duplicating last column of 3d numpy array - python

I have the following numpy 3d array, in which I need to duplicate the last column
array([[[ 7, 5, 93],
[19, 4, 69],
[62, 2, 52]],
[[ 6, 1, 65],
[41, 9, 94],
[39, 4, 49]]])
The desired output is:
array([[[ 7, 5, 93, 93],
[19, 4, 69, 69],
[62, 2, 52, 52]],
[[ 6, 1, 65, 65],
[41, 9, 94, 94],
[39, 4, 49, 49]]])
Is there a clever way of doing this?

You could concatenate along the last axis as follows-
numpy.concatenate([a, numpy.expand_dims(a[:, :, -1], axis=2)], axis=2)

There is a built-in numpy function for this purpose:
np.insert(x,-1,x[...,-1],-1)
output:
array([[[ 7, 5, 93, 93],
[19, 4, 69, 69],
[62, 2, 52, 52]],
[[ 6, 1, 65, 65],
[41, 9, 94, 94],
[39, 4, 49, 49]]])

Related

Slicing a numpy array based on argmax of another numpy array [duplicate]

This question already has answers here:
Index n dimensional array with (n-1) d array
(3 answers)
Closed 2 years ago.
I have two arrays, and are as follows:
import numpy as np
np.random.seed(42)
a = (np.random.uniform(size=[2, 5, 3]) * 100).astype(int)
b = (np.random.uniform(size=[2, 5, 3]) * 100).astype(int)
Ouput of array a:
array([[[37, 95, 73],
[59, 15, 15],
[ 5, 86, 60],
[70, 2, 96],
[83, 21, 18]],
[[18, 30, 52],
[43, 29, 61],
[13, 29, 36],
[45, 78, 19],
[51, 59, 4]]])
The output of array b is as follows:
array([[[60, 17, 6],
[94, 96, 80],
[30, 9, 68],
[44, 12, 49],
[ 3, 90, 25]],
[[66, 31, 52],
[54, 18, 96],
[77, 93, 89],
[59, 92, 8],
[19, 4, 32]]])
Now I am able to get the argmax of array a using the following code:
idx = np.argmax(a, axis=0)
print(idx)
Output:
array([[0, 0, 0],
[0, 1, 1],
[1, 0, 0],
[0, 1, 0],
[0, 1, 0]], dtype=int64)
Is it possible to slice array b using the argmax output of array a, so that I get the following output:
array([[60, 17, 6],
[94, 18, 96],
[77, 9, 68],
[44, 92, 49],
[ 3, 4, 25]])
I tried different ways, but not successful. Kindly help.
Using numpy advanced indexing:
import numpy as np
np.random.seed(42)
a = (np.random.uniform(size=[2, 5, 3]) * 100).astype(int)
b = (np.random.uniform(size=[2, 5, 3]) * 100).astype(int)
idx = np.argmax(a, axis=0)
_, m, n = a.shape
b[idx, np.arange(m)[:,None], np.arange(n)]
array([[60, 17, 6],
[94, 18, 96],
[77, 9, 68],
[44, 92, 49],
[ 3, 4, 25]])

Fancy indexing across multiple dimensions in numpy [duplicate]

