Related
This is probably a trivial question, but how do I parallelize the following loop in python?
# setup output lists
output1 = list()
output2 = list()
output3 = list()
for j in range(0, 10):
# calc individual parameter value
parameter = j * offset
# call the calculation
out1, out2, out3 = calc_stuff(parameter = parameter)
# put results into correct output list
output1.append(out1)
output2.append(out2)
output3.append(out3)
I know how to start single threads in Python but I don't know how to "collect" the results.
Multiple processes would be fine too - whatever is easiest for this case. I'm using currently Linux but the code should run on Windows and Mac as-well.
What's the easiest way to parallelize this code?
Using multiple threads on CPython won't give you better performance for pure-Python code due to the global interpreter lock (GIL). I suggest using the multiprocessing module instead:
pool = multiprocessing.Pool(4)
out1, out2, out3 = zip(*pool.map(calc_stuff, range(0, 10 * offset, offset)))
Note that this won't work in the interactive interpreter.
To avoid the usual FUD around the GIL: There wouldn't be any advantage to using threads for this example anyway. You want to use processes here, not threads, because they avoid a whole bunch of problems.
from joblib import Parallel, delayed
def process(i):
return i * i
results = Parallel(n_jobs=2)(delayed(process)(i) for i in range(10))
print(results) # prints [0, 1, 4, 9, 16, 25, 36, 49, 64, 81]
The above works beautifully on my machine (Ubuntu, package joblib was pre-installed, but can be installed via pip install joblib).
Taken from https://blog.dominodatalab.com/simple-parallelization/
Edit on Mar 31, 2021: On joblib, multiprocessing, threading and asyncio
joblib in the above code uses import multiprocessing under the hood (and thus multiple processes, which is typically the best way to run CPU work across cores - because of the GIL)
You can let joblib use multiple threads instead of multiple processes, but this (or using import threading directly) is only beneficial if the threads spend considerable time on I/O (e.g. read/write to disk, send an HTTP request). For I/O work, the GIL does not block the execution of another thread
Since Python 3.7, as an alternative to threading, you can parallelise work with asyncio, but the same advice applies like for import threading (though in contrast to latter, only 1 thread will be used; on the plus side, asyncio has a lot of nice features which are helpful for async programming)
Using multiple processes incurs overhead. Think about it: Typically, each process needs to initialise/load everything you need to run your calculation. You need to check yourself if the above code snippet improves your wall time. Here is another one, for which I confirmed that joblib produces better results:
import time
from joblib import Parallel, delayed
def countdown(n):
while n>0:
n -= 1
return n
t = time.time()
for _ in range(20):
print(countdown(10**7), end=" ")
print(time.time() - t)
# takes ~10.5 seconds on medium sized Macbook Pro
t = time.time()
results = Parallel(n_jobs=2)(delayed(countdown)(10**7) for _ in range(20))
print(results)
print(time.time() - t)
# takes ~6.3 seconds on medium sized Macbook Pro
To parallelize a simple for loop, joblib brings a lot of value to raw use of multiprocessing. Not only the short syntax, but also things like transparent bunching of iterations when they are very fast (to remove the overhead) or capturing of the traceback of the child process, to have better error reporting.
Disclaimer: I am the original author of joblib.
This IS the easiest way to do it!
You can use asyncio. (Documentation can be found here). It is used as a foundation for multiple Python asynchronous frameworks that provide high-performance network and web-servers, database connection libraries, distributed task queues, etc. Plus it has both high-level and low-level APIs to accomodate any kind of problem.
import asyncio
def background(f):
def wrapped(*args, **kwargs):
return asyncio.get_event_loop().run_in_executor(None, f, *args, **kwargs)
return wrapped
#background
def your_function(argument):
#code
Now this function will be run in parallel whenever called without putting main program into wait state. You can use it to parallelize for loop as well. When called for a for loop, though loop is sequential but every iteration runs in parallel to the main program as soon as interpreter gets there.
1. Firing loop in parallel to main thread without any waiting
#background
def your_function(argument):
time.sleep(5)
print('function finished for '+str(argument))
for i in range(10):
your_function(i)
print('loop finished')
This produces following output:
loop finished
function finished for 4
function finished for 8
function finished for 0
function finished for 3
function finished for 6
function finished for 2
function finished for 5
function finished for 7
function finished for 9
function finished for 1
Update: May 2022
Although this answers the original question, there are ways where we can wait for loops to finish as requested by upvoted comments. So adding them here as well. Keys to implementations are: asyncio.gather() & run_until_complete(). Consider the following functions:
import asyncio
import time
def background(f):
def wrapped(*args, **kwargs):
return asyncio.get_event_loop().run_in_executor(None, f, *args, **kwargs)
return wrapped
#background
def your_function(argument, other_argument): # Added another argument
time.sleep(5)
print(f"function finished for {argument=} and {other_argument=}")
def code_to_run_before():
print('This runs Before Loop!')
def code_to_run_after():
print('This runs After Loop!')
2. Run in parallel but wait for finish
code_to_run_before() # Anything you want to run before, run here!
loop = asyncio.get_event_loop() # Have a new event loop
looper = asyncio.gather(*[your_function(i, 1) for i in range(1, 5)]) # Run the loop
results = loop.run_until_complete(looper) # Wait until finish
code_to_run_after() # Anything you want to run after, run here!
This produces following output:
This runs Before Loop!
function finished for argument=2 and other_argument=1
function finished for argument=3 and other_argument=1
function finished for argument=1 and other_argument=1
function finished for argument=4 and other_argument=1
This runs After Loop!
