Find the intersection and union of two rectangles - python

I need to find the area of ​​intersection and union of two rectangles, as well as the ratio of the intersection area to the union area. What is the best way to do this?
Picture
def intersection_over_union(a, b):
ax1 = a['left']
ay1 = a['top']
aw = a['width']
ah = a['height']
ax2 = ax1 + aw
ay2 = ay1 + ah
bx1 = b['left']
by1 = b['top']
bw = b['width']
bh = b['height']
bx2 = bx1 + bw
by2 = by1 + bh
delta_x = max(ax1, bx1) - min(ax2, bx2)
delta_y = max(ay1, by1) - min(ay2, by2)
overlap = delta_x * delta_y
union = aw * ah + bw * bh - overlap
print(overlap, union)
return overlap / union

Assuming you are dealing with AABB (axis aligned bounding box) this little class defines everything you need:
class Rect:
def __init__(self, x, y, w, h):
self.x = x
self.y = y
self.w = w
self.h = h
def bottom(self):
return self.y + self.h
def right(self):
return self.x + self.w
def area(self):
return self.w * self.h
def union(self, b):
posX = min(self.x, b.x)
posY = min(self.y, b.y)
return Rect(posX, posY, max(self.right(), b.right()) - posX, max(self.bottom(), b.bottom()) - posY)
def intersection(self, b):
posX = max(self.x, b.x)
posY = max(self.y, b.y)
candidate = Rect(posX, posY, min(self.right(), b.right()) - posX, min(self.bottom(), b.bottom()) - posY)
if candidate.w > 0 and candidate.h > 0:
return candidate
return Rect(0, 0, 0, 0)
def ratio(self, b):
return self.intersection(b).area() / self.union(b).area()
if __name__ == "__main__":
assert Rect(1, 1, 1, 1).ratio(Rect(1, 1, 1, 1)) == 1
assert round(Rect(1, 1, 2, 2).ratio(Rect(2, 2, 2, 2)), 4) == 0.1111

One way I believe you could do this (although I am not sure it is the best solution as you've asked for), is to develop a function that creates a rectangle in a plane, and stores all of its corners' coordinates in a list.
Every time you create a rectangle (let's say you create it from the bottom left, increasing its x and y coordinates as you go), check for each coordinate if the x coordinate is within the other rectangle's x-range i.e. x_min < x < x_max. If so, check the y-coordinate. If the coordinate is within the x and y ranges of another rectangle, it's part of the intersection.
Repeat for all coordinates as you create them and save the intersection coordinates, and find the intersection's corners. With that, you can calculate the area of intersection and union between the two triangles, and their ratio to one another.