I've got a strange situation.
I have a 2D Numpy array, x:
x = np.random.random_integers(0,5,(20,8))
And I have 2 indexers--one with indices for the rows, and one with indices for the column. In order to index X, I am having to do the following:
row_indices = [4,2,18,16,7,19,4]
col_indices = [1,2]
x_rows = x[row_indices,:]
x_indexed = x_rows[:,column_indices]
Instead of just:
x_new = x[row_indices,column_indices]
(which fails with: error, cannot broadcast (20,) with (2,))
I'd like to be able to do the indexing in one line using the broadcasting, since that would keep the code clean and readable...also, I don't know all that much about python under the hood, but as I understand it, it should be faster to do it in one line (and I'll be working with pretty big arrays).
Test Case:
x = np.random.random_integers(0,5,(20,8))
row_indices = [4,2,18,16,7,19,4]
col_indices = [1,2]
x_rows = x[row_indices,:]
x_indexed = x_rows[:,col_indices]
x_doesnt_work = x[row_indices,col_indices]
Selections or assignments with np.ix_ using indexing or boolean arrays/masks
1. With indexing-arrays
A. Selection
We can use np.ix_ to get a tuple of indexing arrays that are broadcastable against each other to result in a higher-dimensional combinations of indices. So, when that tuple is used for indexing into the input array, would give us the same higher-dimensional array. Hence, to make a selection based on two 1D indexing arrays, it would be -
x_indexed = x[np.ix_(row_indices,col_indices)]
B. Assignment
We can use the same notation for assigning scalar or a broadcastable array into those indexed positions. Hence, the following works for assignments -
x[np.ix_(row_indices,col_indices)] = # scalar or broadcastable array
2. With masks
We can also use boolean arrays/masks with np.ix_, similar to how indexing arrays are used. This can be used again to select a block off the input array and also for assignments into it.
A. Selection
Thus, with row_mask and col_mask boolean arrays as the masks for row and column selections respectively, we can use the following for selections -
x[np.ix_(row_mask,col_mask)]
B. Assignment
And the following works for assignments -
x[np.ix_(row_mask,col_mask)] = # scalar or broadcastable array
Sample Runs
1. Using np.ix_ with indexing-arrays
Input array and indexing arrays -
In [221]: x
Out[221]:
array([[17, 39, 88, 14, 73, 58, 17, 78],
[88, 92, 46, 67, 44, 81, 17, 67],
[31, 70, 47, 90, 52, 15, 24, 22],
[19, 59, 98, 19, 52, 95, 88, 65],
[85, 76, 56, 72, 43, 79, 53, 37],
[74, 46, 95, 27, 81, 97, 93, 69],
[49, 46, 12, 83, 15, 63, 20, 79]])
In [222]: row_indices
Out[222]: [4, 2, 5, 4, 1]
In [223]: col_indices
Out[223]: [1, 2]
Tuple of indexing arrays with np.ix_ -
In [224]: np.ix_(row_indices,col_indices) # Broadcasting of indices
Out[224]:
(array([[4],
[2],
[5],
[4],
[1]]), array([[1, 2]]))
Make selections -
In [225]: x[np.ix_(row_indices,col_indices)]
Out[225]:
array([[76, 56],
[70, 47],
[46, 95],
[76, 56],
[92, 46]])
As suggested by OP, this is in effect same as performing old-school broadcasting with a 2D array version of row_indices that has its elements/indices sent to axis=0 and thus creating a singleton dimension at axis=1 and thus allowing broadcasting with col_indices. Thus, we would have an alternative solution like so -
In [227]: x[np.asarray(row_indices)[:,None],col_indices]
Out[227]:
array([[76, 56],
[70, 47],
[46, 95],
[76, 56],
[92, 46]])
As discussed earlier, for the assignments, we simply do so.
Row, col indexing arrays -