3. Run multiple loops in parallel and wait for finish
code_to_run_before() # Anything you want to run before, run here!
loop = asyncio.get_event_loop() # Have a new event loop
group1 = asyncio.gather(*[your_function(i, 1) for i in range(1, 2)]) # Run all the loops you want
group2 = asyncio.gather(*[your_function(i, 2) for i in range(3, 5)]) # Run all the loops you want
group3 = asyncio.gather(*[your_function(i, 3) for i in range(6, 9)]) # Run all the loops you want
all_groups = asyncio.gather(group1, group2, group3) # Gather them all
results = loop.run_until_complete(all_groups) # Wait until finish
code_to_run_after() # Anything you want to run after, run here!
This produces following output:
This runs Before Loop!
function finished for argument=3 and other_argument=2
function finished for argument=1 and other_argument=1
function finished for argument=6 and other_argument=3
function finished for argument=4 and other_argument=2
function finished for argument=7 and other_argument=3
function finished for argument=8 and other_argument=3
This runs After Loop!
4. Loops running sequentially but iterations of each loop running in parallel to one another
code_to_run_before() # Anything you want to run before, run here!
for loop_number in range(3):
loop = asyncio.get_event_loop() # Have a new event loop
looper = asyncio.gather(*[your_function(i, loop_number) for i in range(1, 5)]) # Run the loop
results = loop.run_until_complete(looper) # Wait until finish
print(f"finished for {loop_number=}")
code_to_run_after() # Anything you want to run after, run here!
This produces following output:
This runs Before Loop!
function finished for argument=3 and other_argument=0
function finished for argument=4 and other_argument=0
function finished for argument=1 and other_argument=0
function finished for argument=2 and other_argument=0
finished for loop_number=0
function finished for argument=4 and other_argument=1
function finished for argument=3 and other_argument=1
function finished for argument=2 and other_argument=1
function finished for argument=1 and other_argument=1
finished for loop_number=1
function finished for argument=1 and other_argument=2
function finished for argument=4 and other_argument=2
function finished for argument=3 and other_argument=2
function finished for argument=2 and other_argument=2
finished for loop_number=2
This runs After Loop!
Update: June 2022
This in its current form may not run on some versions of jupyter notebook. Reason being jupyter notebook utilizing event loop. To make it work on such jupyter versions, nest_asyncio (which would nest the event loop as evident from the name) is the way to go. Just import and apply it at the top of the cell as:
import nest_asyncio
nest_asyncio.apply()
And all the functionality discussed above should be accessible in a notebook environment as well.
What's the easiest way to parallelize this code?
Use a PoolExecutor from concurrent.futures. Compare the original code with this, side by side. First, the most concise way to approach this is with executor.map:
...
with ProcessPoolExecutor() as executor:
for out1, out2, out3 in executor.map(calc_stuff, parameters):
...
or broken down by submitting each call individually:
...
with ThreadPoolExecutor() as executor:
futures = []
for parameter in parameters:
futures.append(executor.submit(calc_stuff, parameter))
for future in futures:
out1, out2, out3 = future.result() # this will block
...
Leaving the context signals the executor to free up resources
You can use threads or processes and use the exact same interface.
A working example
Here is working example code, that will demonstrate the value of :
Put this in a file - futuretest.py:
from concurrent.futures import ProcessPoolExecutor, ThreadPoolExecutor
from time import time
from http.client import HTTPSConnection
def processor_intensive(arg):
def fib(n): # recursive, processor intensive calculation (avoid n > 36)
return fib(n-1) + fib(n-2) if n > 1 else n
start = time()
result = fib(arg)
return time() - start, result
def io_bound(arg):
start = time()
con = HTTPSConnection(arg)
con.request('GET', '/')
result = con.getresponse().getcode()
return time() - start, result
def manager(PoolExecutor, calc_stuff):
if calc_stuff is io_bound:
inputs = ('python.org', 'stackoverflow.com', 'stackexchange.com',
'noaa.gov', 'parler.com', 'aaronhall.dev')
else:
inputs = range(25, 32)
timings, results = list(), list()
start = time()
with PoolExecutor() as executor:
for timing, result in executor.map(calc_stuff, inputs):
# put results into correct output list:
timings.append(timing), results.append(result)
finish = time()
print(f'{calc_stuff.__name__}, {PoolExecutor.__name__}')
print(f'wall time to execute: {finish-start}')
print(f'total of timings for each call: {sum(timings)}')
print(f'time saved by parallelizing: {sum(timings) - (finish-start)}')
print(dict(zip(inputs, results)), end = '\n\n')
def main():
for computation in (processor_intensive, io_bound):
for pool_executor in (ProcessPoolExecutor, ThreadPoolExecutor):
manager(pool_executor, calc_stuff=computation)
if __name__ == '__main__':
main()
And here's the output for one run of python -m futuretest:
processor_intensive, ProcessPoolExecutor
wall time to execute: 0.7326343059539795
total of timings for each call: 1.8033506870269775
time saved by parallelizing: 1.070716381072998
{25: 75025, 26: 121393, 27: 196418, 28: 317811, 29: 514229, 30: 832040, 31: 1346269}
processor_intensive, ThreadPoolExecutor
wall time to execute: 1.190223217010498
total of timings for each call: 3.3561410903930664
time saved by parallelizing: 2.1659178733825684
{25: 75025, 26: 121393, 27: 196418, 28: 317811, 29: 514229, 30: 832040, 31: 1346269}
io_bound, ProcessPoolExecutor
wall time to execute: 0.533886194229126
total of timings for each call: 1.2977914810180664
time saved by parallelizing: 0.7639052867889404
{'python.org': 301, 'stackoverflow.com': 200, 'stackexchange.com': 200, 'noaa.gov': 301, 'parler.com': 200, 'aaronhall.dev': 200}
io_bound, ThreadPoolExecutor
wall time to execute: 0.38941240310668945
total of timings for each call: 1.6049387454986572
time saved by parallelizing: 1.2155263423919678
{'python.org': 301, 'stackoverflow.com': 200, 'stackexchange.com': 200, 'noaa.gov': 301, 'parler.com': 200, 'aaronhall.dev': 200}
Processor-intensive analysis
When performing processor intensive calculations in Python, expect the ProcessPoolExecutor to be more performant than the ThreadPoolExecutor.