Related

Filling a polygon with lines parallel to its longest side

Given a list of points that form a polygon, how can I create evenly spaced lines within that polygon that are parallel to it's longest side?
I am able to rotate the lines and get the even spacing, but I can't seem to place them within the polygon. My intention after getting the lines within the polygon is to find where they intercept it.
Here is the point at which I am now stuck:
import matplotlib.pyplot as plt
import numpy as np
import math
def longest_side(points):
"""
Returns the points of the longest side
"""
max_length = 0
for i in range(len(points)-1):
cur_length = np.linalg.norm(np.array(points[i])-np.array(points[i+1]))
if cur_length > max_length:
max_length = cur_length
cur_longest = [points[i], points[i+1]]
return cur_longest
def rotate(origin, point, angle):
"""
Rotate point around origin
"""
ox, oy = origin
px, py = point
qx = ox + math.cos(angle) * (px - ox) - math.sin(angle) * (py - oy)
qy = oy + math.sin(angle) * (px - ox) + math.cos(angle) * (py - oy)
return qx, qy
def create_lines(points, spacing):
"""
Fill polygon with lines
"""
# Get the longest side
longest_lines = longest_side(points)
x1,y1 = longest_lines[0]
x2,y2 = longest_lines[1]
# Arrange the points in acending x-value
if x2 < x1:
tmp = (x1, y1)
x1 = x2
y1 = y2
x2 = tmp[0]
y2 = tmp[1]
# Get the angle between the longest line and the horizontal axis
angle = math.atan2(y2 - y1, x2 - x1)
# Create lines parallel to the longest line with given spacing
for y in np.arange(min(y1, y2), max(y1, y2), spacing):
xr, yr = rotate(origin=[min(x), y], point=[max(x), y], angle=angle)
plt.plot([min(x), xr], [y, yr])
if __name__ == "__main__":
points = ([0, 8], [2, 10], [10, 4], [10, 0], [0, 8])
x = [p[0] for p in points]
y = [p[1] for p in points]
create_lines(points=points, spacing=1)
plt.plot(x, y, 'ro-')
plt.axis('scaled')
plt.show()
Is there a general way this problem can be solved given any list of points?
The short answer: you need to do some geometry.
The long answer:
Create a Line Segment class to easily calculate line intersections and acceptable range of intercepts of lines with fixed slope m that still intersect with the line segment.
Turn your points into Line Segments, find the longest line, find the range of intercepts needed to fill the polygon, then find the intersections for each line generated by each intercept.
Class definition:
import matplotlib.pyplot as plt
import numpy as np
import math
# Represent a non-vertical line segment from start_pt to end_pt
# as y = mx + b and minv <= x <= maxv.
# For vertical lines x = b, m = None and minv <= y <= maxv
class LineSeg():
def __init__(self, start_pt, end_pt):
self.x, self.y = start_pt
self.x2, self.y2 = end_pt
if self.x != self.x2:
self.m = (self.y2 - self.y) / (self.x2 - self.x)
self.b = self.y - self.m*self.x
self.minv = min(self.x, self.x2)
self.maxv = max(self.x, self.x2)
else:
self.m = None
self.b = self.x
self.minv = min(self.y, self.y2)
self.maxv = max(self.y, self.y2)
def length(self):
return np.linalg.norm([self.x2-self.x, self.y2-self.y])
# Find intersection (x, y) with line y = mx + b
def intersect_w_line(self, m, b):
# Parallel lines
if m == self.m:
return (None, None)
# Line is vertical but line segment is not
elif m == None:
if self.minv <= b <= self.maxv:
return (b, self.m*b + self.b)
else:
return (None, None)
# Line segment is vertical, but line is not
elif self.m == None:
y = m*self.b + b
if self.minv <= y <= self.maxv:
return (self.b, y)
else:
return (None, None)
else:
x = (b - self.b) / (self.m - m)
y = self.m*x + self.b
if self.minv <= x <= self.maxv:
return (x, y)
else:
return (None, None)
# Find intercept range with line y = mx + b
def intercept_range(self, m):
if self.m == m:
return (self.b, self.b)
# Line is vertical, but segment is not
elif m == None:
return sorted([self.x, self.x2])
# Line is not vertical
else:
b = self.y - m*self.x
b2 = self.y2 - m*self.x2
return sorted([b, b2])
Plotting:
points = ([0, 8], [2, 10], [10, 4], [10, 0])
linesegs = [LineSeg(points[i], points[i+1]) if i+1 < len(points) else LineSeg(points[i], points[0]) for i in range(len(points))]
lengths = [lineseg.length() for lineseg in linesegs]
longest_seg = [lineseg for lineseg in linesegs if lineseg.length() == max(lengths)]
m = longest_seg[0].m
b = longest_seg[0].b
intercept_ranges = [lineseg.intercept_range(m) for lineseg in linesegs]
max_intercept = np.max(intercept_ranges)
min_intercept = np.min(intercept_ranges)
num_lines = 10
spacing = (max_intercept - min_intercept) / (num_lines+1)
intercepts = np.arange(min_intercept + spacing, max_intercept, spacing)
line_pts = [[lineseg.intersect_w_line(m, intercept) for lineseg in linesegs if lineseg.intersect_w_line(m, intercept)[0] is not None] for intercept in intercepts]
plt.close('all')
fig, ax = plt.subplots(1, 1)
polygon = mpl.patches.Polygon(points, closed = True, fill = False)
ax.add_artist(polygon)
for start, end in line_pts:
line = mpl.lines.Line2D([start[0], end[0]], [start[1], end[1]])
ax.add_artist(line)
ax.set_xlim(0, 10)
ax.set_ylim(0, 10)

How to vectorize a nested "for" loop with multiple "if" statements using Numpy?