In [36]: row_indices = [1, 4]
In [37]: col_indices = [1, 3]
Make assignments with scalar -
In [38]: x[np.ix_(row_indices,col_indices)] = -1
In [39]: x
Out[39]:
array([[17, 39, 88, 14, 73, 58, 17, 78],
[88, -1, 46, -1, 44, 81, 17, 67],
[31, 70, 47, 90, 52, 15, 24, 22],
[19, 59, 98, 19, 52, 95, 88, 65],
[85, -1, 56, -1, 43, 79, 53, 37],
[74, 46, 95, 27, 81, 97, 93, 69],
[49, 46, 12, 83, 15, 63, 20, 79]])
Make assignments with 2D block(broadcastable array) -
In [40]: rand_arr = -np.arange(4).reshape(2,2)
In [41]: x[np.ix_(row_indices,col_indices)] = rand_arr
In [42]: x
Out[42]:
array([[17, 39, 88, 14, 73, 58, 17, 78],
[88, 0, 46, -1, 44, 81, 17, 67],
[31, 70, 47, 90, 52, 15, 24, 22],
[19, 59, 98, 19, 52, 95, 88, 65],
[85, -2, 56, -3, 43, 79, 53, 37],
[74, 46, 95, 27, 81, 97, 93, 69],
[49, 46, 12, 83, 15, 63, 20, 79]])
2. Using np.ix_ with masks
Input array -
In [19]: x
Out[19]:
array([[17, 39, 88, 14, 73, 58, 17, 78],
[88, 92, 46, 67, 44, 81, 17, 67],
[31, 70, 47, 90, 52, 15, 24, 22],
[19, 59, 98, 19, 52, 95, 88, 65],
[85, 76, 56, 72, 43, 79, 53, 37],
[74, 46, 95, 27, 81, 97, 93, 69],
[49, 46, 12, 83, 15, 63, 20, 79]])
Input row, col masks -
In [20]: row_mask = np.array([0,1,1,0,0,1,0],dtype=bool)
In [21]: col_mask = np.array([1,0,1,0,1,1,0,0],dtype=bool)
Make selections -
In [22]: x[np.ix_(row_mask,col_mask)]
Out[22]:
array([[88, 46, 44, 81],
[31, 47, 52, 15],
[74, 95, 81, 97]])
Make assignments with scalar -
In [23]: x[np.ix_(row_mask,col_mask)] = -1
In [24]: x
Out[24]:
array([[17, 39, 88, 14, 73, 58, 17, 78],
[-1, 92, -1, 67, -1, -1, 17, 67],
[-1, 70, -1, 90, -1, -1, 24, 22],
[19, 59, 98, 19, 52, 95, 88, 65],
[85, 76, 56, 72, 43, 79, 53, 37],
[-1, 46, -1, 27, -1, -1, 93, 69],
[49, 46, 12, 83, 15, 63, 20, 79]])
Make assignments with 2D block(broadcastable array) -
In [25]: rand_arr = -np.arange(12).reshape(3,4)
In [26]: x[np.ix_(row_mask,col_mask)] = rand_arr
In [27]: x
Out[27]:
array([[ 17, 39, 88, 14, 73, 58, 17, 78],
[ 0, 92, -1, 67, -2, -3, 17, 67],
[ -4, 70, -5, 90, -6, -7, 24, 22],
[ 19, 59, 98, 19, 52, 95, 88, 65],
[ 85, 76, 56, 72, 43, 79, 53, 37],
[ -8, 46, -9, 27, -10, -11, 93, 69],
[ 49, 46, 12, 83, 15, 63, 20, 79]])
What about:
x[row_indices][:,col_indices]
For example,
x = np.random.random_integers(0,5,(5,5))
## array([[4, 3, 2, 5, 0],
## [0, 3, 1, 4, 2],
## [4, 2, 0, 0, 3],
## [4, 5, 5, 5, 0],
## [1, 1, 5, 0, 2]])
row_indices = [4,2]
col_indices = [1,2]
x[row_indices][:,col_indices]
## array([[1, 5],
## [2, 0]])
import numpy as np
x = np.random.random_integers(0,5,(4,4))
x
array([[5, 3, 3, 2],
[4, 3, 0, 0],
[1, 4, 5, 3],
[0, 4, 3, 4]])
# This indexes the elements 1,1 and 2,2 and 3,3
indexes = (np.array([1,2,3]),np.array([1,2,3]))
x[indexes]
# returns array([3, 5, 4])
Notice that numpy has very different rules depending on what kind of indexes you use. So indexing several elements should be by a tuple of np.ndarray (see indexing manual).
So you need only to convert your list to np.ndarray and it should work as expected.
I think you are trying to do one of the following (equlvalent) operations:
x_does_work = x[row_indices,:][:,col_indices]
x_does_work = x[:,col_indices][row_indices,:]
This will actually create a subset of x with only the selected rows, then select the columns from that, or vice versa in the second case. The first case can be thought of as
x_does_work = (x[row_indices,:])[:,col_indices]
Your first try would work if you write it with np.newaxis
x_new = x[row_indices[:, np.newaxis],column_indices]