Due to the Global Interpreter Lock (a.k.a. the GIL), threads cannot use multiple processors, so expect the time for each calculation and the wall time (elapsed real time) to be greater.
IO-bound analysis
On the other hand, when performing IO bound operations, expect ThreadPoolExecutor to be more performant than ProcessPoolExecutor.
Python's threads are real, OS, threads. They can be put to sleep by the operating system and reawakened when their information arrives.
Final thoughts
I suspect that multiprocessing will be slower on Windows, since Windows doesn't support forking so each new process has to take time to launch.
You can nest multiple threads inside multiple processes, but it's recommended to not use multiple threads to spin off multiple processes.
If faced with a heavy processing problem in Python, you can trivially scale with additional processes - but not so much with threading.
There are a number of advantages to using Ray:
You can parallelize over multiple machines in addition to multiple cores (with the same code).
Efficient handling of numerical data through shared memory (and zero-copy serialization).
High task throughput with distributed scheduling.
Fault tolerance.
In your case, you could start Ray and define a remote function
import ray
ray.init()
#ray.remote(num_return_vals=3)
def calc_stuff(parameter=None):
# Do something.
return 1, 2, 3
and then invoke it in parallel
output1, output2, output3 = [], [], []
# Launch the tasks.
for j in range(10):
id1, id2, id3 = calc_stuff.remote(parameter=j)
output1.append(id1)
output2.append(id2)
output3.append(id3)
# Block until the results have finished and get the results.
output1 = ray.get(output1)
output2 = ray.get(output2)
output3 = ray.get(output3)
To run the same example on a cluster, the only line that would change would be the call to ray.init(). The relevant documentation can be found here.
Note that I'm helping to develop Ray.
I found joblib is very useful with me. Please see following example:
from joblib import Parallel, delayed
def yourfunction(k):
s=3.14*k*k
print "Area of a circle with a radius ", k, " is:", s
element_run = Parallel(n_jobs=-1)(delayed(yourfunction)(k) for k in range(1,10))
n_jobs=-1: use all available cores
Dask futures; I'm surprised no one has mentioned it yet . . .
from dask.distributed import Client
client = Client(n_workers=8) # In this example I have 8 cores and processes (can also use threads if desired)
def my_function(i):
output = <code to execute in the for loop here>
return output
futures = []
for i in <whatever you want to loop across here>:
future = client.submit(my_function, i)
futures.append(future)
results = client.gather(futures)
client.close()
why dont you use threads, and one mutex to protect one global list?
import os
import re
import time
import sys
import thread
from threading import Thread
class thread_it(Thread):
def __init__ (self,param):
Thread.__init__(self)
self.param = param
def run(self):
mutex.acquire()
output.append(calc_stuff(self.param))
mutex.release()
threads = []
output = []
mutex = thread.allocate_lock()
for j in range(0, 10):
current = thread_it(j * offset)
threads.append(current)
current.start()
for t in threads:
t.join()
#here you have output list filled with data
keep in mind, you will be as fast as your slowest thread
thanks #iuryxavier
from multiprocessing import Pool
from multiprocessing import cpu_count
def add_1(x):
return x + 1
if __name__ == "__main__":
pool = Pool(cpu_count())
results = pool.map(add_1, range(10**12))
pool.close() # 'TERM'
pool.join() # 'KILL'
The concurrent wrappers by the tqdm library are a nice way to parallelize longer-running code. tqdm provides feedback on the current progress and remaining time through a smart progress meter, which I find very useful for long computations.
Loops can be rewritten to run as concurrent threads through a simple call to thread_map, or as concurrent multi-processes through a simple call to process_map:
from tqdm.contrib.concurrent import thread_map, process_map
def calc_stuff(num, multiplier):
import time
time.sleep(1)
return num, num * multiplier
if __name__ == "__main__":
# let's parallelize this for loop:
# results = [calc_stuff(i, 2) for i in range(64)]
loop_idx = range(64)
multiplier = [2] * len(loop_idx)
# either with threading:
results_threading = thread_map(calc_stuff, loop_idx, multiplier)
# or with multi-processing:
results_processes = process_map(calc_stuff, loop_idx, multiplier)
Let's say we have an async function
async def work_async(self, student_name: str, code: str, loop):
"""
Some async function
"""
# Do some async procesing
That needs to be run on a large array. Some attributes are being passed to the program and some are used from property of dictionary element in the array.
async def process_students(self, student_name: str, loop):
market = sys.argv[2]
subjects = [...] #Some large array
batchsize = 5
for i in range(0, len(subjects), batchsize):
batch = subjects[i:i+batchsize]
await asyncio.gather(*(self.work_async(student_name,
sub['Code'],
loop)
for sub in batch))
This could be useful when implementing multiprocessing and parallel/ distributed computing in Python.
YouTube tutorial on using techila package
Techila is a distributed computing middleware, which integrates directly with Python using the techila package. The peach function in the package can be useful in parallelizing loop structures. (Following code snippet is from the Techila Community Forums)
techila.peach(funcname = 'theheavyalgorithm', # Function that will be called on the compute nodes/ Workers
files = 'theheavyalgorithm.py', # Python-file that will be sourced on Workers
jobs = jobcount # Number of Jobs in the Project
)
Have a look at this;
http://docs.python.org/library/queue.html
This might not be the right way to do it, but I'd do something like;
Actual code;
from multiprocessing import Process, JoinableQueue as Queue
class CustomWorker(Process):
def __init__(self,workQueue, out1,out2,out3):
Process.__init__(self)
self.input=workQueue
self.out1=out1
self.out2=out2
self.out3=out3
def run(self):
while True:
try:
value = self.input.get()
#value modifier
temp1,temp2,temp3 = self.calc_stuff(value)
self.out1.put(temp1)
self.out2.put(temp2)
self.out3.put(temp3)
self.input.task_done()
except Queue.Empty:
return
#Catch things better here
def calc_stuff(self,param):
out1 = param * 2
out2 = param * 4
out3 = param * 8
return out1,out2,out3
def Main():
inputQueue = Queue()
for i in range(10):
inputQueue.put(i)
out1 = Queue()
out2 = Queue()
out3 = Queue()
processes = []
for x in range(2):
p = CustomWorker(inputQueue,out1,out2,out3)
p.daemon = True
p.start()
processes.append(p)
inputQueue.join()
while(not out1.empty()):
print out1.get()
print out2.get()
print out3.get()
if __name__ == '__main__':
Main()
Hope that helps.
