I am trying to forecast sales for multiple time series I took from kaggle's Store item demand forecasting challenge. It consists of a long format time series for 10 stores and 50 items resulting in 500 time series stacked on top of each other. And for each store and each item, I have 5 years of daily records with weekly and annual seasonalities.
In total there are : 365.2days * 5years * 10stores *50items = 913000 records.
From my understanding based on what I've read so far on Hierarchical and Grouped time series, the whole dataframe could be structured as a Grouped Time Series and not simply as a strict Hierarchical Time Series as aggregation could be done at the store or item levels interchangeably.
I want to find a way to forecast all 500 time series (for store1_item1, store1_item2,..., store10_item50) for the next year (from 01-jan-2015 to 31-dec-2015) using the scikit-hts library and its AutoArimaModel function which is a wrapper function of pmdarima's AutoArima function.
To handle the two levels of seasonality, I added Fourier terms as exogenous features to deal with the annual seasonality while auto_arima deals with the weekly seasonality.
My problem is that I got an error at during prediction step.
Here's the error message :
ValueError: Provided exogenous values are not of the appropriate shape. Required (365, 4), got (365, 8).
I assume something is wrong with the exogenous dictionary but I do not know how to solve the issue as I'm using scikit-hts for the first time. To do this, I followed the official documentation of scikit-hts here.
EDIT :______________________________________________________________
I have not seen that a similar bug was reported on Github. Following the proposed fix that I implemented locally, I could have some results. However, even though there is no error when running the code, some of the forecasts are negative as raised in the comments below this post. And we even get disproportionate values for the positive ones.
Here are the plots for all the combinations of store and item. You can see that this seems to work for only one combination.
df.loc['2014','store_1_item_1'].plot()
predictions.loc['2015','store_1_item_1'].plot()
df.loc['2014','store_1_item_2'].plot()
predictions.loc['2015','store_1_item_2'].plot()
df.loc['2014','store_2_item_1'].plot()
predictions.loc['2015','store_2_item_1'].plot()
df.loc['2014','store_2_item_2'].plot()
predictions.loc['2015','store_2_item_2'].plot()
_____________________________________________________________________
Complete code:
# imports
import pandas as pd
from pmdarima.preprocessing import FourierFeaturizer
import hts
from hts.hierarchy import HierarchyTree
from hts.model import AutoArimaModel
from hts import HTSRegressor
# read data from the csv file
data = pd.read_csv('train.csv', index_col='date', parse_dates=True)
# Train/Test split with reduced size
train_data = data.query('store == [1,2] and item == [1, 2]').loc['2013':'2014']
test_data = data.query('store == [1,2] and item == [1, 2]').loc['2015']
# Create the stores time series
# For each timestamp group by store and apply sum
stores_ts = train_data.drop(columns=['item']).groupby(['date','store']).sum()
stores_ts = stores_ts.unstack('store')
stores_ts.columns = stores_ts.columns.droplevel(0)
stores_ts.columns = ['store_' + str(i) for i in stores_ts.columns]
# Create the items time series
# For each timestamp group by item and apply sum
items_ts = train_data.drop(columns=['store']).groupby(['date','item']).sum()
items_ts = items_ts.unstack('item')
items_ts.columns = items_ts.columns.droplevel(0)
items_ts.columns = ['item_' + str(i) for i in items_ts.columns]
# Create the stores_items time series
# For each timestamp group by store AND by item and apply sum
store_item_ts = train_data.pivot_table(index= 'date', columns=['store', 'item'], aggfunc='sum')
store_item_ts.columns = store_item_ts.columns.droplevel(0)
# Rename the columns as store_i_item_j
col_names = []
for i in store_item_ts.columns:
col_name = 'store_' + str(i[0]) + '_item_' + str(i[1])
col_names.append(col_name)
store_item_ts.columns = store_item_ts.columns.droplevel(0)
store_item_ts.columns = col_names