I have a simple 2D ray-casting routine that gets terribly slow as soon as the number of obstacles increases.
This routine is made up of:
2 for loops (outer loop iterates over each ray/direction, then inner loop iterates over each line obstacle)
multiple if statements (check if a value is > or < than another value or if an array is empty)
Question: How can I condense all these operations into 1 single block of vectorized instructions using Numpy ?
More specifically, I am facing 2 issues:
I have managed to vectorize the inner loop (intersection between a ray and each obstacle) but I am unable to run this operation for all rays at once.
The only workaround I found to deal with the if statements is to use masked arrays. Something tells me it is not the proper way to handle these statements in this case (it seems clumsy, cumbersome and unpythonic)
Original code:
from math import radians, cos, sin
import matplotlib.pyplot as plt
import numpy as np
N = 10 # dimensions of canvas (NxN)
sides = np.array([[0, N, 0, 0], [0, N, N, N], [0, 0, 0, N], [N, N, 0, N]])
edges = np.random.rand(5, 4) * N # coordinates of 5 random segments (x1, x2, y1, y2)
edges = np.concatenate((edges, sides))
center = np.array([N/2, N/2]) # coordinates of center point
directions = np.array([(cos(radians(a)), sin(radians(a))) for a in range(0, 360, 10)]) # vectors pointing in all directions
intersections = []
# for each direction
for d in directions:
min_dist = float('inf')
# for each edge
for e in edges:
p1x, p1y = e[0], e[2]
p2x, p2y = e[1], e[3]
p3x, p3y = center
p4x, p4y = center + d
# find intersection point
den = (p1x - p2x) * (p3y - p4y) - (p1y - p2y) * (p3x - p4x)
if den:
t = ((p1x - p3x) * (p3y - p4y) - (p1y - p3y) * (p3x - p4x)) / den
u = -((p1x - p2x) * (p1y - p3y) - (p1y - p2y) * (p1x - p3x)) / den
# if any:
if t > 0 and t < 1 and u > 0:
sx = p1x + t * (p2x - p1x)
sy = p1y + t * (p2y - p1y)
isec = np.array([sx, sy])
dist = np.linalg.norm(isec-center)
# make sure to select the nearest one (from center)
if dist < min_dist:
min_dist = dist
nearest = isec
# store nearest interesection point for each ray
intersections.append(nearest)
# Render
plt.axis('off')
for x, y in zip(edges[:,:2], edges[:,2:]):
plt.plot(x, y)
for isec in np.array(intersections):
plt.plot((center[0], isec[0]), (center[1], isec[1]), '--', color="#aaaaaa", linewidth=.8)
Vectorized version (attempt):
from math import radians, cos, sin
import matplotlib.pyplot as plt
from scipy import spatial
import numpy as np
N = 10 # dimensions of canvas (NxN)
sides = np.array([[0, N, 0, 0], [0, N, N, N], [0, 0, 0, N], [N, N, 0, N]])
edges = np.random.rand(5, 4) * N # coordinates of 5 random segments (x1, x2, y1, y2)
edges = np.concatenate((edges, sides))
center = np.array([N/2, N/2]) # coordinates of center point
directions = np.array([(cos(radians(a)), sin(radians(a))) for a in range(0, 360, 10)]) # vectors pointing in all directions
intersections = []
# Render edges
plt.axis('off')
for x, y in zip(edges[:,:2], edges[:,2:]):
plt.plot(x, y)
# for each direction
for d in directions:
p1x, p1y = edges[:,0], edges[:,2]
p2x, p2y = edges[:,1], edges[:,3]
p3x, p3y = center
p4x, p4y = center + d
# denominator
den = (p1x - p2x) * (p3y - p4y) - (p1y - p2y) * (p3x - p4x)
# first 'if' statement -> if den > 0
mask = den > 0
den = den[mask]
p1x = p1x[mask]
p1y = p1y[mask]
p2x = p2x[mask]
p2y = p2y[mask]
t = ((p1x - p3x) * (p3y - p4y) - (p1y - p3y) * (p3x - p4x)) / den
u = -((p1x - p2x) * (p1y - p3y) - (p1y - p2y) * (p1x - p3x)) / den
# second 'if' statement -> if (t>0) & (t<1) & (u>0)
mask2 = (t > 0) & (t < 1) & (u > 0)
t = t[mask2]
p1x = p1x[mask2]
p1y = p1y[mask2]
p2x = p2x[mask2]
p2y = p2y[mask2]
# x, y coordinates of all intersection points in the current direction
sx = p1x + t * (p2x - p1x)
sy = p1y + t * (p2y - p1y)
pts = np.c_[sx, sy]
# if any:
if pts.size > 0:
# find nearest intersection point
tree = spatial.KDTree(pts)
nearest = pts[tree.query(center)[1]]