very simple example of parallel processing is
from multiprocessing import Process
output1 = list()
output2 = list()
output3 = list()
def yourfunction():
for j in range(0, 10):
# calc individual parameter value
parameter = j * offset
# call the calculation
out1, out2, out3 = calc_stuff(parameter=parameter)
# put results into correct output list
output1.append(out1)
output2.append(out2)
output3.append(out3)
if __name__ == '__main__':
p = Process(target=pa.yourfunction, args=('bob',))
p.start()
p.join()
Please bear with me as this is a bit of a contrived example of my real application. Suppose I have a list of numbers and I wanted to add a single number to each number in the list using multiple (2) processes. I can do something like this:
import multiprocessing
my_list = list(range(100))
my_number = 5
data_line = [{'list_num': i, 'my_num': my_number} for i in my_list]
def worker(data):
return data['list_num'] + data['my_num']
pool = multiprocessing.Pool(processes=2)
pool_output = pool.map(worker, data_line)
pool.close()
pool.join()
Now however, there's a wrinkle to my problem. Suppose that I wanted to alternate adding two numbers (instead of just adding one). So around half the time, I want to add my_number1 and the other half of the time I want to add my_number2. It doesn't matter which number gets added to which item on the list. However, the one requirement is that I don't want to be adding the same number simultaneously at the same time across the different processes. What this boils down to essentially (I think) is that I want to use the first number on Process 1 and the second number on Process 2 exclusively so that the processes are never simultaneously adding the same number. So something like:
my_num1 = 5
my_num2 = 100
data_line = [{'list_num': i, 'my_num1': my_num1, 'my_num2': my_num2} for i in my_list]
def worker(data):
# if in Process 1:
return data['list_num'] + data['my_num1']
# if in Process 2:
return data['list_num'] + data['my_num2']
# and so forth
Is there an easy way to specify specific inputs per process? Is there another way to think about this problem?
multiprocessing.Pool allows to execute an initializer function which is going to be executed before the actual given function will be run.
You can use it altogether with a global variable to allow your function to understand in which process is running.
You probably want to control the initial number the processes will get. You can use a Queue to notify to the processes which number to pick up.
This solution is not optimal but it works.
import multiprocessing
process_number = None
def initializer(queue):
global process_number
process_number = queue.get() # atomic get the process index
def function(value):
print "I'm process %s" % process_number
return value[process_number]
def main():
queue = multiprocessing.Queue()
for index in range(multiprocessing.cpu_count()):
queue.put(index)
pool = multiprocessing.Pool(initializer=initializer, initargs=[queue])
tasks = [{0: 'Process-0', 1: 'Process-1', 2: 'Process-2'}, ...]
print(pool.map(function, tasks))
My PC is a dual core, as you can see only Process-0 and Process-1 are processed.
I'm process 0
I'm process 0
I'm process 1
I'm process 0
I'm process 1
...
['Process-0', 'Process-0', 'Process-1', 'Process-0', ... ]
I use Multiprocessing library in Python to distribute a function over multiple cores. To do that I use "Pool" function, but I want to know when each processor has completed its work.
Here is the code :
def parallel(m,G):
D=0
for i in xrange(G):
D+=random()
return 1*(D<1)
pool=Pool()
TOTAL=0
for i in xrange(10):
TOTAL += sum(pool.map(partial(parallel,G=2),xrange(100)))
print TOTAL
I know how to use time.time() in normal situation, but what I need is to know when each core has completed is part of the job. If I put a time stamp directly in the function I will get many time values without knowing on what core it is processed.
Any advice is welcome!
You may return the completion time along with the actual result from parallel and then pick the last timestamp for each worker.
import time
from random import random
from functools import partial
from multiprocessing import Pool, current_process
def parallel(m, G):
D = 0
for i in xrange(G):
D += random()
# uncomment to give the other workers more chances to run
# time.sleep(.001)
return (current_process().name, time.time()), 1 * (D < 1)
# don't deny the existence of Windows
if __name__ == '__main__':
pool = Pool()
TOTAL = 0
proc_times = {}
for i in xrange(5):
# times is a list of proc_name:timestamp pairs
times, results = zip(*pool.map(partial(parallel, G=2), xrange(100)))
TOTAL += sum(results)
# process_times_loc is guaranteed to hold the last timestamp
# for each proc_name, see the doc on dict
proc_times_loc = dict(times)
print 'local completion times:', proc_times_loc
proc_times.update(proc_times_loc)
print TOTAL
print 'total completion times:', proc_times
However when jobs are that simple you may find that calling time.time each time consumes too much of CPU time.)
I am trying to design an async pipeline that can easily make a data processing pipeline. The pipeline is composed of several functions. Input data goes in at one end of the pipeline and comes out at the other end.
I want to design the pipeline in a way that:
Additional functions can be insert in the pipeline
Functions already in the pipeline can be popped out.