# Create a new dataframe and add the root level of the hierarchy as the sum of all stores (or all items)
df = pd.DataFrame()
df['total'] = stores_ts.sum(1)
# Concatenate all created dataframes into one df
# df is the dataframe that will be used for model training
df = pd.concat([df, stores_ts, items_ts, store_item_ts], 1)
# Build fourier terms for train and test sets
four_terms = FourierFeaturizer(365.2, 1)
# Build the exogenous features dataframe for training data
exog_train_df = pd.DataFrame()
for i in range(1, 3):
for j in range(1, 3):
_, exog = four_terms.fit_transform(train_data.query(f'store == {i} and item == {j}').sales)
exog.columns= [f'store_{i}_item_{j}_'+ x for x in exog.columns]
exog_train_df = pd.concat([exog_train_df, exog], axis=1)
exog_train_df['date'] = df.index
exog_train_df.set_index('date', inplace=True)
# add the exogenous features dataframe to df before training
df = pd.concat([df, exog_train_df], axis= 1)
# Build the exogenous features dataframe for test set
# It will be used only when using model.predict()
exog_test_df = pd.DataFrame()
for i in range(1, 3):
for j in range(1, 3):
_, exog_test = four_terms.fit_transform(test_data.query(f'store == {i} and item == {j}').sales)
exog_test.columns= [f'store_{i}_item_{j}_'+ x for x in exog_test.columns]
exog_test_df = pd.concat([exog_test_df, exog_test], axis=1)
# Build the hierarchy of the Grouped Time Series
stores = [i for i in stores_ts.columns]
items = [i for i in items_ts.columns]
store_items = col_names
# Exogenous features mapping
exog_store_items = {e: [v for v in exog_train_df.columns if v.startswith(e)] for e in store_items}
exog_stores = {e:[v for v in exog_train_df.columns if v.startswith(e)] for e in stores}
exog_items = {e:[v for v in exog_train_df.columns if v.find(e) != -1] for e in items}
exog_total = {'total':[v for v in exog_train_df.columns if v.find('FOURIER') != -1]}
# Merge all dictionaries
exog_to_merge = [exog_store_items, exog_stores, exog_items, exog_total]
exogenous = {k:v for x in exog_to_merge for k,v in x.items()}
# Build hierarchy
total = {'total': stores + items}
store_h = {k: [v for v in store_items if v.startswith(k)] for k in stores}
hierarchy = {**total, **store_h}
# Hierarchy tree automatically created by hts
ht = HierarchyTree.from_nodes(nodes=hierarchy, df=df, exogenous=exogenous)
# Instanciate the auto arima model using HTSRegressor
autoarima = HTSRegressor(model='auto_arima', D=1, m=7, seasonal=True, revision_method='OLS', n_jobs=12)
# Fit the model to the training df that includes time series and exog_train_df
# Set exogenous param to the previously built dictionary
model = autoarima.fit(df, hierarchy, exogenous=exogenous)
# Make predictions
# Set the exogenous_df param
predictions = model.predict(exogenous_df=exog_test_df, steps_ahead=365)
Other approaches I thought of and that I already implemented successfully for one series (for store 1 and item 1 for example) :
TBATS applied to each series independently inside a loop across all 500 time series
auto_arima (SARIMAX) with exogenous features (=Fourier terms to deal with the weekly and annual seasonalities) for each series independently + a loop across all 500 time series
What do you think of these approaches? Do you have other suggestions on how to scale ARIMA to multiple time series?
I also want to try LSTM but I'm new to data science and deep learning and do not know how to prepare the data. Should I keep the data in their original form (long format) and apply one hot encoding to train_data['store'] and train_data['item'] columns or should I start with the df I ended up with here?
I Hope this helped you in fixing the issue with exogenous regressors. To handle negative forecasts I would suggest you to try square root transformation.
Related
I have two dataframes: one comprising a large data set, allprice_df, with time price series for all stocks; and the other, init_df, comprising selective stocks and trade entry dates. I am trying to find the highest price for each ticker symbol and its associated date.
The following code works but it is time consuming, and I am wondering if there is a better, more Pythonic way to accomplish this.
