How to decode base64 to GIF in python? - python

I have a python flask-restful API, I am trying to add the feature to allow users to upload GIFs, the client will upload a base64-encoded GIF to the API for that, so on the API I need to be able to decode base64 to GIF and also be able to do operations on it such as resizing and compression then convert it to bytes
I tried to do with PIL like this:
img_bytes = BytesIO()
# I specified the duration to be 67 because I want the GIF to play at 15 FPS, 1000 / 15 = 66.66
self.image.save(img_bytes, append_images=self.frames[1:], format=self.format, save_all=True,
optimize=False, duration=67, loop=0)
img_bytes.seek(0)
The problem with that implementation is that I find a lot of distortion and black pixels in the GIFs and inconsistent framerate/animation speed, it's overall pretty bad and it makes a 75 KBs GIF be 1.8 MBs, any other solutions?

Try the code below. It works for me.
from PIL import Image
import base64
import os
myimagestring = "R0lGODlhkAGQAfcAAAAAAAAAMwAAZgAAmQAAzAAA/wArAAArMwArZgArmQArzAAr/wBVAABVMwBVZgBVmQBVzABV/wCAAACAMwCAZgCAmQCAzACA/wCqAACqMwCqZgCqmQCqzACq/wDVAADVMwDVZgDVmQDVzADV/wD/AAD/MwD/ZgD/mQD/zAD//zMAADMAMzMAZjMAmTMAzDMA/zMrADMrMzMrZjMrmTMrzDMr/zNVADNVMzNVZjNVmTNVzDNV/zOAADOAMzOAZjOAmTOAzDOA/zOqADOqMzOqZjOqmTOqzDOq/zPVADPVMzPVZjPVmTPVzDPV/zP/ADP/MzP/ZjP/mTP/zDP//2YAAGYAM2YAZmYAmWYAzGYA/2YrAGYrM2YrZmYrmWYrzGYr/2ZVAGZVM2ZVZmZVmWZVzGZV/2aAAGaAM2aAZmaAmWaAzGaA/2aqAGaqM2aqZmaqmWaqzGaq/2bVAGbVM2bVZmbVmWbVzGbV/2b/AGb/M2b/Zmb/mWb/zGb//5kAAJkAM5kAZpkAmZkAzJkA/5krAJkrM5krZpkrmZkrzJkr/5lVAJlVM5lVZplVmZlVzJlV/5mAAJmAM5mAZpmAmZmAzJmA/5mqAJmqM5mqZpmqmZmqzJmq/5nVAJnVM5nVZpnVmZnVzJnV/5n/AJn/M5n/Zpn/mZn/zJn//8wAAMwAM8wAZswAmcwAzMwA/8wrAMwrM8wrZswrmcwrzMwr/8xVAMxVM8xVZsxVmcxVzMxV/8yAAMyAM8yAZsyAmcyAzMyA/8yqAMyqM8yqZsyqmcyqzMyq/8zVAMzVM8zVZszVmczVzMzV/8z/AMz/M8z/Zsz/mcz/zMz///8AAP8AM/8AZv8Amf8AzP8A//8rAP8rM/8rZv8rmf8rzP8r//9VAP9VM/9VZv9Vmf9VzP9V//+AAP+AM/+AZv+Amf+AzP+A//+qAP+qM/+qZv+qmf+qzP+q///VAP/VM//VZv/Vmf/VzP/V////AP//M///Zv//mf//zP///wAAAAAAAAAAAAAAACH5BAEAAPwALAAAAACQAZABAAj/AAEIHEiwoMGDCBMqXMiwocOHECNKnJhQhaJ16tSRy6gx48aOID+K9EgyZMmRJlOiXHmypUqXLF/KjEkTps2ZN2NS3Mmzp8+fQIMuVBFJXbmONXEqTco0p9OlT5tCnSq1KkmhWLNq3co1Iq1g6oBtHIu0LNmzZtOiXau2Ldu3buPCnSu3Lt27dtN23cu3r1+JKoiuG4m3cF7DiA8rTsx4seO3fyNLnuy3FjCMR6lG3ay5s1XPnD+LvpmSsunTqHeqgDRYbFnQsEfHDk17tm2WZE2m3s27N0EVAL5izN24+OPjxpMjXw63re/n0CkT7ahruEnl2Jlrz859udzo4MPv/xVO+LXs87XR307PXibIqeLjy/cZOBJG1+XV62+/f73/mo11NN+ABHoVDDmDpbXdgt01yOCC5pFEnITqFGjhhQdNl+B1FDro4YMfhhghWhyeheGJGK52FDAa4RcWWa61CJIuJMVIDosf0diRjThmpONGPM5Yo0g9qvPjix4VeWSQOQ6ZpJA7EgklkFI2GSVHS8JI5JaloehleAYMBNwuYJGDYH7/8admmmw2NWFcCk745ZzxqWgdhSWCqKeIfCoGJ5okkkXnoNFNh195f+6paJ+MdjgiVCYSKilvFh1VTo+AttTfpmtyCtt7iLr50pEVTmrqZAEAMCZYHOKUaZudxv8Kq2HeoXXqrZNZhFGCxuXZ6K+LPtpqoMNqqhuuyPYlGI1n+jilkU5SmSRZzLZILVIuVnvjtWNliy231lL3rbjdgrstueFupK233Y4rrbokHSlvW2Yla29XFqnTWpyPvurpv7LK9lKoxU6IUrVd3qtwUKviSWymbwIM68S4DWxsxQX7KuDCHE8U5m+LGEWvwU4Ba/KDfkIsLMEjdewyT6utg+OdGSd68s21RpiXxmzl+fLPgF10FLz89oyxxEgHzNHRjrpHrM5r2Vgq0FQPBQCZSNKlcb8UK71exDzvDHbF+VVttkL5bniWkkJaCW+5T8L9drrQyl033euayy7e7t5afe7cfu8N7ZUyNmk43YLrdPbiAqWqqn0dZaayvw6HjfOHNjtKOcmca8z45wKpCBapTxNcNL9dpw5q5RmjWSzUKrnYMuhUf6zq1RI+rPnpY3udtOWok8y11kaX/zw17WbrCozkNpXOOtnBNprn1sKDbTHwbCG/uGBEF+86y7xHr2fwmVfvWNgvaX+2RcFY1zmAwMOe+merD288+KM53/fx6r88po93Olfh+Ga3GA2ue3c7IJIGqEAmOYtwN3rW3v4WuLYR0Fl2m1cG++ai1vGvfy5bzS7cl7LmhU98ASqeB68HP9BwyXwgpJoKdiEhqbkqfta7XKJ2970Sds6HuytLDBdmu9AtgoYHol7lVOi9+dFGJPDTXxSbxsSLPetYQ+wYcKrTEV5ZsYevI57vNqO7HCpRd5Aq38iy6D9FtE9206vi+1yCQrFR8Y7k6x2tzDhFNi7McTO0Xx6VGP+nOZ7MfmJEIx/juDLe+VGLiwBLEmOCsErGC1sWFCAFXeTABlbpgdJiYJbERcpQRhBuiNNSKSt4OAVq8I6keiTHYsYWbfHwhtB73hgthr8bLjGIikRkzTYiy4XpSl9A4uUXcblMHaIPjGMBHwsbGRMGwqWY9gKOYFxTDmjqMpHhw5n89og9RuJFI5RDCjZvVUQVhExtwmSaNJnmxFs2R5rkC+M4f+m216wzm6xJYC+bGM99zkqfyqxLQYNZxl8K8Z/J0sUIM5fQOTJTes5jqAnTKaofevQqEL1VfQBYIgdqUnA6Chff0EXBvLF0gjxSJeBcOsCWWtCT6ArcJ3Ha0Ej/hfRWEiXhFE9nns3VTz1H9SD0pKjQydlRZ7H8qaRSVZ/hYMpvjHymCUf2RDUuFY/3VKaotmbLa0r1VLTg4iK/KlaK9kqPxoLdUAdqxRV+ZJ+zO6ukBAOtoYWznAY1JBDXSsiMZrWJ5oPiGT2i1y+1EwBBZeZh6yrHwG7VqQglJ1y/SlC1XPWhjR3UdPqWy55Slqv55Gwzz1dasGbWnm0dS2gJpSJ1THKZ3srpK115yX7G9KXXutK7FnhKUBKXbbrlILh0Oq3k5rSKH5ztifj6qiNN8ZwRA+dmBylY6NLTdITVJ0ukOyfg0AKJvROmeLm2tMu6tqLA5GdTByvXm47ESZbkLS/kNuLXuSX2jmON5nzVS06utja1p/Xq8PL7pbTZsIWLtKM3d8jRBKusnIiN63fxyGAMAdI+5pIwUdmq2u7GVr3szd9ie9r/QVt1eEBFVNVFyuTLDVM4vhhrZGE1jONbGtiuFi7Wi1OEu7EIlUMwXa5LZ9pbDNb0t6mEYJKbO1xO7tSSzkXgKylY35UMOUVu3JdGAzzNXgrSxB2Vr3aH+Vrr2u/LF9LQyqQW1kGa06H/TbNh6zvN4/yYZHAkB5wtpCsKznOjq9UsgLv82jWzVpd3fpbpBk2ghmmEhIH2c3qvq2PzPRXClmV0ZcOKJkpX+iK8ovPXasxjPjs1zZ+eL1NTzGM5mXo+o3UzXU2bMzSTEYhaLWisazmTW4PnY8AJDlj6y89OLjlrrHTySWXK02jbtJ+jVOkmP7ltKSs3bjW96MaMHZ0P/2NkxMuEb5+DiW5Pmxa8qP3oibcLQY2Qu05fQVBKEzPgC3uzhwCvNaLr3FA1WqzFPr63eDQk4HWvN8OGzTCt8xxqiZsYQuVRuHi+QlzPnnCuiEbwjgkqz05HGtQ4eXCENA4dbYJYZO0yM2YD/u8bMzWFfyXxoo2qSJbvJsbu1BfpTA7OFeP56K0FGL153uOdZtznz4lZk+NiZXAzV8tOuqC1c+tfrl+dtzGPMpNfOq4nJ/07UPeNO2XmV7zGu602pzVRd5xzcZdZripnSVTTTinWGLk8qob7zUMO703bGburxSGjAetivqfGvO0Li6YnPnkx/vXPA6em28/u3ZU7fv8304l4kOHt8PC6+5uTvbtW/yvuin0e9BexbZ3dfGYRH/jVBi+xmlntnaFn7/WSCZO5CWvRCZe84BHOZb8XjWFIRyzTxb0O8E8DeZnlxpZxqropMfXbrl+5bzSddnLDLn7vN/fJEtRb2bnM6Y9Mn/pFuTR7607yzKOc3ca3LM1dO2YfR5+Y7ycdkFAO1udxe1ZziHdyzMd0S7d8xUd5uheA0hF/YUdgi6dnH+dqopZu9edWqHdiFiOBuaII5bBsO3da7Sdy/LaCk8V5rWZxNwYnIhgZY2JVP4QwFDdrOmd3ZqSAMAiDbDYqCCZoM8gVQKcIl6F5ZeF7G5iAvLZhpNYvgo0GW06FgyVRVqBVhHzBPZcXNdxWdaIULcylbdy3fl4Xftz3QscVXEzWSpbkhon/dhNa6BdBx3b8J3B0FXe592N4mHl3hn/CBihXNYddQVWQdVtk1m50d3vLV1Qo+HbI14f5B1fjRohcoSsFaBbQp4iFZ3suRH9pBIVKRXhGZ4l7MVr8pWqGJ3pWQXyJZ2O4F4hEl4FrZYqXCFkTlUNpiHrbNWq8CGQ/+IigBnEn9CNwBBK2eImQo2t9+Iku+IAfJVi1p3n9lxJpcYwflYxBEWO0cBkFRhhTNnZVxobQNkrb94VcEoarFI7lKIbzskrrUnd6oY1YUVXyt2u1926jp3iGV0KsNoyH94JXRYT0iBW7wEXYp0efJYoO+BqcuHudh3sS6YdR+CYFKRSBEVAH/+N8AUkvd2dU8oiBKhh3FXZov3eRQRFUWEhw/hc8M8dmLoh5mKeDeDKEFBJ444WSPWFuHrEOCbmJ0bhY64Vus6iAUwhfFyeNa6GTP2Fey+NqA/mLF7hEDKiBEgeKE+mL5IdJT8OUTQk5eWc8byhtu1g4bZgRYHhS4Pdt4zh+6jhcaPgsY6lAolcvXukTQVWRD/eR7+GPp3d/FhiJQhmJ/iI1dykRyPY4HMFsdMGM+4cblIh4FMeHjAhy3LWAL3iYMHNeYvZronhhkCiVQXmATXiCOpcbEJiFmhkRqJiPsGVyb2eVSLd5XUiFHCiaf2hvq0kRtSBJbKGKHEmM+FibpP9XkoJnf0Y3FwiHErsJGLSUET4ZX9M4iRC5lyx4mYznXqjzjisBnM05EcIRb9h4QD1SLdUSI+aJLuk5QOipnoRjjO8pXPhRnugyn27TI+05N/aZLvSZgfzynRAxUuw3iqHZj48pjDJZnKmZXrRpgSEBoBHRm8hEYFEphaz4Xg9onbR4h2tGmhyCXxCaEMIXOn53lKxnoFO5f8kpWdhJZp34hBISog1RfdCmYJeZldUJcrCYm7qnhFo5PTI6o0XBX+vXjNcpkqsIgo7GdDz6cEUScEHaEMJhQOWxkkOpe74YkrKZg48odyoDnMsJUlGKEFUVYtfxpEGYNJ/5ikbapFo8CmyNN6YI0Y0kZHDPxo7PlqdruUHwyJVhWEDUtlvx6Fvp+H9blZDRJaeqwj1PmXw5iqEU2VUXWpdBiXFa/ypbigoAMQYAlhFATTeSp1lxDbmXN0qKsamXSpGpGaKRLSqJFmqa+kd5pceXSiGr/edTqho6V0ND0VmlJVWZzYeVHgijxJoyKmowFapJiaqoUrcRXoSBTIoSkrWjPuqfO8hWLRiVAaebuSomA0hjTGhomHlm/saXx4ebLBlsZvKQZ6eaivphtlkT2pdA5shbfQqoUqY3hQpl5bd15OhsN4WopapO3SomJCh7cTVyt7mtrhiR8jU9tCqZ0slt9ZYbBXs71EWcnjiZ9Faaepldt+mxMmGlvpir3PhGExKuaEqJ00mSkJpQCoaPsCZvlHOxizqkIqOwt3egWPqL9YeaJf/npbDKkqNmswJBHtL2mif6gWkKk61nmxtYoO6FKMy4dwU7WuNZsU06mqeqrjapUTY5mHElsDVrsyrwFZaieKW0n3fDtunZPfgpN/1ZXPO5tu4ZSsZ4OG97N3nLn2HXtwOalBRitHylh5XVsrL2aB7KeuoWqoTpkKV2tUd7GVaopIqYRk07rVs7igj4gknrpyExngXLk/mBjSvrqm8lrBtarJ07nEtLPCb7GweJGXR5gtbKpm7KkArarizYiy3pemYbUIgarfM2tZoBto87kxxZmz7YPEaLi54KeKWrtrtLoPr4uJ24OjUXtRS7SnazrGM6UpETgx0onPFKlIDJsZT8ybw4+mZGy5kChbtwWIF3+q/f55bXZnbrqEpkyJb2Cpf2pTM7ZrYZq7HYq7nQ+LKmox2bW67AKZgEebF0Op5697Avipn62Hzly4PBeZz3dZmE+3LMY6Ujoq1GN5LHGYpXyr1Su74mYaWqeoTrUIBvQns/RKrSWpW+C4jH2qpiS41y2K0B4HJlEaYSa3mK5oqaK4vXKrW+esF5dbUXkYSn97QaLHAue72gKpuN+1dkW4ndyoUSa4VSQnaECm42lWXtKFz0ekn5SmU4dUHFlcYIFKa4JDuEi2oqd6Zc68GhuXpcHIzperiELHIhPL4Zirwa6MeM+MOV+pK5GyFk/4x2YXy0kTfJtweU9BWs9HXAX5u5CYwTh5wZ12i+r4WUxhMSicx7nlyuBFW5JIOF3Kqo7TTF6IRwmJuHgpygNXmuxslpK7qkxhLCCULKiPHAu1eqa6pYiavIRcegPbg2O0S47/Qj1bOQwASwfarGY6mW7aLGack2+Ip+5MeOmbbFAJirhqgLrKK+pWPECtK11XsW7izPG/qPHYLMxZPH65C2uem0vhuYsZma2cm5CNrIwHuxhoK/Oweczfux+0izotp5f9y5S2gehMsajMlestyA0ey5Ae3RSuu1gGjDfGwTsaurWEMj8KSdSIycP5vMS9uQJpmivJOszmG2ioAgYf+DyU8LiMAYkE4oto880sIMxrmasRJdxiq0Zd3XxhtUzv4bzmbIv3QMbU+NZaYUq27Bz6Pz06XpcCj8l5castX4jadLemZbZDB30dCqQCK71ECWeoemvGRt0PwCogo9Yzvimm9Nk6H6kDzTw9XKy3jh0OmsqvDKKzX9oTjsxC1LjNbIrkB8rri81b0TwwbBcSYdy3Yt1oNs1j+tyE3byr87j5WcscyTsiBtuUSryh0Z2qqVMzbtqA9qtJHFs2xcE9nmzU4G1cZ1hn46xyglhvyKXOd4r9ZUd4hKwPFnS5fd2hm8y727vBDdwq1rXBj4vOc1ob4cXyRclaGmetU9qwfX/NfyQ8zhpobYmcKOqmiw+d1KeXRig6atQ7gcx2zrixY2kt1+CdP/fa6u3cEV49OJndQAUBQ0zMoQu8ofHWvO6IFZzDWOqUyGqdliIlGo7F9UacU4pyhbusVBTdLIKMShs1/PCqmTXEP2e37R19tlSdzpZ3XcCdxgJ8cxPq9N/bvPO7uu0bere7la7MxQG4WIa5xTSJoHnqnaxKpcRcGaYscQbKpAHdNynd3ECMvoxt28qsVCK3Pnu4eDx75GmYi6l2nOjREsvaavYeAsjM8hjr6k6Gs4p6P/GfG8nXrUG+yyhtvMsznfiywVnc1qGX1ukUk31OvH2ZmkSTzngFwYUtPRBJuptdzPrnGMJg26lFTVbAxTM17H5AjjATvcwt3p6Gh1360zCq2YR/bZ013mfm3BE2urvWbUGobH73sgewysn9yjuzzgci2qc13XYDO6oTNRKU5sd0ayXgvrs93E+x2zi1bhWkPNlNvmA3687QXhkg2SDNuSXdzH4Ogzq65W3g3ug9ftxsvoU0nQL9nYA1qkNZHH7ePTvCTOpbywn5ro41PF133owpTSx95e4fqoaKLVY0jc6odta/nG2yeXZvhtUUY3Mgs71Hwg8CTNaKHlJmq5qIzA/z5bvJV90H1Y6Fj1qiEttKrryvJ7hyqfdGk9dZgquRyX8ROtiV7O8khqvHBavC/toiWu0C/XLD3b8SO9UAZN0QJOkz0tF1k78xfbqfHrhUV5TzMbq98e694erJgNqU+nzk0evU5DIc8G8EZO2Fzqwu/d7t9+zoEi8KoygAs+XMyMovhL1XwKwMBl6i6O7/n79/OK8JLu4Fh0tQoetJrexXidwHb+7dRKnRWtOaebx5ciMl+8rtVN2mDOu+7ewHFdEmR+koZfp+D44Gsz38Sb+soMyli8aazt+GIqxfqiyYGdY6jv7AhFvj4P66tE2V+P4GJM+rN+6LAP1s/00S8dyf8NtW8RonJWW7DCkekbCRcd7fYhP8+1PeFnH4eMxOyoTcu/EX+RfT8n8dTCja/i2I4M721n/JbqT5YUm393ht8YPzfMPhLWH+RPs6AeHvoAoY6cQIIDCRZEaFChuoMDHTJ8uDAiMIkQ1QHAmFHjRo4dPX4EGVLkSJIlTZ5EmZJjAIwqIq1TR9FiQ4sVH9KsiDDhTJoNbdacmTNiUKA4dw5daHSnUaRMjxIVqlLqVKpVrV7FClIFAFrByulMSk4mWLIPdZWFKvCn0LRDl95c+9RpU7Y9f74lirdiVr59/f4FbNIlQ3Vf6RYVezesXLiI9ZKdC7QpZMV54x6+SfAszrFIbhfDDRxa9GjSKnV57fzUM9rJlyXbZc34terZjV3XbV1WZuXDCEv/Bh5ctIrB61bDbqzZMV7Zth0vbm4Z+evkbKHzbqvu7PWY/26FfwcfvqQBjrR2WdzsGm1sg9sFAjuYXjvhxMqVty/YGT5++wPdz3dov/fiI/A+hv5zT6z8HtpNNqMShE08CSekUCPiXprPOITki8yt/xTsbTXnRqSONhJNLFGpEGtLS0UUyakwRhm/6wqm3CaqLrscH2POOukokw63Dh3MzSkUD4pwRiWXBGywHLkz8DjMSiRRRPaeO9I52LaUkkoWVbyLSTHHtEqFrtRZp0H1dmSzxc+4BNJK2qbLss455UQqNR/J5LPPkVja6iUr+Rv0TiLjjA3RNm8MEkg7nzwQ0ShT87NSSztSQRGYgjEr0dz07DG6QteDFMoptSzyTbYaJP/wxJ8uhfXSwQxr1NFUIdLPwN0EHMu9zeZ7Dz//cO1v1wAJ6pXYgXbVNUBhAQS2PmkNZTSsWK9lkryWuAqmuyF1g/TDUA19cchCT13OVTfT/bIygrCFV0yXbLSxIQE3VDTaKw+dcro2D6VzVHSrvFJVgeJFeEYVFkETQjxTNNVfSblDtV2JBw71TYnhRLbfhD+mUAVI6tX3MYP7jVhgLLHrMmJbTfZyZXL3Arlm8BZOk9ZqsXSxXIMjq/M2UfM1clGhU8N3IZuX/m0rkWESSMPPBLwLQphL9bLiomuNa99bp2ww2W9fZbpsv7TVqKuvOFzRWZnHVZni7AD+F9J8U6b/b+KYBzK77yYHIzVFuPMzEFrDE6S6QcQ77Q/aaeVbvHEECXd7wGPdlojgt5B+yG/P+8p0nXXSu0m+n9G9OOMfW0aSYLmF7HrnrTWe7HPbqWIJgHkhgppRq/NE9lEWhYYYInfX9Hlulh+Mbqfbn6eKFmDK2a0+ulOHU/ZFA2b3a46J9+xe2t9uDHrzT7qQZNj3Nvfl5THGGOjYXw68bXs1TvB8/UkSuZw0YzMdWdT0PfJtLXvrwh7yzjW0jnVveDPZXwQ3gjbdRQIiOtPRTALYPvudTnUu8t72evY6Ew3QR02RYAo7ojb4GFCB9JNP2BSiOPRQLlgNHNakWnVDy/Hw13E7dBwNXXay+xFFhUd0mgWNs6yKqWtq81vR4FCHPJilDm9TdIy4QHNELp6pYDUkom1Y1aXrJeeAJHzf3QY3HS0+kIsqTJ+CMOjCnYiNdURsX/Lkty4RXtGE1AJhTd54xBqtp41au+MeGYjIAmJxaFFMCtsQyKiLDFJ/uXNSlsTntRECUnWu++D2nLgx39FmjCWyJPQoqLszjc4inGue9iAzu+LR74S0XB/3sLalRVYylfqb186qQ7UMemhByrohE5EZxE5hjpnIBFEyvaVMak4ziHnM086I/3mwX5pvK9xyZRkDR0BFCm2IXGNXIBfIOCHpsiY066Y3LcgQWpVrJw5bJvzGVszkPcyRZhxfP4vyH5zE83yho147c3mqU5KydeM8Jy7TiaflbVBuRzKoPGsCqsbgEyx/7KREb6nPPY5UcCQC1dW+mFHoha5b9WzMANXZKHPyDJKrKx4UuaeWT0qGmAuRZJJYaja0bWUXGvKpLD0IvpzSFJAdbKqn2NdEjn60IUO9XaaAARNdsO6LYqwL5Gx4uGMqs4f6mlwDfShDXM2wmT2cFizttj4UYrVvmDxq3cjCIUlWRlxSRWMvQ+pP5bFPmk2cnV0/t7Ct6qJeN9UpRHkESv8CgpKSUKVj0GTTV4Yo1m9bcazMsEhY73mSpCir5fiEKUU+Bs6zn1UEaqoJG7nmpY2cVVcV8fZQi6GWhD0J4AJVyrfXmg1wUUujQOc32d7G8qnuVBmKYPnXNiKnuCBbJUKPIqC/9hGno9XJGhHLyIcNN4FX+hU733XdpRm1WyXDWg6HxVSdpIdXlfOVgfI7X2iJDVr2vdw0kyVfZpk1uIWNb23Yy7RMoal+M6VMVZPLyMr2MpFqfHD4Zlq+BdtsXtuRWiOd8rvtBrS84B0lHukr3LPabzod9rCmkBq3Sdb4gQkOIXRTy9rD9DWNbn0KjBMGKADsooWHBMofKRtNni7/T6r8mqg7M3vRzFCYjAYRMshCR44QO9mDQOPkrYgWv3Va8YyhVCNxsxwrCs5rkyY272ltimDJ6i2widQwXCBLE0qtGWFb1pDpuGvKyu1UuJZ133OpeMWs9ezA1R2Kn+PlXt7dFK5BAbK70spfsgb4mfLVFw116MzIgVqsZ0apl7kpaWw1OJzjraJUSTxXh+q4woMV1U9tG2a5sBpeu0PsAQuSnAMH8pGNpqtEZ/ZA5j15Ik7xNbx24djafvGr/BSsXn0L2PP66JQ55l60YeW0kRGkHEj2dGt0PWVbXnu35HVgma2MYYmI20+r1MVRH2rSWh+a3lHmtWo5yVp3H9uXWvbmE6AAh0+L7hMv3S24PldrT52qWsyRTMsAEQ6rWpxnxszOs26fgrixxpBBMyyQWa0XTZbfy+TLnFyAp5VomVP84Bvn09OIlFL7BRXlAheptV0M3n7TBEKcBf/u6nDup620ctaMgWXE0elVFTfX5v+catYJtnSmCypqPDZsjhHtb3Yzp+i3RPqFWcb1Pi0MTTJJ77IX41Ez67WTwRa7sjVH4wznhe1LavPIMseup/tVnKutqXJFDvRbMu+Fkf77mFwa3pXrrd2Vx/UuE3zroC9ZrZgtduUjz6Qkmtt4Gy7rwJsC4B4OOFoFfj2hYG+sSPHX9XaE/YErUm2If3vVo19SISFeOZdpNsWLv3GjmcvUHyu6Z8CfESa9vufLNFQx21yuv0nbWkv7iJxhNBf0l+TqsQhb7FU1Mx3hjB3JLpozV6/wYsSvMGAXRoFvPrPwjE3rw4sY/Kg1ugz/gqj5k5BVAoB8SxMggz9u0z3zirN/IyyH05gokTuYIUAZAZyfiLpnGzqAUyo0a7wXojmRU5F1w62CuMAYCR11OA+taTjNq7PLMj+Hiqzj2x4lCzhr4pAUnJAk6rIF/Lnaa5yfILEclDcIOz74WwyeSz6y4MEKcTqnOsLU+SPXcw8rVKv98pbY6yH7KhbMGTQDgyZ+igv0MwjfeEIJqb8QQzWtszG3QL7v2zGForPu66m9SUM1hARy6BZQe5IWygkOirelGEEyyzqbA7tkOx40zMPgUDgMOS2hqIsd6hepS7MHhMHtKxqZsriba0TRaDNF8B9ObCvsETrlcb8Q/K6p/xszpsA+38MhbsOyT/yODEQToLqYn5II7IOyGVw+bKMyVpTF5PuZNqJF8KgRkII3YHGczJPAnso+5cO65ovG0mGXYwSO0oMpZNsn4hs1vatAaoSyVEw5BxrCF8FG4fAi/noTJlwPZyQw/VKr2wuwK8QvZMK9AKM9LsS866gtqoOgdCyNOKKIj/u/pjLEecM6PWI8JMSmQqQSgQSOQuK3qruyKKOxg4y/Y6NDqALAjrIIiRzIearGuyspWnrG3AI/lRJE72oxDYolkQSMNsu3hmEN35sWOIM0hrS6xFsolIQOEvOotwJINZNJv5C+xypF5NhAG/ItXpSybbOwQSw4aDb8LiaEkaMMDNA6D045xadgwunyKeOjE3GqSnizCaisKfXQytAoDjizSuqzGAeMLs/jNUO7Hrz/ZMS29ItM+QocnDhtC8fEKbkaKhyxIjXD5LRN+7Qt3B58gipx4csmgUTj2CQzdEi0LKeHpMP2W0VDxDVSDLLJ7EuG6UPpMqkatLzAlELTwsQak0G5pAnSBJ0DZMOlEsKoS7tAKryNPDE3XMRhBKt8KhznoM2qyK5F6BZXEkcgJMVd4kmBu0j1g5lTUkZuW4rj5IunMYg50kwgcibcjMqomrdxFK1YXL/Z6DvtzIrQScAHu0O804/H60mpQ7FVFES9EIpTYs+rMCqczKI5BEaTSRwFZLJSuyZCIatYZCt2xMpjok7szMr+rAqccbDKA0wyHEGTvDY5FEwO/U2W3Dug/6DQqcAkwcPBbhPAoaTLYexG4DTJJZOwpQyjEp2Kb6qRUnHHk/s3Npqz39Q+RByV0Gsta0rL4/BEG0WfeSqM/HsrzyTLGJTG8bS1ugS5zQQLo1TSkaDJvNK1IN1FZ6LSEbXDVgRK//tFPKPEJN1S/oHEXmS/1BQwvGMuxSPH+5xR9VpEgGpTqdAFalsI3mtN9li325hPGiXMZ0GrchQiacoVBZ2L+yrS8ESlPhWMCqIXiZtK2LSq37rPlNRQ2RyUHWUKS0WJheEy6ys6w7GNFVPC+DzJ1eTUJFTFpDBV9Cm3Z1HUJzpPVtWRphSvS3zRbbtOA2JRA02IWxUMTfHKKv+BRb7jv4RMRPysuod0vs4LSWUNiaSstDb8xRy8NY30yR2jm+fcqC8TI53Q1o8IxcIoP0gy15V70DJDvmo9SHuVjWclxplaV5GgNKvEyx4jClVdTKc8VFBr1LgKwsZEzDZENKccoX71V02hFcjkxotDU+osSh2bzrDAP4BSy+HhRaWRWK2Yp+mRQz6Tzu0qwcCqO6rcPNDcNmuMuJL1iG86jW2kVIPD2KFAtzrtWDQT0SlNFCLFG5v9iONinZ81Vufas/5jPvgM2gh8WDicUKTdCBWoBU55tStdyT31QAGcWSd1ttdo1JMUTJZj03UNvHrxzrYoVJd7wGtdWVgL0ag/5QxjijgJw1pMgYRyOE2LtUHyfMPUIzlnelS4kttYRNBTi1kN9dCA7FsLIUmngo0TbFno2qSwk1rOVUnzZLTe/3Seyc2Ireg4dWjWpWjAJ2s44QE3zwta1JstTVWvNcUL0gWAE1WfMaTXtYSvUrzbOZvKj+zch+Kcjy2sZMXdjKDIy2NFWntSRYzSn2RNbBpXWF3bkr2Q9/gKFBFc8wRYsmtI1Nk3iLG+QnXYNP093G1eIv2eQXMu9QWo6PTNnqnAZlw2V+TR9cLaogqm8BVNLWFaV5Fb4lvcampYeeXRglXTW/pHjoWI5WXerXpXcCTBTLRcTQU7orHYoZXL9ZFgTEWuOLW5P+rNTJPSyGVNK8M/eGxMtpRgrd2qrnFfDGbKFzXCYLVIboSMDva5wl1ecuMqhMDMhPjSH304nrBLMP8F2kk9T+/aWMgLYkjQN1DbHCB94n2N4qJwRsWTpr2a0vjSV9zl1oH4QbCd213VYTiV0zIdUuEdO6jAvr7NLkVIVfo0PLsTYzDMQnlcFj/eQi8UQ3bUWJkJYDrbS9KtPz3G35lDYRl0XtLy1CYWVljLYe8IYnAC0J7dqZ08QuhVYp4tF5l6QSMWuIPFqRDOJO9EX7vtO0I+J4/0xbRF20gBmg5+nxAGJ13tVAOqV+nI0ETD4SkUzwkz09WIYcBpSiHB5VpWSGcWW3YDW/HttgaN4BDeWi6T5QRr3Zt4YOINOlCFi03ezK/12uyVWOIoN+Say6nVX0q+17yZZGg24qT/e8nhnOe6mNxVUptGppIjhpMf7iBRUzmqSWBrPlxbtmJRcr7YtMAYZlJcjOTDOsRUa83ybOCWxDWIo0T4rRZVXoRNIZjvtVY8yVOMlGfXTVkS/mCiTQ4yFmI39mVa7dyxZbR4Lk4hhEhcKxddztHNRZ4GnF20OOlpvdN4I+e4EMrXDDWSxd3tpacSe144Jtz9w15xPMNpDlfgBdG32GcL0ZQW/F2Z1Zds+rydVrvnquRptWrhJFGI7p3eQl4oHdwgVGDJeSUUJuimrt+Fll+qBgtVVgSbtMuf3djIEF1QbrwcHquKGxfDHs0grky0bmyElAuBTulO/GUPdh+g7hDX/+OSTC4yQH1VoDxkbK1bAZVBcTHa1HPt6OW+2YzhXFVox+xVh6ZP2Q3lUTq7renmY65Om1DlXfA4sCmtQLVklavD83LrCMVN7hi+WT2Iry7dcjuL7i3JNkam7zWmd5OLWn7V9PzkCvTpKl5jH2pGfI1LHSzMb+RrR70zO3Xu4iFj3bHFmYLsthZVrq7ru3SOIuzlWF7u+kLBEBY++5TuiwxTECRXYq4fAA3WAGooJEPnfo0jdo5d4TrBiuDoD9TuVkRjBeTuUGnmApdg6Qmn3RxPEpbVlV3VjEwy2gWjHiUiVcaQe5pxHCkeCtfxqIXx4KTlVYFB8OThHIlhbtlGjv9M3qE4ZNiF2SwuIXRd8XJWPupuiXlyrMno7P3dYhck6gW2JraSpoTuRxA3c7t2tNfw6WDY3cyM5qf1Plemrxjt0DiGU9d66grqp1a+4NrY66xOb7I9y1lG4oBFYnh66pBGXU7bvt/yqN8G8r/2zKrJW6UowoxUk0Oub90RvLxhbty+WJ50TcxCvLR49MOEWAGPCMFehz6ki9qKbneGkw087WfuzKoVxrRkoB2EaNPz1utDz5x27G2+6gWMbqelvBZPZIlts10mphIHHgW/7XZT2c8728g5q4aNQ0geb2SG67BN6+rF6i92Scdm8HDPS7kRbHcFn7k29wUvc0gNRjnbj+38jXOIbLnDsHGoSXJcfF2kju/eFWW15lUMjsZgPfJamB64k2YRVVXa6HAaJ1veSFF/91W0POLeUOV1zjv0PnPnNWXQ1SxZLWksJORgXfbJ3domBVUhbZxwxCmC22ESuXRsizAe67P+LV2du+4AHBvcU3IqrznZu0f+ssdkktSU0dc0dj5dRkBwbD4XBhdLvHUa3GwrZXr+7dtHHMRlnHkLjigZr3etNvjpOGCj2PhRhOUb3j7M7W7eTRFo/8xRF0I1pXPw3XeC+Dh7eeVPn9fpfXPVO9Nh36NS/yabEyftOGZojCP1qSbLqg/5WArZoEetTF5keFbpct+cPsf3Bjf78OmaDUXz9SXd5uXAANRbfAVJWX7Jhn7Z/Ja3pA9DCKxwU/VfCxKL7tXv19BCsE9fTp5kc0Z51Zzvq2VfNm+Pe8fY5njQSwv+fWS9aIr+2X9nXp5GijPX2l9XpR3aQE/XjJZqKIl19aX2jhxQ4HbCGNYUPiTTDT6WQylWm577eI56aXfW5Knvf23Hxb8THAMIdeTUCSQ4sODBgQoNFmy4ECHEhBAnSlxokSFFjA8H6mJ40SHIiBqBgSQH4CTKlCpXsmzp8iXMmDJn0qxp8yZOlyoWqVtHzqdIkVYXJYYkujFoRY8iOw4ElvQjVI0lpxpVOhQiU3VZkVqlKvXqwZxix5Ita/YsWpgqIK1zSnDrQ4FupwrtqrRh1qR0o1blG9SrXnIkqxaVKtRtVK17FxcMCAA7"
myimagedata = base64.b64decode(myimagestring)
myimagefile= open("myimage.gif","wb")
myimagefile.write(myimagedata)
myimagefile.close()
myimageobject = PhotoImage(file="myimage.gif")
And here is a function to resize the image if needed:
from PIL import Image
def get_resized_img(img_path, picture_size):
img = Image.open(img_path)
width, height = picture_size # these are the MAX dimensions
picture_ratio = width / height
img_ratio = img.size[0] / img.size[1]
if picture_ratio >= 1: # the picture is wide
if img_ratio <= picture_ratio: # image is not wide enough
width_new = int(height * img_ratio)
size_new = width_new, height
else: # image is wider than picture
height_new = int(width / img_ratio)
size_new = width, height_new
else: # the picture is tall
if img_ratio >= picture_ratio: # image is not tall enough
height_new = int(width / img_ratio)
size_new = width, height_new
else: # image is taller than picture
width_new = int(height * img_ratio)
size_new = width_new, height
return img.resize(size_new, resample=Image.LANCZOS)

Related

Set up correctly variables in Python

So i'm trying to launch a Python script (originally available from here : https://github.com/dvdtho/python-photo-mosaic). Full code at the bottom of this post.