Here is what I came up with:
import asyncio
#asyncio.coroutine
def add(x):
return x + 1
#asyncio.coroutine
def prod(x):
return x * 2
#asyncio.coroutine
def power(x):
return x ** 3
def connect(funcs):
def wrapper(*args, **kwargs):
data_out = yield from funcs[0](*args, **kwargs)
for func in funcs[1:]:
data_out = yield from func(data_out)
return data_out
return wrapper
pipeline = connect([add, prod, power])
input = 1
output = asyncio.get_event_loop().run_until_complete(pipeline(input))
print(output)
This works, of course, but the problem is that if I want to add another function into (or pop out a function from) this pipeline, I have to disassemble and reconnect every function again.
I would like to know if there is a better scheme or design pattern to create such a pipeline?
I've done something similar before, using just the multiprocessing library. It's a bit more manual, but it gives you the ability to easily create and modify your pipeline, as you've requested in your question.
The idea is to create functions that can live in a multiprocessing pool, and their only arguments are an input queue and an output queue. You tie the stages together by passing them different queues. Each stage receives some work on its input queue, does some more work, and passes the result out to the next stage through its output queue.
The workers spin on trying to get something from their queues, and when they get something, they do their work and pass the result to the next stage. All of the work ends by passing a "poison pill" through the pipeline, causing all stages to exit:
This example just builds a string in multiple work stages:
import multiprocessing as mp
POISON_PILL = "STOP"
def stage1(q_in, q_out):
while True:
# get either work or a poison pill from the previous stage (or main)
val = q_in.get()
# check to see if we got the poison pill - pass it along if we did
if val == POISON_PILL:
q_out.put(val)
return
# do stage 1 work
val = val + "Stage 1 did some work.\n"
# pass the result to the next stage
q_out.put(val)
def stage2(q_in, q_out):
while True:
val = q_in.get()
if val == POISON_PILL:
q_out.put(val)
return
val = val + "Stage 2 did some work.\n"
q_out.put(val)
def main():
pool = mp.Pool()
manager = mp.Manager()
# create managed queues
q_main_to_s1 = manager.Queue()
q_s1_to_s2 = manager.Queue()
q_s2_to_main = manager.Queue()
# launch workers, passing them the queues they need
results_s1 = pool.apply_async(stage1, (q_main_to_s1, q_s1_to_s2))
results_s2 = pool.apply_async(stage2, (q_s1_to_s2, q_s2_to_main))
# Send a message into the pipeline
q_main_to_s1.put("Main started the job.\n")
# Wait for work to complete
print(q_s2_to_main.get()+"Main finished the job.")
q_main_to_s1.put(POISON_PILL)
pool.close()
pool.join()
return
if __name__ == "__main__":
main()
The code produces this output:
Main started the job.
Stage 1 did some work.
Stage 2 did some work.
Main finished the job.
You can easily put more stages in the pipeline or rearrange them just by changing which functions get which queues. I'm not very familiar with the asyncio module, so I can't speak to what capabilities you would be losing by using the multiprocessing library instead, but this approach is very straightforward to implement and understand, so I like its simplicity.
I don't know if it is the best way to do it but here is my solution.
While I think it's possible to control a pipeline using a list or a dictionary I found easier and more efficent to use a generator.
Consider the following generator:
def controller():
old = value = None
while True:
new = (yield value)
value = old
old = new
This is basically a one-element queue, it stores the value that you send it and releases it at the next call of send (or next).
Example:
>>> c = controller()
>>> next(c) # prime the generator
>>> c.send(8) # send a value
>>> next(c) # pull the value from the generator
8
By associating every coroutine in the pipeline with its controller we will have an external handle that we can use to push the target of each one. We just need to define our coroutines in a way that they will pull the new target from our controller every cycle.
Now consider the following coroutines:
def source(controller):
while True:
target = next(controller)
print("source sending to", target.__name__)
yield (yield from target)
def add():
return (yield) + 1
def prod():
return (yield) * 2
The source is a coroutine that does not return so that it will not terminate itself after the first cycle. The other coroutines are "sinks" and does not need a controller.
You can use these coroutines in a pipeline as in the following example. We initially set up a route source --> add and after receiving the first result we change the route to source --> prod.
# create a controller for the source and prime it
cont_source = controller()
next(cont_source)
# create three coroutines
# associate the source with its controller
coro_source = source(cont_source)
coro_add = add()
coro_prod = prod()
# create a pipeline
cont_source.send(coro_add)
# prime the source and send a value to it
coro_source.send(None)
print("add =", coro_source.send(4))
# change target of the source
cont_source.send(coro_prod)
# reset the source, send another value
coro_source.send(None)
print("prod =", coro_source.send(8))
Output:
source sending to add
add = 5
source sending to prod
prod = 16
This is probably a trivial question, but how do I parallelize the following loop in python?
# setup output lists
output1 = list()
output2 = list()
output3 = list()
for j in range(0, 10):
# calc individual parameter value
parameter = j * offset
# call the calculation
out1, out2, out3 = calc_stuff(parameter = parameter)
# put results into correct output list
output1.append(out1)
output2.append(out2)
output3.append(out3)
I know how to start single threads in Python but I don't know how to "collect" the results.
Multiple processes would be fine too - whatever is easiest for this case. I'm using currently Linux but the code should run on Windows and Mac as-well.
What's the easiest way to parallelize this code?
Using multiple threads on CPython won't give you better performance for pure-Python code due to the global interpreter lock (GIL). I suggest using the multiprocessing module instead:
pool = multiprocessing.Pool(4)
out1, out2, out3 = zip(*pool.map(calc_stuff, range(0, 10 * offset, offset)))
Note that this won't work in the interactive interpreter.
To avoid the usual FUD around the GIL: There wouldn't be any advantage to using threads for this example anyway. You want to use processes here, not threads, because they avoid a whole bunch of problems.
from joblib import Parallel, delayed
def process(i):
return i * i
results = Parallel(n_jobs=2)(delayed(process)(i) for i in range(10))
print(results) # prints [0, 1, 4, 9, 16, 25, 36, 49, 64, 81]
The above works beautifully on my machine (Ubuntu, package joblib was pre-installed, but can be installed via pip install joblib).