How do I neatly select a numpy sub-array in 1 line? [duplicate]

I've got a strange situation.
I have a 2D Numpy array, x:
x = np.random.random_integers(0,5,(20,8))
And I have 2 indexers--one with indices for the rows, and one with indices for the column. In order to index X, I am having to do the following:
row_indices = [4,2,18,16,7,19,4]
col_indices = [1,2]
x_rows = x[row_indices,:]
x_indexed = x_rows[:,column_indices]
Instead of just:
x_new = x[row_indices,column_indices]
(which fails with: error, cannot broadcast (20,) with (2,))
I'd like to be able to do the indexing in one line using the broadcasting, since that would keep the code clean and readable...also, I don't know all that much about python under the hood, but as I understand it, it should be faster to do it in one line (and I'll be working with pretty big arrays).
Test Case:
x = np.random.random_integers(0,5,(20,8))
row_indices = [4,2,18,16,7,19,4]
col_indices = [1,2]
x_rows = x[row_indices,:]
x_indexed = x_rows[:,col_indices]
x_doesnt_work = x[row_indices,col_indices]
Selections or assignments with np.ix_ using indexing or boolean arrays/masks
1. With indexing-arrays
A. Selection
We can use np.ix_ to get a tuple of indexing arrays that are broadcastable against each other to result in a higher-dimensional combinations of indices. So, when that tuple is used for indexing into the input array, would give us the same higher-dimensional array. Hence, to make a selection based on two 1D indexing arrays, it would be -
x_indexed = x[np.ix_(row_indices,col_indices)]
B. Assignment
We can use the same notation for assigning scalar or a broadcastable array into those indexed positions. Hence, the following works for assignments -
x[np.ix_(row_indices,col_indices)] = # scalar or broadcastable array
2. With masks
We can also use boolean arrays/masks with np.ix_, similar to how indexing arrays are used. This can be used again to select a block off the input array and also for assignments into it.
A. Selection
Thus, with row_mask and col_mask boolean arrays as the masks for row and column selections respectively, we can use the following for selections -
x[np.ix_(row_mask,col_mask)]
B. Assignment
And the following works for assignments -
x[np.ix_(row_mask,col_mask)] = # scalar or broadcastable array
Sample Runs
1. Using np.ix_ with indexing-arrays
Input array and indexing arrays -
In [221]: x
Out[221]:
array([[17, 39, 88, 14, 73, 58, 17, 78],
[88, 92, 46, 67, 44, 81, 17, 67],
[31, 70, 47, 90, 52, 15, 24, 22],
[19, 59, 98, 19, 52, 95, 88, 65],
[85, 76, 56, 72, 43, 79, 53, 37],
[74, 46, 95, 27, 81, 97, 93, 69],
[49, 46, 12, 83, 15, 63, 20, 79]])
In [222]: row_indices
Out[222]: [4, 2, 5, 4, 1]
In [223]: col_indices
Out[223]: [1, 2]
Tuple of indexing arrays with np.ix_ -
In [224]: np.ix_(row_indices,col_indices) # Broadcasting of indices
Out[224]:
(array([[4],
[2],
[5],
[4],
[1]]), array([[1, 2]]))
Make selections -
In [225]: x[np.ix_(row_indices,col_indices)]
Out[225]:
array([[76, 56],
[70, 47],
[46, 95],
[76, 56],
[92, 46]])
As suggested by OP, this is in effect same as performing old-school broadcasting with a 2D array version of row_indices that has its elements/indices sent to axis=0 and thus creating a singleton dimension at axis=1 and thus allowing broadcasting with col_indices. Thus, we would have an alternative solution like so -
In [227]: x[np.asarray(row_indices)[:,None],col_indices]
Out[227]:
array([[76, 56],
[70, 47],
[46, 95],
[76, 56],
[92, 46]])
As discussed earlier, for the assignments, we simply do so.