This basically creates a mosaic (from a source image), with the final image (mosaic) is composed of several other images (tiles).
My question is how I am supposed to fill the variables (the ones at line 212) in order to run the script (through Eclispe in my case).
Should I put directly something like this? (in my case the folder Desktop/tiles contains all the jpg files) :
tile_paths = glob.glob("C:/Users/Sylvia/Desktop/tiles/*.jpg") # I've added this line myself
def create_mosaic(source_path="C:\\Users\\Sylvia\\Desktop\\source\\1.jpg", target="C:\\Users\\Sylvia\\Desktop\\source\\result.jpg", tile_ratio=1920/800, tile_width=75, enlargement=8, reuse=True, color_mode='RGB', tile_paths=None, shuffle_first=30):
Last time i tried i got this error :
def create_mosaic(source, target, tile_ratio=1920/800, tile_width=75,
enlargement=8, reuse=True, color_mode='RGB', tile_paths,
shuffle_first=30):
^ SyntaxError: non-default argument follows default argument
I'm very lost, hopefully someone can help me.
Here's the code :
import time
import itertools
import random
import sys
import numpy as np
from PIL import Image
from skimage import img_as_float
from skimage.measure import compare_mse
def shuffle_first_items(lst, i):
if not i:
return lst
first_few = lst[:i]
remaining = lst[i:]
random.shuffle(first_few)
return first_few + remaining
def bound(low, high, value):
return max(low, min(high, value))
class ProgressCounter:
def __init__(self, total):
self.total = total
self.counter = 0
def update(self):
self.counter += 1
sys.stdout.write("Progress: %s%% %s" % (100 * self.counter / self.total, "\r"))
sys.stdout.flush()
def img_mse(im1, im2):
"""Calculates the root mean square error (RSME) between two images"""
try:
return compare_mse(img_as_float(im1), img_as_float(im2))
except ValueError:
print(f'RMS issue, Img1: {im1.size[0]} {im1.size[1]}, Img2: {im2.size[0]} {im2.size[1]}')
raise KeyboardInterrupt
def resize_box_aspect_crop_to_extent(img, target_aspect, centerpoint=None):
width = img.size[0]
height = img.size[1]
if not centerpoint:
centerpoint = (int(width / 2), int(height / 2))
requested_target_x = centerpoint[0]
requested_target_y = centerpoint[1]
aspect = width / float(height)
if aspect > target_aspect:
# Then crop the left and right edges:
new_width = int(target_aspect * height)
new_width_half = int(new_width/2)
target_x = bound(new_width_half, width-new_width_half, requested_target_x)
left = target_x - new_width_half
right = target_x + new_width_half
resize = (left, 0, right, height)
else:
# ... crop the top and bottom:
new_height = int(width / target_aspect)
new_height_half = int(new_height/2)
target_y = bound(new_height_half, height-new_height_half, requested_target_y)
top = target_y - new_height_half
bottom = target_y + new_height_half
resize = (0, top, width, bottom)
return resize
def aspect_crop_to_extent(img, target_aspect, centerpoint=None):
'''
Crop an image to the desired perspective at the maximum size available.
Centerpoint can be provided to focus the crop to one side or another -
eg just cut the left side off if interested in the right side.
target_aspect = width / float(height)
centerpoint = (width, height)
'''
resize = resize_box_aspect_crop_to_extent(img, target_aspect, centerpoint)
return img.crop(resize)
class Config:
def __init__(self, tile_ratio=1920/800, tile_width=50, enlargement=8, color_mode='RGB'):
self.tile_ratio = tile_ratio # 2.4
self.tile_width = tile_width # height/width of mosaic tiles in pixels
self.enlargement = enlargement # mosaic image will be this many times wider and taller than original
self.color_mode = color_mode # mosaic image will be this many times wider and taller than original
#property
def tile_height(self):
return int(self.tile_width / self.tile_ratio)
#property
def tile_size(self):
return self.tile_width, self.tile_height # PIL expects (width, height)
class TileBox:
"""
Container to import, process, hold, and compare all of the tiles
we have to make the mosaic with.
"""
def __init__(self, tile_paths, config):
self.config = config
self.tiles = list()
self.prepare_tiles_from_paths(tile_paths)
def __process_tile(self, tile_path):
with Image.open(tile_path) as i:
img = i.copy()
img = aspect_crop_to_extent(img, self.config.tile_ratio)
large_tile_img = img.resize(self.config.tile_size, Image.ANTIALIAS).convert(self.config.color_mode)
self.tiles.append(large_tile_img)
return True
def prepare_tiles_from_paths(self, tile_paths):
print('Reading tiles from provided list...')
progress = ProgressCounter(len(tile_paths))
for tile_path in tile_paths:
progress.update()
self.__process_tile(tile_path)
print('Processed tiles.')
return True
def best_tile_block_match(self, tile_block_original):
match_results = [img_mse(t, tile_block_original) for t in self.tiles]
best_fit_tile_index = np.argmin(match_results)
return best_fit_tile_index
def best_tile_from_block(self, tile_block_original, reuse=False):
if not self.tiles:
print('Ran out of images.')
raise KeyboardInterrupt
#start_time = time.time()
i = self.best_tile_block_match(tile_block_original)
#print("BLOCK MATCH took --- %s seconds ---" % (time.time() - start_time))
match = self.tiles[i].copy()
if not reuse:
del self.tiles[i]
return match
class SourceImage:
"""Processing original image - scaling and cropping as needed."""
def __init__(self, image_path, config):
print('Processing main image...')
self.image_path = image_path
self.config = config
with Image.open(self.image_path) as i:
img = i.copy()
w = img.size[0] * self.config.enlargement
h = img.size[1] * self.config.enlargement
large_img = img.resize((w, h), Image.ANTIALIAS)
w_diff = (w % self.config.tile_width)/2
h_diff = (h % self.config.tile_height)/2
# if necesary, crop the image slightly so we use a
# whole number of tiles horizontally and vertically
if w_diff or h_diff:
large_img = large_img.crop((w_diff, h_diff, w - w_diff, h - h_diff))
self.image = large_img.convert(self.config.color_mode)
print('Main image processed.')
class MosaicImage:
"""Holder for the mosaic"""
def __init__(self, original_img, target, config):
self.config = config
self.target = target
# Lets just start with original image, scaled up, instead of a blank one
self.image = original_img
# self.image = Image.new(original_img.mode, original_img.size)
self.x_tile_count = int(original_img.size[0] / self.config.tile_width)
self.y_tile_count = int(original_img.size[1] / self.config.tile_height)
self.total_tiles = self.x_tile_count * self.y_tile_count
print(f'Mosaic will be {self.x_tile_count:,} tiles wide and {self.y_tile_count:,} tiles high ({self.total_tiles:,} total).')
def add_tile(self, tile, coords):
"""Adds the provided image onto the mosiac at the provided coords."""
try:
self.image.paste(tile, coords)
except TypeError as e:
print('Maybe the tiles are not the right size. ' + str(e))
def save(self):
self.image.save(self.target)
def coords_from_middle(x_count, y_count, y_bias=1, shuffle_first=0, ):
'''
Lets start in the middle where we have more images.
And we dont get "lines" where the same-best images
get used at the start.
y_bias - if we are using non-square coords, we can
influence the order to be closer to the real middle.