# Initial call
init_df = init_df.assign(HighestHigh = lambda x:
highestHigh(x['DateIdentified'], x['Ticker'], allprice_df))
# HighestHigh function in lambda call
def highestHigh(date1,ticker,allp_df):
if date1.size == ticker.size:
temp_df = pd.DataFrame(columns = ['DateIdentified','Ticker'])
temp_df['DateIdentified'] = date1
temp_df['Ticker'] = ticker
else:
print("dates and tickers size mismatching")
sys.exit(1)
counter = itertools.count(0)
high_list = [getHigh(x,y,allp_df, next(counter)) for x, y in zip(temp_df['DateIdentified'],temp_df['Ticker'])]
return high_list
# Getting high for each ticker
def getHigh(dateidentified,ticker,allp_df, count):
print("trade %s" % count)
currDate = datetime.datetime.now().date()
allpm_df = allp_df.loc[((allp_df['Ticker']==ticker)&(allp_df['date']>dateidentified)&(allp_df['date']<=currDate)),['high','date']]
hh = allpm_df.iloc[:,0].max()
hd = allpm_df.loc[(allpm_df['high']==hh),'date']
hh = round(hh,2)
h_list = [hh,hd]
return h_list
# Split the list in to 2 columns one with price and the other with the corresponding date
init_df = split_columns(init_df,"HighestHigh")
# The function to split the list elements in to different columns
def split_columns(orig_df,col):
split_df = pd.DataFrame(orig_df[col].tolist(),columns=[col+"Mod", col+"Date"])
split_df[col+"Date"] = split_df[col+"Date"].apply(lambda x: x.squeeze())
orig_df = pd.concat([orig_df,split_df], axis=1)
orig_df = orig_df.drop(col,axis=1)
orig_df = orig_df.rename(columns={col+"Mod": col})
return orig_df
There are a couple of obvious solutions that would help reduce your runtime.
First, in your getHigh function, instead of using loc to get the date associated with the maximum value for high, use idxmax to get the index of the row associated with the high and then access that row:
hh, hd = allpm_df[allpm_df['high'].idxmax()]
This will replace two O(N) operations (finding the maximum in a list, and doing a list lookup using a comparison) with one O(N) operation and one O(1) operation.
Edit
In light of your information on the size of your dataframes, my best guess is that this line is probably where most of your time is being consumed:
allpm_df = allp_df.loc[((allp_df['Ticker']==ticker)&(allp_df['date']>dateidentified)&(allp_df['date']<=currDate)),['high','date']]
In order to make this faster, I would setup your data frame to include a multi-index when you first create the data frame:
index = pd.MultiIndex.from_arrays(arrays = [ticker_symbols, dates], names = ['Symbol', 'Date'])
allp_df = pd.Dataframe(data, index = index)
allp_df.index.sortlevel(level = 0, sort_remaining = True)
This should create a dataframe with a sorted, multi-level index associated with your ticker symbol and date. Doing this will reduce your search time tremendously. Once you do that, you should be able to access all the data associated with a ticker symbol and a given date-range by doing this:
allp_df[ticker, (dateidentified: currDate)]
which should return your data much more quickly. For more information on multi-indexing, check out this helpful Pandas tutorial.
I am trying to improve the performance of a current piece of code, whereby I loop through a dataframe (dataframe 'r') and find the average values from another dataframe (dataframe 'p') based on criteria.
I want to find the average of all values (column 'Val') from dataframe 'p' where (r.RefDate = p.RefDate) & (r.Item = p.Item) & (p.StartDate >= r.StartDate) & (p.EndDate <= r.EndDate)
Dummy data for this can be generated as per the below;
import pandas as pd
import numpy as np
from datetime import datetime
######### START CREATION OF DUMMY DATA ##########
rng = pd.date_range('2019-01-01', '2019-10-28')
daily_range = pd.date_range('2019-01-01','2019-12-31')
p = pd.DataFrame(columns=['RefDate','Item','StartDate','EndDate','Val'])
for item in ['A','B','C','D']:
for date in daily_range:
daily_p = pd.DataFrame({ 'RefDate': rng,
'Item':item,
'StartDate':date,
'EndDate':date,
'Val' : np.random.randint(0,100,len(rng))})
p = p.append(daily_p)
r = pd.DataFrame(columns=['RefDate','Item','PeriodStartDate','PeriodEndDate','AvgVal'])
for item in ['A','B','C','D']:
r1 = pd.DataFrame({ 'RefDate': rng,
'Item':item,
'PeriodStartDate':'2019-10-25',
'PeriodEndDate':'2019-10-31',#datetime(2019,10,31),
'AvgVal' : 0})
r = r.append(r1)
r.reset_index(drop=True,inplace=True)
######### END CREATION OF DUMMY DATA ##########
The piece of code I currently have calculating and would like to improve the performance of is as follows
for i in r.index:
avg_price = p['Val'].loc[((p['StartDate'] >= r.loc[i]['PeriodStartDate']) &
(p['EndDate'] <= r.loc[i]['PeriodEndDate']) &
(p['RefDate'] == r.loc[i]['RefDate']) &
(p['Item'] == r.loc[i]['Item']))].mean()
r['AvgVal'].loc[i] = avg_price
The first change is that generating r DataFrame, both PeriodStartDate and
PeriodEndDate are created as datetime, see the following fragment of your
initiation code, changed by me:
r1 = pd.DataFrame({'RefDate': rng, 'Item':item,
'PeriodStartDate': pd.to_datetime('2019-10-25'),
'PeriodEndDate': pd.to_datetime('2019-10-31'), 'AvgVal': 0})
To get better speed, I the set index in both DataFrames to RefDate and Item
(both columns compared on equality) and sorted by index:
p.set_index(['RefDate', 'Item'], inplace=True)
p.sort_index(inplace=True)
r.set_index(['RefDate', 'Item'], inplace=True)
r.sort_index(inplace=True)
This way, the access by index is significantly quicker.