Taken from https://blog.dominodatalab.com/simple-parallelization/
Edit on Mar 31, 2021: On joblib, multiprocessing, threading and asyncio
joblib in the above code uses import multiprocessing under the hood (and thus multiple processes, which is typically the best way to run CPU work across cores - because of the GIL)
You can let joblib use multiple threads instead of multiple processes, but this (or using import threading directly) is only beneficial if the threads spend considerable time on I/O (e.g. read/write to disk, send an HTTP request). For I/O work, the GIL does not block the execution of another thread
Since Python 3.7, as an alternative to threading, you can parallelise work with asyncio, but the same advice applies like for import threading (though in contrast to latter, only 1 thread will be used; on the plus side, asyncio has a lot of nice features which are helpful for async programming)
Using multiple processes incurs overhead. Think about it: Typically, each process needs to initialise/load everything you need to run your calculation. You need to check yourself if the above code snippet improves your wall time. Here is another one, for which I confirmed that joblib produces better results:
import time
from joblib import Parallel, delayed
def countdown(n):
while n>0:
n -= 1
return n
t = time.time()
for _ in range(20):
print(countdown(10**7), end=" ")
print(time.time() - t)
# takes ~10.5 seconds on medium sized Macbook Pro
t = time.time()
results = Parallel(n_jobs=2)(delayed(countdown)(10**7) for _ in range(20))
print(results)
print(time.time() - t)
# takes ~6.3 seconds on medium sized Macbook Pro
To parallelize a simple for loop, joblib brings a lot of value to raw use of multiprocessing. Not only the short syntax, but also things like transparent bunching of iterations when they are very fast (to remove the overhead) or capturing of the traceback of the child process, to have better error reporting.
Disclaimer: I am the original author of joblib.
This IS the easiest way to do it!
You can use asyncio. (Documentation can be found here). It is used as a foundation for multiple Python asynchronous frameworks that provide high-performance network and web-servers, database connection libraries, distributed task queues, etc. Plus it has both high-level and low-level APIs to accomodate any kind of problem.
import asyncio
def background(f):
def wrapped(*args, **kwargs):
return asyncio.get_event_loop().run_in_executor(None, f, *args, **kwargs)
return wrapped
#background
def your_function(argument):
#code
Now this function will be run in parallel whenever called without putting main program into wait state. You can use it to parallelize for loop as well. When called for a for loop, though loop is sequential but every iteration runs in parallel to the main program as soon as interpreter gets there.
1. Firing loop in parallel to main thread without any waiting
#background
def your_function(argument):
time.sleep(5)
print('function finished for '+str(argument))
for i in range(10):
your_function(i)
print('loop finished')
This produces following output:
loop finished
function finished for 4
function finished for 8
function finished for 0
function finished for 3
function finished for 6
function finished for 2
function finished for 5
function finished for 7
function finished for 9
function finished for 1
Update: May 2022
Although this answers the original question, there are ways where we can wait for loops to finish as requested by upvoted comments. So adding them here as well. Keys to implementations are: asyncio.gather() & run_until_complete(). Consider the following functions:
import asyncio
import time
def background(f):
def wrapped(*args, **kwargs):
return asyncio.get_event_loop().run_in_executor(None, f, *args, **kwargs)
return wrapped
#background
def your_function(argument, other_argument): # Added another argument
time.sleep(5)
print(f"function finished for {argument=} and {other_argument=}")
def code_to_run_before():
print('This runs Before Loop!')
def code_to_run_after():
print('This runs After Loop!')
2. Run in parallel but wait for finish
code_to_run_before() # Anything you want to run before, run here!
loop = asyncio.get_event_loop() # Have a new event loop
looper = asyncio.gather(*[your_function(i, 1) for i in range(1, 5)]) # Run the loop
results = loop.run_until_complete(looper) # Wait until finish
code_to_run_after() # Anything you want to run after, run here!
This produces following output:
This runs Before Loop!
function finished for argument=2 and other_argument=1
function finished for argument=3 and other_argument=1
function finished for argument=1 and other_argument=1
function finished for argument=4 and other_argument=1
This runs After Loop!
3. Run multiple loops in parallel and wait for finish
code_to_run_before() # Anything you want to run before, run here!
loop = asyncio.get_event_loop() # Have a new event loop
group1 = asyncio.gather(*[your_function(i, 1) for i in range(1, 2)]) # Run all the loops you want
group2 = asyncio.gather(*[your_function(i, 2) for i in range(3, 5)]) # Run all the loops you want
group3 = asyncio.gather(*[your_function(i, 3) for i in range(6, 9)]) # Run all the loops you want
all_groups = asyncio.gather(group1, group2, group3) # Gather them all
results = loop.run_until_complete(all_groups) # Wait until finish
code_to_run_after() # Anything you want to run after, run here!
This produces following output:
This runs Before Loop!
function finished for argument=3 and other_argument=2
function finished for argument=1 and other_argument=1
function finished for argument=6 and other_argument=3
function finished for argument=4 and other_argument=2
function finished for argument=7 and other_argument=3
function finished for argument=8 and other_argument=3
This runs After Loop!
4. Loops running sequentially but iterations of each loop running in parallel to one another
code_to_run_before() # Anything you want to run before, run here!
for loop_number in range(3):
loop = asyncio.get_event_loop() # Have a new event loop
looper = asyncio.gather(*[your_function(i, loop_number) for i in range(1, 5)]) # Run the loop
results = loop.run_until_complete(looper) # Wait until finish
print(f"finished for {loop_number=}")
code_to_run_after() # Anything you want to run after, run here!