If width is 2x height, y_bias should be 2.
shuffle_first - We can suffle the first X coords
so that we dont use all the same-best images
in the same spot - in the middle
from movies.mosaic_mem import coords_from_middle
x = 10
y = 10
coords_from_middle(x, y, y_bias=2, shuffle_first=0)
'''
x_mid = int(x_count/2)
y_mid = int(y_count/2)
coords = list(itertools.product(range(x_count), range(y_count)))
coords.sort(key=lambda c: abs(c[0]-x_mid)*y_bias + abs(c[1]-y_mid))
coords = shuffle_first_items(coords, shuffle_first)
return coords
def create_mosaic(source_path, target, tile_ratio=1920/800, tile_width=75, enlargement=8, reuse=True, color_mode='RGB', tile_paths=None, shuffle_first=30):
"""Forms an mosiac from an original image using the best
tiles provided. This reads, processes, and keeps in memory
a copy of the source image, and all the tiles while processing.
Arguments:
source_path -- filepath to the source image for the mosiac
target -- filepath to save the mosiac
tile_ratio -- height/width of mosaic tiles in pixels
tile_width -- width of mosaic tiles in pixels
enlargement -- mosaic image will be this many times wider and taller than the original
reuse -- Should we reuse tiles in the mosaic, or just use each tile once?
color_mode -- L for greyscale or RGB for color
tile_paths -- List of filepaths to your tiles
shuffle_first -- Mosiac will be filled out starting in the center for best effect. Also,
we will shuffle the order of assessment so that all of our best images aren't
necessarily in one spot.
"""
config = Config(
tile_ratio = tile_ratio, # height/width of mosaic tiles in pixels
tile_width = tile_width, # height/width of mosaic tiles in pixels
enlargement = enlargement, # the mosaic image will be this many times wider and taller than the original
color_mode = color_mode, # L for greyscale or RGB for color
)
# Pull in and Process Original Image
print('Setting Up Target image')
source_image = SourceImage(source_path, config)
# Setup Mosaic
mosaic = MosaicImage(source_image.image, target, config)
# Assest Tiles, and save if needed, returns directories where the small and large pictures are stored
print('Assessing Tiles')
tile_box = TileBox(tile_paths, config)
try:
progress = ProgressCounter(mosaic.total_tiles)
for x, y in coords_from_middle(mosaic.x_tile_count, mosaic.y_tile_count, y_bias=config.tile_ratio, shuffle_first=shuffle_first):
progress.update()
# Make a box for this sector
box_crop = (x * config.tile_width, y * config.tile_height, (x + 1) * config.tile_width, (y + 1) * config.tile_height)
# Get Original Image Data for this Sector
comparison_block = source_image.image.crop(box_crop)
# Get Best Image name that matches the Orig Sector image
tile_match = tile_box.best_tile_from_block(comparison_block, reuse=reuse)
# Add Best Match to Mosaic
mosaic.add_tile(tile_match, box_crop)
# Saving Every Sector
mosaic.save()
except KeyboardInterrupt:
print('\nStopping, saving partial image...')
finally:
mosaic.save()
It's ok, this is the new file i have to create in order for it to work :
create_mosaic(
subject="/path/to/source/image",
target="/path/to/output/image",
tile_paths=["/path/to/tile_1" , ... "/path/to/tile_n"],
tile_ratio=1920/800, # Crop tiles to be height/width ratio
tile_width=300, # Tile will be scaled
enlargement=20, # Mosiac will be this times larger than original
reuse=False, # Should tiles be used multiple times?
color_mode='L', # RGB (color) L (greyscale)
)
Problem resovled.

Getting error in CUPS "The page setup information was not valid." with printing image from python script

I try to print an image from python script on Debian 10 using cups:
import cups
def printImageLinux(image_name):
conn = cups.Connection()
printer = conn.getDefault()
conn.printFile(printer, image_name, 'suo_ticket', {})
Finally, the image went to print but I see canceling of printing and error in Cups user interface (localhost:631) with a message:
"The page setup information was not valid."
CUPS message screenshot
I suppose that I should make some preparation of image sending to print, but I didn't find any information about it.
I can print the same image from Windows using win32print module and code:
import os, sys
from win32 import win32api, win32print
from PIL import Image, ImageWin
def printImage(image_name):
# Constants for GetDeviceCaps
# HORZRES / VERTRES = printable area
HORZRES = 8
VERTRES = 10
# LOGPIXELS = dots per inch
LOGPIXELSX = 88
LOGPIXELSY = 90
# PHYSICALWIDTH/HEIGHT = total area
PHYSICALWIDTH = 110
PHYSICALHEIGHT = 111
# PHYSICALOFFSETX/Y = left / top margin
PHYSICALOFFSETX = 112
PHYSICALOFFSETY = 113
printer_name = win32print.GetDefaultPrinter ()
file_name = image_name
#
# You can only write a Device-independent bitmap
# directly to a Windows device context; therefore
# we need (for ease) to use the Python Imaging
# Library to manipulate the image.
#
# Create a device context from a named printer
# and assess the printable size of the paper.
#
hDC = win32ui.CreateDC ()
hDC.CreatePrinterDC (printer_name)
printable_area = hDC.GetDeviceCaps (HORZRES), hDC.GetDeviceCaps (VERTRES)
printer_size = hDC.GetDeviceCaps (PHYSICALWIDTH), hDC.GetDeviceCaps (PHYSICALHEIGHT)
printer_margins = hDC.GetDeviceCaps (PHYSICALOFFSETX), hDC.GetDeviceCaps (PHYSICALOFFSETY)
#
# Open the image, rotate it if it's wider than
# it is high, and work out how much to multiply
# each pixel by to get it as big as possible on
# the page without distorting.
#
bmp = Image.open (file_name)
if bmp.size[0] > bmp.size[1]:
bmp = bmp.rotate (90)
ratios = [1.0 * printable_area[0] / bmp.size[0], 1.0 * printable_area[1] / bmp.size[1]]
scale = min (ratios)
#
# Start the print job, and draw the bitmap to
# the printer device at the scaled size.
#
hDC.StartDoc (file_name)
hDC.StartPage ()
dib = ImageWin.Dib (bmp)
scaled_width, scaled_height = [int (scale * i) for i in bmp.size]
x1 = int ((printer_size[0] - scaled_width) / 2)
y1 = int ((printer_size[1] - scaled_height) / 2)
x2 = x1 + scaled_width
y2 = y1 + scaled_height
dib.draw (hDC.GetHandleOutput (), (x1, y1, x2, y2))
hDC.EndPage ()
hDC.EndDoc ()
hDC.DeleteDC ()
It works correctly.
Can I make the same operations with the image in Debian?
Thank you for any help!
Problem was solved with using PIL module. Working code:
import cups
from PIL import Image
def printImageLinux(image_name):
conn = cups.Connection()
printer = conn.getDefault()
image1 = Image.open(image_name)
im1 = image1.convert('RGB')
im1.save('temp_image.pdf')
conn.printFile(printer, 'temp_image.pdf', 'suo_ticket', {'fit-to-page':'True'})

Pixelation of PIL generated image

I am trying to generate PDF files from generated image. The generated PDF file has high level of pixelation on zooming in which is creating shadows during printing.
Image of zoomed in qrcode from PDF
Showing gray zone around qrcode modules and pixels (gray) which should be white otherwise. It does not matter if the desired_resolution matches or is lower than the resolution in which the original image was created.