Row, col indexing arrays -
In [36]: row_indices = [1, 4]
In [37]: col_indices = [1, 3]
Make assignments with scalar -
In [38]: x[np.ix_(row_indices,col_indices)] = -1
In [39]: x
Out[39]:
array([[17, 39, 88, 14, 73, 58, 17, 78],
[88, -1, 46, -1, 44, 81, 17, 67],
[31, 70, 47, 90, 52, 15, 24, 22],
[19, 59, 98, 19, 52, 95, 88, 65],
[85, -1, 56, -1, 43, 79, 53, 37],
[74, 46, 95, 27, 81, 97, 93, 69],
[49, 46, 12, 83, 15, 63, 20, 79]])
Make assignments with 2D block(broadcastable array) -
In [40]: rand_arr = -np.arange(4).reshape(2,2)
In [41]: x[np.ix_(row_indices,col_indices)] = rand_arr
In [42]: x
Out[42]:
array([[17, 39, 88, 14, 73, 58, 17, 78],
[88, 0, 46, -1, 44, 81, 17, 67],
[31, 70, 47, 90, 52, 15, 24, 22],
[19, 59, 98, 19, 52, 95, 88, 65],
[85, -2, 56, -3, 43, 79, 53, 37],
[74, 46, 95, 27, 81, 97, 93, 69],
[49, 46, 12, 83, 15, 63, 20, 79]])
2. Using np.ix_ with masks
Input array -
In [19]: x
Out[19]:
array([[17, 39, 88, 14, 73, 58, 17, 78],
[88, 92, 46, 67, 44, 81, 17, 67],
[31, 70, 47, 90, 52, 15, 24, 22],
[19, 59, 98, 19, 52, 95, 88, 65],
[85, 76, 56, 72, 43, 79, 53, 37],
[74, 46, 95, 27, 81, 97, 93, 69],
[49, 46, 12, 83, 15, 63, 20, 79]])
Input row, col masks -
In [20]: row_mask = np.array([0,1,1,0,0,1,0],dtype=bool)
In [21]: col_mask = np.array([1,0,1,0,1,1,0,0],dtype=bool)
Make selections -
In [22]: x[np.ix_(row_mask,col_mask)]
Out[22]:
array([[88, 46, 44, 81],
[31, 47, 52, 15],
[74, 95, 81, 97]])
Make assignments with scalar -
In [23]: x[np.ix_(row_mask,col_mask)] = -1
In [24]: x
Out[24]:
array([[17, 39, 88, 14, 73, 58, 17, 78],
[-1, 92, -1, 67, -1, -1, 17, 67],
[-1, 70, -1, 90, -1, -1, 24, 22],
[19, 59, 98, 19, 52, 95, 88, 65],
[85, 76, 56, 72, 43, 79, 53, 37],
[-1, 46, -1, 27, -1, -1, 93, 69],
[49, 46, 12, 83, 15, 63, 20, 79]])
Make assignments with 2D block(broadcastable array) -
In [25]: rand_arr = -np.arange(12).reshape(3,4)
In [26]: x[np.ix_(row_mask,col_mask)] = rand_arr
In [27]: x
Out[27]:
array([[ 17, 39, 88, 14, 73, 58, 17, 78],
[ 0, 92, -1, 67, -2, -3, 17, 67],
[ -4, 70, -5, 90, -6, -7, 24, 22],
[ 19, 59, 98, 19, 52, 95, 88, 65],
[ 85, 76, 56, 72, 43, 79, 53, 37],
[ -8, 46, -9, 27, -10, -11, 93, 69],
[ 49, 46, 12, 83, 15, 63, 20, 79]])
What about:
x[row_indices][:,col_indices]
For example,
x = np.random.random_integers(0,5,(5,5))
## array([[4, 3, 2, 5, 0],
## [0, 3, 1, 4, 2],
## [4, 2, 0, 0, 3],
## [4, 5, 5, 5, 0],
## [1, 1, 5, 0, 2]])
row_indices = [4,2]
col_indices = [1,2]
x[row_indices][:,col_indices]
## array([[1, 5],
## [2, 0]])
import numpy as np
x = np.random.random_integers(0,5,(4,4))
x
array([[5, 3, 3, 2],
[4, 3, 0, 0],
[1, 4, 5, 3],
[0, 4, 3, 4]])
# This indexes the elements 1,1 and 2,2 and 3,3
indexes = (np.array([1,2,3]),np.array([1,2,3]))
x[indexes]
# returns array([3, 5, 4])
Notice that numpy has very different rules depending on what kind of indexes you use. So indexing several elements should be by a tuple of np.ndarray (see indexing manual).
So you need only to convert your list to np.ndarray and it should work as expected.
I think you are trying to do one of the following (equlvalent) operations:
x_does_work = x[row_indices,:][:,col_indices]
x_does_work = x[:,col_indices][row_indices,:]
This will actually create a subset of x with only the selected rows, then select the columns from that, or vice versa in the second case. The first case can be thought of as
x_does_work = (x[row_indices,:])[:,col_indices]
Your first try would work if you write it with np.newaxis
x_new = x[row_indices[:, np.newaxis],column_indices]

