframe
#check the pandas documentation for additional config options
sql_DF = pd.read_sql_table("table_name", con=engine)
# "orient" is optional here but allows you to specify the json formatting you require
sql_json = sql_DF.to_json(orient="index")
return sql_json
(Tiny tweak on Sasha B's really excellent answer)
This specifically converts datetime objects to strings which in the original answer would be converted to None:
# Standard library imports
from datetime import datetime
import json
# 3rd party imports
from sqlalchemy.ext.declarative import DeclarativeMeta
class JsonEncoder(json.JSONEncoder):
def default(self, obj):
if isinstance(obj.__class__, DeclarativeMeta):
dict = {}
# Remove invalid fields and just get the column attributes
columns = [x for x in dir(obj) if not x.startswith("_") and x != "metadata"]
for column in columns:
value = obj.__getattribute__(column)
try:
json.dumps(value)
dict[column] = value
except TypeError:
if isinstance(value, datetime):
dict[column] = value.__str__()
else:
dict[column] = None
return dict
return json.JSONEncoder.default(self, obj)
class SqlToDict:
def __init__(self, data) -> None:
self.data = data
def to_timestamp(self, date):
if isinstance(date, datetime):
return int(datetime.timestamp(date))
else:
return date
def to_dict(self) -> List:
arr = []
for i in self.data:
keys = [*i.keys()]
values = [*i]
values = [self.to_timestamp(d) for d in values]
arr.append(dict(zip(keys, values)))
return arr
For example:
SqlToDict(data).to_dict()
Very late 2023
My implementation
def obj_to_dict(obj, remove=['_sa_instance_state'], debug=False):
result = {}
if type(obj).__name__ == "Row":
return dict(obj)
obj = obj.__dict__
for key in obj:
if key in remove:
continue
result[key] = obj[key]
if debug:
print(result)
return result
The built in serializer chokes with utf-8 cannot decode invalid start byte for some inputs. Instead, I went with:
def row_to_dict(row):
temp = row.__dict__
temp.pop('_sa_instance_state', None)
return temp
def rows_to_list(rows):
ret_rows = []
for row in rows:
ret_rows.append(row_to_dict(row))
return ret_rows
#website_blueprint.route('/api/v1/some/endpoint', methods=['GET'])
def some_api():
'''
/some_endpoint
'''
rows = rows_to_list(SomeModel.query.all())
response = app.response_class(
response=jsonplus.dumps(rows),
status=200,
mimetype='application/json'
)
return response
Maybe you can use a class like this
from sqlalchemy.ext.declarative import declared_attr
from sqlalchemy import Table
class Custom:
"""Some custom logic here!"""
__table__: Table # def for mypy
#declared_attr
def __tablename__(cls): # pylint: disable=no-self-argument
return cls.__name__ # pylint: disable= no-member
def to_dict(self) -> Dict[str, Any]:
"""Serializes only column data."""
return {c.name: getattr(self, c.name) for c in self.__table__.columns}
Base = declarative_base(cls=Custom)
class MyOwnTable(Base):
#COLUMNS!
With that all objects have the to_dict method
While using some raw sql and undefined objects, using cursor.description appeared to get what I was looking for:
with connection.cursor() as cur:
print(query)
cur.execute(query)
for item in cur.fetchall():
row = {column.name: item[i] for i, column in enumerate(cur.description)}
print(row)
This is a JSONEncoder version that preserves model column order and only keeps recursively defined column and relationship fields. It also formats most JSON unserializable types:
import json
from datetime import datetime
from decimal import Decimal
import arrow
from sqlalchemy.ext.declarative import DeclarativeMeta
class SQLAlchemyJSONEncoder(json.JSONEncoder):
"""
SQLAlchemy ORM JSON Encoder
If you have a "backref" relationship defined in your SQLAlchemy model,
this encoder raises a ValueError to stop an infinite loop.
"""
def default(self, obj):
if isinstance(obj, datetime):
return arrow.get(obj).isoformat()
elif isinstance(obj, Decimal):
return float(obj)
elif isinstance(obj, set):
return sorted(obj)
elif isinstance(obj.__class__, DeclarativeMeta):
for attribute, relationship in obj.__mapper__.relationships.items():
if isinstance(relationship.__getattribute__("backref"), tuple):
raise ValueError(
f'{obj.__class__} object has a "backref" relationship '
"that would cause an infinite loop!"
)
dictionary = {}
column_names = [column.name for column in obj.__table__.columns]
for key in column_names:
value = obj.__getattribute__(key)
if isinstance(value, datetime):
value = arrow.get(value).isoformat()
elif isinstance(value, Decimal):
value = float(value)
elif isinstance(value, set):
value = sorted(value)
dictionary[key] = value
for key in [
attribute
for attribute in dir(obj)
if not attribute.startswith("_")
and attribute != "metadata"
and attribute not in column_names
]:
value = obj.__getattribute__(key)
dictionary[key] = value
return dictionary
return super().default(obj)

Categories