This produces following output:
This runs Before Loop!
function finished for argument=3 and other_argument=0
function finished for argument=4 and other_argument=0
function finished for argument=1 and other_argument=0
function finished for argument=2 and other_argument=0
finished for loop_number=0
function finished for argument=4 and other_argument=1
function finished for argument=3 and other_argument=1
function finished for argument=2 and other_argument=1
function finished for argument=1 and other_argument=1
finished for loop_number=1
function finished for argument=1 and other_argument=2
function finished for argument=4 and other_argument=2
function finished for argument=3 and other_argument=2
function finished for argument=2 and other_argument=2
finished for loop_number=2
This runs After Loop!
Update: June 2022
This in its current form may not run on some versions of jupyter notebook. Reason being jupyter notebook utilizing event loop. To make it work on such jupyter versions, nest_asyncio (which would nest the event loop as evident from the name) is the way to go. Just import and apply it at the top of the cell as:
import nest_asyncio
nest_asyncio.apply()
And all the functionality discussed above should be accessible in a notebook environment as well.
What's the easiest way to parallelize this code?
Use a PoolExecutor from concurrent.futures. Compare the original code with this, side by side. First, the most concise way to approach this is with executor.map:
...
with ProcessPoolExecutor() as executor:
for out1, out2, out3 in executor.map(calc_stuff, parameters):
...
or broken down by submitting each call individually:
...
with ThreadPoolExecutor() as executor:
futures = []
for parameter in parameters:
futures.append(executor.submit(calc_stuff, parameter))
for future in futures:
out1, out2, out3 = future.result() # this will block
...
Leaving the context signals the executor to free up resources
You can use threads or processes and use the exact same interface.
A working example
Here is working example code, that will demonstrate the value of :
Put this in a file - futuretest.py:
from concurrent.futures import ProcessPoolExecutor, ThreadPoolExecutor
from time import time
from http.client import HTTPSConnection
def processor_intensive(arg):
def fib(n): # recursive, processor intensive calculation (avoid n > 36)
return fib(n-1) + fib(n-2) if n > 1 else n
start = time()
result = fib(arg)
return time() - start, result
def io_bound(arg):
start = time()
con = HTTPSConnection(arg)
con.request('GET', '/')
result = con.getresponse().getcode()
return time() - start, result
def manager(PoolExecutor, calc_stuff):
if calc_stuff is io_bound:
inputs = ('python.org', 'stackoverflow.com', 'stackexchange.com',
'noaa.gov', 'parler.com', 'aaronhall.dev')
else:
inputs = range(25, 32)
timings, results = list(), list()
start = time()
with PoolExecutor() as executor:
for timing, result in executor.map(calc_stuff, inputs):
# put results into correct output list:
timings.append(timing), results.append(result)
finish = time()
print(f'{calc_stuff.__name__}, {PoolExecutor.__name__}')
print(f'wall time to execute: {finish-start}')
print(f'total of timings for each call: {sum(timings)}')
print(f'time saved by parallelizing: {sum(timings) - (finish-start)}')
print(dict(zip(inputs, results)), end = '\n\n')
def main():
for computation in (processor_intensive, io_bound):
for pool_executor in (ProcessPoolExecutor, ThreadPoolExecutor):
manager(pool_executor, calc_stuff=computation)
if __name__ == '__main__':
main()
And here's the output for one run of python -m futuretest:
processor_intensive, ProcessPoolExecutor
wall time to execute: 0.7326343059539795
total of timings for each call: 1.8033506870269775
time saved by parallelizing: 1.070716381072998
{25: 75025, 26: 121393, 27: 196418, 28: 317811, 29: 514229, 30: 832040, 31: 1346269}
processor_intensive, ThreadPoolExecutor
wall time to execute: 1.190223217010498
total of timings for each call: 3.3561410903930664
time saved by parallelizing: 2.1659178733825684
{25: 75025, 26: 121393, 27: 196418, 28: 317811, 29: 514229, 30: 832040, 31: 1346269}
io_bound, ProcessPoolExecutor
wall time to execute: 0.533886194229126
total of timings for each call: 1.2977914810180664
time saved by parallelizing: 0.7639052867889404
{'python.org': 301, 'stackoverflow.com': 200, 'stackexchange.com': 200, 'noaa.gov': 301, 'parler.com': 200, 'aaronhall.dev': 200}
io_bound, ThreadPoolExecutor
wall time to execute: 0.38941240310668945
total of timings for each call: 1.6049387454986572
time saved by parallelizing: 1.2155263423919678
{'python.org': 301, 'stackoverflow.com': 200, 'stackexchange.com': 200, 'noaa.gov': 301, 'parler.com': 200, 'aaronhall.dev': 200}
Processor-intensive analysis
When performing processor intensive calculations in Python, expect the ProcessPoolExecutor to be more performant than the ThreadPoolExecutor.
Due to the Global Interpreter Lock (a.k.a. the GIL), threads cannot use multiple processors, so expect the time for each calculation and the wall time (elapsed real time) to be greater.
IO-bound analysis
On the other hand, when performing IO bound operations, expect ThreadPoolExecutor to be more performant than ProcessPoolExecutor.
Python's threads are real, OS, threads. They can be put to sleep by the operating system and reawakened when their information arrives.
Final thoughts
I suspect that multiprocessing will be slower on Windows, since Windows doesn't support forking so each new process has to take time to launch.
You can nest multiple threads inside multiple processes, but it's recommended to not use multiple threads to spin off multiple processes.
If faced with a heavy processing problem in Python, you can trivially scale with additional processes - but not so much with threading.
There are a number of advantages to using Ray:
You can parallelize over multiple machines in addition to multiple cores (with the same code).
Efficient handling of numerical data through shared memory (and zero-copy serialization).
High task throughput with distributed scheduling.
Fault tolerance.