Numpy: using entries of array to populate larger array with repeats [duplicate]

I've got a strange situation.
I have a 2D Numpy array, x:
x = np.random.random_integers(0,5,(20,8))
And I have 2 indexers--one with indices for the rows, and one with indices for the column. In order to index X, I am having to do the following:
row_indices = [4,2,18,16,7,19,4]
col_indices = [1,2]
x_rows = x[row_indices,:]
x_indexed = x_rows[:,column_indices]
Instead of just:
x_new = x[row_indices,column_indices]
(which fails with: error, cannot broadcast (20,) with (2,))
I'd like to be able to do the indexing in one line using the broadcasting, since that would keep the code clean and readable...also, I don't know all that much about python under the hood, but as I understand it, it should be faster to do it in one line (and I'll be working with pretty big arrays).
Test Case:
x = np.random.random_integers(0,5,(20,8))
row_indices = [4,2,18,16,7,19,4]
col_indices = [1,2]
x_rows = x[row_indices,:]
x_indexed = x_rows[:,col_indices]
x_doesnt_work = x[row_indices,col_indices]
Selections or assignments with np.ix_ using indexing or boolean arrays/masks
1. With indexing-arrays
A. Selection
We can use np.ix_ to get a tuple of indexing arrays that are broadcastable against each other to result in a higher-dimensional combinations of indices. So, when that tuple is used for indexing into the input array, would give us the same higher-dimensional array. Hence, to make a selection based on two 1D indexing arrays, it would be -
x_indexed = x[np.ix_(row_indices,col_indices)]
B. Assignment
We can use the same notation for assigning scalar or a broadcastable array into those indexed positions. Hence, the following works for assignments -
x[np.ix_(row_indices,col_indices)] = # scalar or broadcastable array
2. With masks
We can also use boolean arrays/masks with np.ix_, similar to how indexing arrays are used. This can be used again to select a block off the input array and also for assignments into it.
A. Selection
Thus, with row_mask and col_mask boolean arrays as the masks for row and column selections respectively, we can use the following for selections -
x[np.ix_(row_mask,col_mask)]
B. Assignment
And the following works for assignments -
x[np.ix_(row_mask,col_mask)] = # scalar or broadcastable array
Sample Runs
1. Using np.ix_ with indexing-arrays
Input array and indexing arrays -
In [221]: x
Out[221]:
array([[17, 39, 88, 14, 73, 58, 17, 78],
[88, 92, 46, 67, 44, 81, 17, 67],
[31, 70, 47, 90, 52, 15, 24, 22],
[19, 59, 98, 19, 52, 95, 88, 65],
[85, 76, 56, 72, 43, 79, 53, 37],
[74, 46, 95, 27, 81, 97, 93, 69],
[49, 46, 12, 83, 15, 63, 20, 79]])
In [222]: row_indices
Out[222]: [4, 2, 5, 4, 1]
In [223]: col_indices
Out[223]: [1, 2]
Tuple of indexing arrays with np.ix_ -
In [224]: np.ix_(row_indices,col_indices) # Broadcasting of indices
Out[224]:
(array([[4],
[2],
[5],
[4],
[1]]), array([[1, 2]]))
Make selections -
In [225]: x[np.ix_(row_indices,col_indices)]
Out[225]:
array([[76, 56],
[70, 47],
[46, 95],
[76, 56],
[92, 46]])
As suggested by OP, this is in effect same as performing old-school broadcasting with a 2D array version of row_indices that has its elements/indices sent to axis=0 and thus creating a singleton dimension at axis=1 and thus allowing broadcasting with col_indices. Thus, we would have an alternative solution like so -
In [227]: x[np.asarray(row_indices)[:,None],col_indices]
Out[227]:
array([[76, 56],
[70, 47],
[46, 95],
[76, 56],
[92, 46]])
As discussed earlier, for the assignments, we simply do so.