Then I defined the following function computing the mean for rows
from p "related to" the current row from r:
def myMean(row):
pp = p.loc[row.name]
return pp[pp.StartDate.ge(row.PeriodStartDate) &
pp.EndDate.le(row.PeriodEndDate)].Val.mean()
And the only thing to do is to apply this function (to each row in r) and
save the result in AvgVal:
r.AvgVal = r.apply(myMean2, axis=1)
Using %timeit, I compared the execution time of the code proposed by EdH with mine
and got the result almost 10 times shorter.
Check on your own.
By using iterrows I managed to improve the performance, although still may be quicker ways.
for index, row in r.iterrows():
avg_price = p['Val'].loc[((p['StartDate'] >= row.PeriodStartDate) &
(p['EndDate'] <= row.PeriodEndDate) &
(p['RefDate'] == row.RefDate) &
(p['Item'] == row.Item))].mean()
r.loc[index, 'AvgVal'] = avg_price
I'm working with a relatively large dataset (approx 5m observations, made up of about 5.5k firms).
I needed to run OLS regressions with a 60 month rolling window for each firm. I noticed that the performance was insanely slow when I ran the following code:
for idx, sub_df in master_df.groupby("firm_id"):
# OLS code
However, when I first split my dataframe into about 5.5k dfs and then iterated over each of the dfs, the performance improved dramatically.
grouped_df = master_df.groupby("firm_id")
df_list = [group for group in grouped_df]
for df in df_list:
my_df = df[1]
# OLS code
I'm talking 1-2 weeks of time (24/7) to complete in the first version compared to 8-9 hours tops.
Can anyone please explain why splitting the master df into N smaller dfs and then iterating over each smaller df performs better than iterating over the same number of groups within the master df?
Thanks ever so much!
I'm unable to reproduce your observation. Here's some code that generates data and then times the direct and indirect methods separately. The time taken is very similar in either case.
Is it possible that you accidentally sorted the dataframe by the group key between the runs? Sorting by group key results in a noticeable difference in run time.
Otherwise, I'm beginning to think that there might be some other differences in your code. It would be great if you could post the full code.
import numpy as np
import pandas as pd
from datetime import datetime
def generate_data():
''' returns a Pandas DF with columns 'firm_id' and 'score' '''
# configuration
np.random.seed(22)
num_groups = 50000 # number of distinct groups in the DF
mean_group_length = 200 # how many records per group?
cov_group_length = 0.10 # throw in some variability in the num records per group
# simulate group lengths
stdv_group_length = mean_group_length * cov_group_length
group_lengths = np.random.normal(
loc=mean_group_length,
scale=stdv_group_length,
size=(num_groups,)).astype(int)
group_lengths[group_lengths <= 0] = mean_group_length
# final length of DF
total_length = sum(group_lengths)
# compute entries for group key column
firm_id_list = []
for i, l in enumerate(group_lengths):
firm_id_list.extend([(i + 1)] * l)
# construct the DF; data column is 'score' populated with Numpy's U[0, 1)
result_df = pd.DataFrame(data={
'firm_id': firm_id_list,
'score': np.random.rand(total_length)
})
# Optionally, shuffle or sort the DF by group keys
# ALTERNATIVE 1: (badly) unsorted df
result_df = result_df.sample(frac=1, random_state=13).reset_index(drop=True)
# ALTERNATIVE 2: sort by group key
# result_df.sort_values(by='firm_id', inplace=True)
return result_df
def time_method(df, method):
''' time 'method' with 'df' as its argument '''
t_start = datetime.now()
method(df)
t_final = datetime.now()
delta_t = t_final - t_start
print(f"Method '{method.__name__}' took {delta_t}.")
return
def process_direct(df):
''' direct for-loop over groupby object '''
for group, df in df.groupby('firm_id'):
m = df.score.mean()
s = df.score.std()
return
def process_indirect(df):
''' indirect method: generate groups first as list and then loop over list '''
grouped_df = df.groupby('firm_id')
group_list = [pair for pair in grouped_df]
for pair in group_list:
m = pair[1].score.mean()
s = pair[1].score.std()
df = generate_data()
time_method(df, process_direct)
time_method(df, process_indirect)
I know that a few posts have been made regarding how to output the unique values of a dataframe without reordering the data.