In your case, you could start Ray and define a remote function
import ray
ray.init()
#ray.remote(num_return_vals=3)
def calc_stuff(parameter=None):
# Do something.
return 1, 2, 3
and then invoke it in parallel
output1, output2, output3 = [], [], []
# Launch the tasks.
for j in range(10):
id1, id2, id3 = calc_stuff.remote(parameter=j)
output1.append(id1)
output2.append(id2)
output3.append(id3)
# Block until the results have finished and get the results.
output1 = ray.get(output1)
output2 = ray.get(output2)
output3 = ray.get(output3)
To run the same example on a cluster, the only line that would change would be the call to ray.init(). The relevant documentation can be found here.
Note that I'm helping to develop Ray.
I found joblib is very useful with me. Please see following example:
from joblib import Parallel, delayed
def yourfunction(k):
s=3.14*k*k
print "Area of a circle with a radius ", k, " is:", s
element_run = Parallel(n_jobs=-1)(delayed(yourfunction)(k) for k in range(1,10))
n_jobs=-1: use all available cores
Dask futures; I'm surprised no one has mentioned it yet . . .
from dask.distributed import Client
client = Client(n_workers=8) # In this example I have 8 cores and processes (can also use threads if desired)
def my_function(i):
output = <code to execute in the for loop here>
return output
futures = []
for i in <whatever you want to loop across here>:
future = client.submit(my_function, i)
futures.append(future)
results = client.gather(futures)
client.close()
why dont you use threads, and one mutex to protect one global list?
import os
import re
import time
import sys
import thread
from threading import Thread
class thread_it(Thread):
def __init__ (self,param):
Thread.__init__(self)
self.param = param
def run(self):
mutex.acquire()
output.append(calc_stuff(self.param))
mutex.release()
threads = []
output = []
mutex = thread.allocate_lock()
for j in range(0, 10):
current = thread_it(j * offset)
threads.append(current)
current.start()
for t in threads:
t.join()
#here you have output list filled with data
keep in mind, you will be as fast as your slowest thread
thanks #iuryxavier
from multiprocessing import Pool
from multiprocessing import cpu_count
def add_1(x):
return x + 1
if __name__ == "__main__":
pool = Pool(cpu_count())
results = pool.map(add_1, range(10**12))
pool.close() # 'TERM'
pool.join() # 'KILL'
The concurrent wrappers by the tqdm library are a nice way to parallelize longer-running code. tqdm provides feedback on the current progress and remaining time through a smart progress meter, which I find very useful for long computations.
Loops can be rewritten to run as concurrent threads through a simple call to thread_map, or as concurrent multi-processes through a simple call to process_map:
from tqdm.contrib.concurrent import thread_map, process_map
def calc_stuff(num, multiplier):
import time
time.sleep(1)
return num, num * multiplier
if __name__ == "__main__":
# let's parallelize this for loop:
# results = [calc_stuff(i, 2) for i in range(64)]
loop_idx = range(64)
multiplier = [2] * len(loop_idx)
# either with threading:
results_threading = thread_map(calc_stuff, loop_idx, multiplier)
# or with multi-processing:
results_processes = process_map(calc_stuff, loop_idx, multiplier)
Let's say we have an async function
async def work_async(self, student_name: str, code: str, loop):
"""
Some async function
"""
# Do some async procesing
That needs to be run on a large array. Some attributes are being passed to the program and some are used from property of dictionary element in the array.
async def process_students(self, student_name: str, loop):
market = sys.argv[2]
subjects = [...] #Some large array
batchsize = 5
for i in range(0, len(subjects), batchsize):
batch = subjects[i:i+batchsize]
await asyncio.gather(*(self.work_async(student_name,
sub['Code'],
loop)
for sub in batch))
This could be useful when implementing multiprocessing and parallel/ distributed computing in Python.
YouTube tutorial on using techila package
Techila is a distributed computing middleware, which integrates directly with Python using the techila package. The peach function in the package can be useful in parallelizing loop structures. (Following code snippet is from the Techila Community Forums)
techila.peach(funcname = 'theheavyalgorithm', # Function that will be called on the compute nodes/ Workers
files = 'theheavyalgorithm.py', # Python-file that will be sourced on Workers
jobs = jobcount # Number of Jobs in the Project
)
Have a look at this;
http://docs.python.org/library/queue.html
This might not be the right way to do it, but I'd do something like;
Actual code;
from multiprocessing import Process, JoinableQueue as Queue
class CustomWorker(Process):
def __init__(self,workQueue, out1,out2,out3):
Process.__init__(self)
self.input=workQueue
self.out1=out1
self.out2=out2
self.out3=out3
def run(self):
while True:
try:
value = self.input.get()
#value modifier
temp1,temp2,temp3 = self.calc_stuff(value)
self.out1.put(temp1)
self.out2.put(temp2)
self.out3.put(temp3)
self.input.task_done()
except Queue.Empty:
return
#Catch things better here
def calc_stuff(self,param):
out1 = param * 2
out2 = param * 4
out3 = param * 8
return out1,out2,out3
def Main():
inputQueue = Queue()
for i in range(10):
inputQueue.put(i)
out1 = Queue()
out2 = Queue()
out3 = Queue()
processes = []
for x in range(2):
p = CustomWorker(inputQueue,out1,out2,out3)
p.daemon = True
p.start()
processes.append(p)
inputQueue.join()
while(not out1.empty()):
print out1.get()
print out2.get()
print out3.get()
if __name__ == '__main__':
Main()
Hope that helps.
very simple example of parallel processing is
from multiprocessing import Process
output1 = list()
output2 = list()
output3 = list()
def yourfunction():
for j in range(0, 10):
# calc individual parameter value
parameter = j * offset
# call the calculation
out1, out2, out3 = calc_stuff(parameter=parameter)
# put results into correct output list
output1.append(out1)
output2.append(out2)
output3.append(out3)
if __name__ == '__main__':
p = Process(target=pa.yourfunction, args=('bob',))
p.start()
p.join()