Row, col indexing arrays -
In [36]: row_indices = [1, 4]
In [37]: col_indices = [1, 3]
Make assignments with scalar -
In [38]: x[np.ix_(row_indices,col_indices)] = -1
In [39]: x
Out[39]:
array([[17, 39, 88, 14, 73, 58, 17, 78],
[88, -1, 46, -1, 44, 81, 17, 67],
[31, 70, 47, 90, 52, 15, 24, 22],
[19, 59, 98, 19, 52, 95, 88, 65],
[85, -1, 56, -1, 43, 79, 53, 37],
[74, 46, 95, 27, 81, 97, 93, 69],
[49, 46, 12, 83, 15, 63, 20, 79]])
Make assignments with 2D block(broadcastable array) -
In [40]: rand_arr = -np.arange(4).reshape(2,2)
In [41]: x[np.ix_(row_indices,col_indices)] = rand_arr
In [42]: x
Out[42]:
array([[17, 39, 88, 14, 73, 58, 17, 78],
[88, 0, 46, -1, 44, 81, 17, 67],
[31, 70, 47, 90, 52, 15, 24, 22],
[19, 59, 98, 19, 52, 95, 88, 65],
[85, -2, 56, -3, 43, 79, 53, 37],
[74, 46, 95, 27, 81, 97, 93, 69],
[49, 46, 12, 83, 15, 63, 20, 79]])
2. Using np.ix_ with masks
Input array -
In [19]: x
Out[19]:
array([[17, 39, 88, 14, 73, 58, 17, 78],
[88, 92, 46, 67, 44, 81, 17, 67],
[31, 70, 47, 90, 52, 15, 24, 22],
[19, 59, 98, 19, 52, 95, 88, 65],
[85, 76, 56, 72, 43, 79, 53, 37],
[74, 46, 95, 27, 81, 97, 93, 69],
[49, 46, 12, 83, 15, 63, 20, 79]])
Input row, col masks -
In [20]: row_mask = np.array([0,1,1,0,0,1,0],dtype=bool)
In [21]: col_mask = np.array([1,0,1,0,1,1,0,0],dtype=bool)
Make selections -
In [22]: x[np.ix_(row_mask,col_mask)]
Out[22]:
array([[88, 46, 44, 81],
[31, 47, 52, 15],
[74, 95, 81, 97]])
Make assignments with scalar -
In [23]: x[np.ix_(row_mask,col_mask)] = -1
In [24]: x
Out[24]:
array([[17, 39, 88, 14, 73, 58, 17, 78],
[-1, 92, -1, 67, -1, -1, 17, 67],
[-1, 70, -1, 90, -1, -1, 24, 22],
[19, 59, 98, 19, 52, 95, 88, 65],
[85, 76, 56, 72, 43, 79, 53, 37],
[-1, 46, -1, 27, -1, -1, 93, 69],
[49, 46, 12, 83, 15, 63, 20, 79]])
Make assignments with 2D block(broadcastable array) -
In [25]: rand_arr = -np.arange(12).reshape(3,4)
In [26]: x[np.ix_(row_mask,col_mask)] = rand_arr
In [27]: x
Out[27]:
array([[ 17, 39, 88, 14, 73, 58, 17, 78],
[ 0, 92, -1, 67, -2, -3, 17, 67],
[ -4, 70, -5, 90, -6, -7, 24, 22],
[ 19, 59, 98, 19, 52, 95, 88, 65],
[ 85, 76, 56, 72, 43, 79, 53, 37],
[ -8, 46, -9, 27, -10, -11, 93, 69],
[ 49, 46, 12, 83, 15, 63, 20, 79]])
What about:
x[row_indices][:,col_indices]
For example,
x = np.random.random_integers(0,5,(5,5))
## array([[4, 3, 2, 5, 0],
## [0, 3, 1, 4, 2],
## [4, 2, 0, 0, 3],
## [4, 5, 5, 5, 0],
## [1, 1, 5, 0, 2]])
row_indices = [4,2]
col_indices = [1,2]
x[row_indices][:,col_indices]
## array([[1, 5],
## [2, 0]])
import numpy as np
x = np.random.random_integers(0,5,(4,4))
x
array([[5, 3, 3, 2],
[4, 3, 0, 0],
[1, 4, 5, 3],
[0, 4, 3, 4]])
# This indexes the elements 1,1 and 2,2 and 3,3
indexes = (np.array([1,2,3]),np.array([1,2,3]))
x[indexes]
# returns array([3, 5, 4])
Notice that numpy has very different rules depending on what kind of indexes you use. So indexing several elements should be by a tuple of np.ndarray (see indexing manual).
So you need only to convert your list to np.ndarray and it should work as expected.
I think you are trying to do one of the following (equlvalent) operations:
x_does_work = x[row_indices,:][:,col_indices]
x_does_work = x[:,col_indices][row_indices,:]
This will actually create a subset of x with only the selected rows, then select the columns from that, or vice versa in the second case. The first case can be thought of as
x_does_work = (x[row_indices,:])[:,col_indices]
Your first try would work if you write it with np.newaxis
x_new = x[row_indices[:, np.newaxis],column_indices]