I have tried many times to implement these methods, however, I believe that the problem relates to how the dataframe in question has been defined.
Basically, I want to look into the dataframe named "C", and output the unique values into a new dataframe named "C1", without changing the order in which they are stored at the moment.
The line that I use currently is:
C1 = pd.DataFrame(np.unique(C))
However, this returns an ascending order list (while, I simply want the list order preserved only with duplicates removed).
Once again, I apologise to the advanced users who will look at my code and shake their heads -- I'm still learning! And, yes, I have tried numerous methods to solve this problem (redefining the C dataframe, converting the output to be a list etc), to no avail unfortunately, so this is my cry for help to the Python gods. I defined both C and C1 as dataframes, as I understand that these are pretty much the best datastructures to house data in, such that they can be recalled and used later, plus it is quite useful to name the columns without affecting the data contained in the dataframe).
Once again, your help would be much appreciated.
F0 = ('08/02/2018','08/02/2018',50)
F1 = ('08/02/2018','09/02/2018',52)
F2 = ('10/02/2018','11/02/2018',46)
F3 = ('12/02/2018','16/02/2018',55)
F4 = ('09/02/2018','28/02/2018',48)
F_mat = [[F0,F1,F2,F3,F4]]
F_test = pd.DataFrame(np.array(F_mat).reshape(5,3),columns=('startdate','enddate','price'))
#convert string dates into DateTime data type
F_test['startdate'] = pd.to_datetime(F_test['startdate'])
F_test['enddate'] = pd.to_datetime(F_test['enddate'])
#convert datetype to be datetime type for columns startdate and enddate
F['startdate'] = pd.to_datetime(F['startdate'])
F['enddate'] = pd.to_datetime(F['enddate'])
#create contract duration column
F['duration'] = (F['enddate'] - F['startdate']).dt.days + 1
#re-order the F matrix by column 'duration', ensure that the bootstrapping
#prioritises the shorter term contracts
F.sort_values(by=['duration'], ascending=[True])
# create prices P
P = pd.DataFrame()
for index, row in F.iterrows():
new_P_row = pd.Series()
for date in pd.date_range(row['startdate'], row['enddate']):
new_P_row[date] = row['price']
P = P.append(new_P_row, ignore_index=True)
P.fillna(0, inplace=True)
#create C matrix, which records the unique day prices across the observation interval
C = pd.DataFrame(np.zeros((1, intNbCalendarDays)))
C.columns = tempDateRange
#create the Repatriation matrix, which records the order in which contracts will be
#stored in the A matrix, which means that once results are generated
#from the linear solver, we know exactly which CalendarDays map to
#which columns in the results array
#this array contains numbers from 1 to NbContracts
R = pd.DataFrame(np.zeros((1, intNbCalendarDays)))
R.columns = tempDateRange
#define a zero filled matrix, P1, which will house the dominant daily prices
P1 = pd.DataFrame(np.zeros((intNbContracts, intNbCalendarDays)))
#rename columns of P1 to be the dates contained in matrix array D
P1.columns = tempDateRange
#create prices in correct rows in P
for i in list(range(0, intNbContracts)):
for j in list(range(0, intNbCalendarDays)):
if (P.iloc[i, j] != 0 and C.iloc[0,j] == 0) :
flUniqueCalendarMarker = P.iloc[i, j]
C.iloc[0,j] = flUniqueCalendarMarker
P1.iloc[i,j] = flUniqueCalendarMarker
R.iloc[0,j] = i
for k in list(range(j+1,intNbCalendarDays)):
if (C.iloc[0,k] == 0 and P.iloc[i,k] != 0):
C.iloc[0,k] = flUniqueCalendarMarker
P1.iloc[i,k] = flUniqueCalendarMarker
R.iloc[0,k] = i
elif (C.iloc[0,j] != 0 and P.iloc[i,j] != 0):
P1.iloc[i,j] = C.iloc[0,j]
#convert C dataframe into C_list, in prepataion for converting C_list
#into a unique, order preserved list
C_list = C.values.tolist()
#create C1 matrix, which records the unique day prices across unique days in the observation period
C1 = pd.DataFrame(np.unique(C))
Use DataFrame.duplicated() to check if your data-frame contains any duplicate or not.