What could be the issue and possible fixes?
qr_size_mm = 8
MM2PX_FACTOR = 94.48 # 2400 dpi
def create_code(prefix, number, postfix=None):
message = prefix + str(number)
message += postfix if postfix is not None else ""
series_qrcode = pyqrcode.create(message, error='H', version=3, mode='binary')
# print(series_qrcode.get_png_size())
binary = BytesIO()
desired_scale = int(qr_size_px / series_qrcode.get_png_size())
series_qrcode.png(binary, scale=desired_scale, module_color=(0, 0, 0),
background=(255, 255, 255), quiet_zone=3)
tmpIm = Image.open(binary).convert('RGB')
qr_dim = tmpIm.getbbox()
# print(qr_dim)
return tmpIm, qr_dim
qr_size_px = int(qr_size_mm * MM2PX_FACTOR)
# create A4 canvas
paper_width_mm = 210
paper_height_mm = 297
start_offset_mm = 10
start_offset_px = start_offset_mm * MM2PX_FACTOR
canvas_width_px = int(paper_width_mm * MM2PX_FACTOR)
canvas_height_px = int(paper_height_mm * MM2PX_FACTOR)
pil_paper_canvas = Image.new('RGB', (canvas_width_px, canvas_height_px), (255, 255, 255))
# desired pixels for 1200 dpi print
required_resolution_px = 94.48 # 47.244 # 23.622
required_resolution = 2400
print("Page dimension {page_width} {page_height} offset {offset}".format(page_width=canvas_width_px, page_height=canvas_height_px, offset=start_offset_px))
start_range = 10000100000000
for n in range(0, 5):
print("Generating ", start_range+n)
qr_image, qr_box = create_code("TLTR", number=start_range+n)
# qr_image.show()
print("qr_box ", qr_box)
qr_x = int(start_offset_px + ((n+1) * qr_box[2]))
qr_y = int(start_offset_px)
print("pasting at ", qr_x, qr_y)
pil_paper_canvas.paste(qr_image, (qr_x, qr_y))
# create a canvas just for current qrcode
one_qr_canvas = Image.new('RGB', (int(10*MM2PX_FACTOR), int(10*MM2PX_FACTOR)), (255, 255, 255))
qrXY = int((10*MM2PX_FACTOR - qr_box[2]) / 2)
one_qr_canvas.paste(qr_image, (qrXY, qrXY))
one_qr_canvas = one_qr_canvas.resize((int(qr_size_mm*required_resolution_px),
int(qr_size_mm*required_resolution_px)))
one_qr_canvas.save(form_full_path("TLTR"+str(start_range+n)+".pdf"), dpi=(required_resolution, required_resolution))
pil_paper_canvas = pil_paper_canvas.resize((int(paper_width_mm*required_resolution_px),
int(paper_height_mm*required_resolution_px)))
# pil_paper_canvas.show()
pil_paper_canvas.save(form_full_path("TLTR_qr_A4.pdf"), dpi=(required_resolution, required_resolution))
I incorporated 3 changes to fix/workaround the issue:
Instead of specifying fixed number for resizing, switched to scale (m*n).
Used lineType=cv2.LINE_AA for anti-aliasing as suggested by #physicalattraction
That still one issue unresolved which was that PIL generated PDF #96dpi which is not good for printing. Was unable to figure the option to use Print-ready PDF (PDF/A or something on those lines). Hence switched to generating PNG to generate high-quality qrcodes.

Unable to extract a word out of an image

I've written a script in python in combination with pytesseract to extract a word out of an image. There is only a single word TOOLS available in that image and that is what I'm after. Currently my below script is giving me wrong output which is WIS. What Can I do to get the text?
Link to that image
This is my script:
import requests, io, pytesseract
from PIL import Image
response = requests.get('http://facweb.cs.depaul.edu/sgrais/images/Type/Tools.jpg')
img = Image.open(io.BytesIO(response.content))
img = img.resize([100,100], Image.ANTIALIAS)
img = img.convert('L')
img = img.point(lambda x: 0 if x < 170 else 255)
imagetext = pytesseract.image_to_string(img)
print(imagetext)
# img.show()
This is the status of the modified image when I run the above script:
The output I'm having:
WIS
Expected output:
TOOLS
The key is matching image transformation to the tesseract abilities. Your main problem is that the font is not a usual one. All you need is
from PIL import Image, ImageEnhance, ImageFilter
response = requests.get('http://facweb.cs.depaul.edu/sgrais/images/Type/Tools.jpg')
img = Image.open(io.BytesIO(response.content))
# remove texture
enhancer = ImageEnhance.Color(img)
img = enhancer.enhance(0) # decolorize
img = img.point(lambda x: 0 if x < 250 else 255) # set threshold
img = img.resize([300, 100], Image.LANCZOS) # resize to remove noise
img = img.point(lambda x: 0 if x < 250 else 255) # get rid of remains of noise
# adjust font weight
img = img.filter(ImageFilter.MaxFilter(11)) # lighten the font ;)
imagetext = pytesseract.image_to_string(img)
print(imagetext)
And voila,
TOOLS
are recognized.
The key issue with your implementation lies here:
img = img.resize([100,100], Image.ANTIALIAS)
img = img.point(lambda x: 0 if x < 170 else 255)
You could try different sizes and different threshold:
import requests, io, pytesseract
from PIL import Image
from PIL import ImageFilter
response = requests.get('http://facweb.cs.depaul.edu/sgrais/images/Type/Tools.jpg')
img = Image.open(io.BytesIO(response.content))
filters = [
# ('nearest', Image.NEAREST),
('box', Image.BOX),
# ('bilinear', Image.BILINEAR),
# ('hamming', Image.HAMMING),
# ('bicubic', Image.BICUBIC),
('lanczos', Image.LANCZOS),
]
subtle_filters = [
# 'BLUR',
# 'CONTOUR',
'DETAIL',
'EDGE_ENHANCE',
'EDGE_ENHANCE_MORE',
# 'EMBOSS',
'FIND_EDGES',
'SHARPEN',
'SMOOTH',
'SMOOTH_MORE',
]
for name, filt in filters:
for subtle_filter_name in subtle_filters:
for s in range(220, 250, 10):
for threshold in range(250, 253, 1):
img_temp = img.copy()
img_temp.thumbnail([s,s], filt)
img_temp = img_temp.convert('L')
img_temp = img_temp.point(lambda x: 0 if x < threshold else 255)
img_temp = img_temp.filter(getattr(ImageFilter, subtle_filter_name))
imagetext = pytesseract.image_to_string(img_temp)
print(s, threshold, name, subtle_filter_name, imagetext)
with open('thumb%s_%s_%s_%s.jpg' % (s, threshold, name, subtle_filter_name), 'wb') as g:
img_temp.save(g)
and see what works for you.
I would suggest you resize your image while keeping the original ratio. You could also try some alternative to img_temp.convert('L')
Best so far: TWls and T0018
You can try to manipulate the image manually and see if you can find some edit that can provide a better output (for instance http://gimpchat.com/viewtopic.php?f=8&t=1193)
By knowing in advance the font you could probably achieve a better result too.

Resize/crop image encoded as base64 image string

in my case, there are 2 ways of getting image to resize/crop.
upload normal image file
giving base64 string data of image
in 1. case, resize and crop is working well:
f = Image.open(uploaded_image)
new_width, new_height = 1200, 630
wpercent = (new_width / float(f.size[0]))
hsize = int((float(f.size[1]) * float(wpercent)))
if f.mode != "RGB":
f = f.convert('RGB')
og_img = None
if f.size[0] < new_width:
#upscale
og_img = f.resize((new_width, hsize), Image.BICUBIC)
elif f.size[0] >= new_width:
#downscale
og_img = f.resize((new_width, hsize), Image.ANTIALIAS)
og_img = og_img.crop((0, 0, 1200, 630))
resized/cropped image:
in 2. case, the code is the same as above with slight change in:
base64_image = str(request.POST.get('base64_image')).split(',')[1]
imgfile = open('/'.join([settings.MEDIA_ROOT, 'test.png' ]), 'w+b')
imgfile.write(decodestring(base64_image))
imgfile.seek(0)
f = Image.open(imgfile)
#.. as above
but the resized/cropped image:
why is it in 2.case bad in quality and size? (black bottom part..) what am I doing wrong? am I reading the base64 string in wrong way?
I found a website which has many interesting things in it.It has 2(there are many) tools which maybe can help you.The 1th tool converts image to base64 and the 2th tool minifies the size of image (up to 70% save).
http://www.w3docs.com/tools/minimage/
http://www.w3docs.com/tools/image-base64

Categories