How to make a new list every 3rd element? [duplicate]

This question already has answers here:
How do I split a list into equally-sized chunks?
(66 answers)
Closed 7 years ago.
Let's say I want to make a list of lists:
List_of_lists = [ [1, 2, 3] , [4, 5, 6], [7, 8, 9], .... ]
How do I make a loop that immediately creates a new list (ex: [4,5,6])
AFTER the previous list is filled with 3 elements?
Right now, all I can do is:
[ [1, 2, 3, 4, 5, 6.... ] ], essentially a giant list within a list, instead of this giant list being split into lists with 3 elements each.
Use range within a list comprehension :
>>> [range(i,i+3) for i in range(1,10,3)]
[[1, 2, 3], [4, 5, 6], [7, 8, 9]]
a=range(100)
List_of_lists=[a[i:i+3] for i in range(1, 100, 3)]
print List_of_lists
[[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12], [13, 14, 15], [16, 17, 18], [19, 20, 21], [22, 23, 24], [25, 26, 27], [28, 29, 30], [31, 32, 33], [34, 35,
36], [37, 38, 39], [40, 41, 42], [43, 44, 45], [46, 47, 48], [49, 50, 51], [52, 53, 54], [55, 56, 57], [58, 59, 60], [61, 62, 63], [64, 65, 66], [67, 68, 6
9], [70, 71, 72], [73, 74, 75], [76, 77, 78], [79, 80, 81], [82, 83, 84], [85, 86, 87], [88, 89, 90], [91, 92, 93], [94, 95, 96], [97, 98, 99]]

Categories