If yes then you can try DataFrame.drop_duplicate() .
I have a dataframe of 600 000 x/y points with date-time information, along another field 'status', with extra descriptive information
My objective is, for each record:
sum column 'status' by records that are within a certain spatial temporal buffer
the specific buffer is within t - 8 hours and < 100 meters
Currently I have the data in a pandas data frame.
I could, loop through the rows, and for each record, subset the dates of interest, then calculate a distances and restrict the selection further. However that would still be quite slow with so many records.
THIS TAKES 4.4 hours to run.
I can see that I could create a 3 dimensional kdtree with x, y, date as epoch time. However, I am not certain how to restrict the distances properly when incorporating dates and geographic distances.
Here is some reproducible code for you guys to test on:
Import
import numpy.random as npr
import numpy
import pandas as pd
from pandas import DataFrame, date_range
from datetime import datetime, timedelta
Create data
np.random.seed(111)
Function to generate test data
def CreateDataSet(Number=1):
Output = []
for i in range(Number):
# Create a date range with hour frequency
date = date_range(start='10/1/2012', end='10/31/2012', freq='H')
# Create long lat data
laty = npr.normal(4815862, 5000,size=len(date))
longx = npr.normal(687993, 5000,size=len(date))
# status of interest
status = [0,1]
# Make a random list of statuses
random_status = [status[npr.randint(low=0,high=len(status))] for i in range(len(date))]
# user pool
user = ['sally','derik','james','bob','ryan','chris']
# Make a random list of users
random_user = [user[npr.randint(low=0,high=len(user))] for i in range(len(date))]
Output.extend(zip(random_user, random_status, date, longx, laty))
return pd.DataFrame(Output, columns = ['user', 'status', 'date', 'long', 'lat'])
#Create data
data = CreateDataSet(3)
len(data)
#some time deltas
before = timedelta(hours = 8)
after = timedelta(minutes = 1)
Function to speed up
def work(df):
output = []
#loop through data index's
for i in range(0, len(df)):
l = []
#first we will filter out the data by date to have a smaller list to compute distances for
#create a mask to query all dates between range for date i
date_mask = (df['date'] >= df['date'].iloc[i]-before) & (df['date'] <= df['date'].iloc[i]+after)
#create a mask to query all users who are not user i (themselves)
user_mask = df['user']!=df['user'].iloc[i]
#apply masks
dists_to_check = df[date_mask & user_mask]
#for point i, create coordinate to calculate distances from
a = np.array((df['long'].iloc[i], df['lat'].iloc[i]))
#create array of distances to check on the masked data
b = np.array((dists_to_check['long'].values, dists_to_check['lat'].values))
#for j in the date queried data
for j in range(1, len(dists_to_check)):
#compute the ueclidean distance between point a and each point of b (the date masked data)
x = np.linalg.norm(a-np.array((b[0][j], b[1][j])))
#if the distance is within our range of interest append the index to a list
if x <=100:
l.append(j)
else:
pass
try:
#use the list of desired index's 'l' to query a final subset of the data
data = dists_to_check.iloc[l]
#summarize the column of interest then append to output list
output.append(data['status'].sum())
except IndexError, e:
output.append(0)
#print "There were no data to add"
return pd.DataFrame(output)
Run code and time it
start = datetime.now()
out = work(data)
print datetime.now() - start
Is there a way to do this query in a vectorized way? Or should I be chasing another technique.
<3
Here is what at least somewhat solves my problem. Since the loop can operate on different parts of the data independently, parallelization makes sense here.
using Ipython...
from IPython.parallel import Client
cli = Client()
cli.ids
cli = Client()
dview=cli[:]
with dview.sync_imports():
import numpy as np
import os
from datetime import timedelta
import pandas as pd
#We also need to add the time deltas and output list into the function as
#local variables as well as add the Ipython.parallel decorator
#dview.parallel(block=True)
def work(df):
before = timedelta(hours = 8)
after = timedelta(minutes = 1)
output = []
final time 1:17:54.910206, about 1/4 original time
I would still be very interested for anyone to suggest small speed improvements within the body of the function.