# Render
plt.plot((center[0], nearest[0]), (center[1], nearest[1]), '--', color="#aaaaaa", linewidth=.8)
Reformulation of the problem – Finding the intersection between a line segment and a line ray
Let q and q2 be the endpoints of a segment (obstacle). For convenience let's define a class to represent points and vectors in the plane. In addition to the usual operations, a vector multiplication is defined by u × v = u.x * v.y - u.y * v.x.
Caution: here Coord(2, 1) * 3 returns Coord(6, 3) while Coord(2, 1) * Coord(-1, 4) outputs 9. To avoid this confusion it might have been possible to restrict * to the scalar multiplication and use ^ via __xor__ for the vector multiplication.
class Coord:
def __init__(self, x, y):
self.x = x
self.y = y
#property
def radius(self):
return np.sqrt(self.x ** 2 + self.y ** 2)
def _cross_product(self, other):
assert isinstance(other, Coord)
return self.x * other.y - self.y * other.x
def __mul__(self, other):
if isinstance(other, Coord):
# 2D "cross"-product
return self._cross_product(other)
elif isinstance(other, int) or isinstance(other, float):
# scalar multiplication
return Coord(self.x * other, self.y * other)
def __rmul__(self, other):
return self * other
def __sub__(self, other):
return Coord(self.x - other.x, self.y - other.y)
def __add__(self, other):
return Coord(self.x + other.x, self.y + other.y)
def __repr__(self):
return f"Coord({self.x}, {self.y})"
Now, I find it easier to handle a ray in polar coordinates: For a given angle theta (direction) the goal is to determine if it intersects the segment, and if so determine the corresponding radius. Here is a function to find that. See here for an explanation of why and how. I tried to use the same variable names as in the previous link.
def find_intersect_btw_ray_and_sgmt(q, q2, theta):
"""
Args:
q (Coord): first endpoint of the segment
q2 (Coord): second endpoint of the segment
theta (float): angle of the ray
Returns:
(float): np.inf if the ray does not intersect the segment,
the distance from the origin of the intersection otherwise
"""
assert isinstance(q, Coord) and isinstance(q2, Coord)
s = q2 - q
r = Coord(np.cos(theta), np.sin(theta))
cross = r * s # 2d cross-product
t_num = q * s
u_num = q * r
## the intersection point is roughly at a distance t_num / cross
## from the origin. But some cases must be checked beforehand.
## (1) the segment [PQ2] is aligned with the ray
if np.isclose(cross, 0) and np.isclose(u_num, 0):
return min(q.radius, q2.radius)
## (2) the segment [PQ2] is parallel with the ray
elif np.isclose(cross, 0):
return np.inf
t, u = t_num / cross, u_num / cross
## There is actually an intersection point
if t >= 0 and 0 <= u <= 1:
return t
## (3) No intersection point
return np.inf
For instance find_intersect_btw_ray_and_sgmt(Coord(1, 2), Coord(-1, 2), np.pi / 2) should returns 2.
Note that here for simplicity, I only considered the case where the origin of the rays is at Coord(0, 0). This can be easily extended to the general case by setting t_num = (q - origin) * s and u_num = (q - origin) * r.
Let's vectorize it!
What is very interesting here is that the operations defined in the Coord class also apply to cases where x and y are numpy arrays! Hence applying any defined operation on Coord(np.array([1, 2, 0]), np.array([2, -1, 3])) amounts applying it elementwise to the points (1, 2), (2, -1) and (0, 3). The operations of Coord are therefore already vectorized. The constructor can be modified into:
def __init__(self, x, y):
x, y = np.array(x), np.array(y)
assert x.shape == y.shape
self.x, self.y = x, y
self.shape = x.shape
Now, we would like the function find_intersect_btw_ray_and_sgmt to be able to handle the case where the parameters q and q2contains sequences of endpoints. Before the sanity checks, all the operations are working properly since, as we have mentioned, they are already vectorized. As you mentionned the conditional statements can be "vectorized" using masks. Here is what I propose:
def find_intersect_btw_ray_and_sgmts(q, q2, theta):
assert isinstance(q, Coord) and isinstance(q2, Coord)
assert q.shape == q2.shape
EPS = 1e-14
s = q2 - q
r = Coord(np.cos(theta), np.sin(theta))
cross = r * s
cross_sign = np.sign(cross)
cross = cross * cross_sign
t_num = (q * s) * cross_sign
u_num = (q * r) * cross_sign
radii = np.zeros_like(t_num)
mask = ~np.isclose(cross, 0) & (t_num >= -EPS) & (-EPS <= u_num) & (u_num <= cross + EPS)
radii[~mask] = np.inf # no intersection
radii[mask] = t_num[mask] / cross[mask] # intersection
return radii
Note that cross, t_num and u_num are multiplied by the sign of cross to ensure that the division by cross keeps the sign of the dividends. Hence conditions of the form ((t_num >= 0) & (cross >= 0)) | ((t_num <= 0) & (cross <= 0)) can be replaced by (t_num >= 0).
For simplicity, we omitted the case (1) where the radius and the segment were aligned ((cross == 0) & (u_num == 0)). This could be incorporated by carefully adding a second mask.
For a given value of theta, we are able to determine if the corresponing ray intersects with several segments at once.
## Some useful functions
def polar_to_cartesian(r, theta):
return Coord(r * np.cos(theta), r * np.sin(theta))
def plot_segments(p, q, *args, **kwargs):
plt.plot([p.x, q.x], [p.y, q.y], *args, **kwargs)
def plot_rays(radii, thetas, *args, **kwargs):
endpoints = polar_to_cartesian(radii, thetas)
n = endpoints.shape
origin = Coord(np.zeros(n), np.zeros(n))
plot_segments(origin, endpoints, *args, **kwargs)
## Data generation
M = 5 # size of the canvas
N = 10 # number of segments
K = 16 # number of rays
q = Coord(*np.random.uniform(-M/2, M/2, size=(2, N)))
p = q + Coord(*np.random.uniform(-M/2, M/2, size=(2, N)))
thetas = np.linspace(0, 2 * np.pi, K, endpoint=False)
## For each ray, find the minimal distance of intersection
## with all segments
plt.figure(figsize=(5, 5))
plot_segments(p, q, "royalblue", marker=".")
for theta in thetas:
radii = find_intersect_btw_ray_and_sgmts(p, q, theta)
radius = np.min(radii)
if not np.isinf(radius):
plot_rays(radius, theta, color="orange")
else:
plot_rays(2*M, theta, ':', c='orange')
plt.plot(0, 0, 'kx')
plt.xlim(-M, M)
plt.ylim(-M, M)
And that's not all! Thanks to the broadcasting of python, it is possible to avoid iteration on theta values. For example, recall that np.array([1, 2, 3]) * np.array([[1], [2], [3], [4]]) produces a matrix of size 4 × 3 of the pairwise products. In the same way Coord([[5],[7]], [[5],[1]]) * Coord([2, 4, 6], [-2, 4, 0]) outputs a 2 × 3 matrix containing all the pairwise cross product between vectors (5, 5), (7, 1) and (2, -2), (4, 4), (6, 0).
Finally, the intersections can be determined in the following way:
radii_all = find_intersect_btw_ray_and_sgmts(p, q, np.vstack(thetas))
# p and q have a shape of (N,) and np.vstack(thetas) of (K, 1)
# this radii_all have a shape of (K, N)
# radii_all[k, n] contains the distance from the origin of the intersection
# between k-th ray and n-th segment (or np.inf if there is no intersection point)
radii = np.min(radii_all, axis=1)
# radii[k] contains the distance from the origin of the closest intersection
# between k-th ray and all segments
do_intersect = ~np.isinf(radii)
plot_rays(radii[do_intersect], thetas[do_intersect], color="orange")
plot_rays(2*M, thetas[~do_intersect], ":", color="orange")

Polygon Class: Finding area and length of Rectangle and Triangle

I have been given the following code.
class Polygon:
'''Class to represent polygon objects.'''
def __init__(self, points):
'''Initialize a Polygon object with a list of points.'''
self.points = points
def length(self):
'''Return the length of the perimeter of the polygon.'''
P = self.points
return sum(sqrt((x1 - x0) ** 2 + (y1 - y0) ** 2)
for (x0, y0), (x1, y1) in zip(P, P[1:] + P[:1]))
def area(self):
'''Return the area of the polygon.'''
P = self.points
A = 0
for (x0, y0), (x1, y1) in zip(P, P[1:] + P[:1]):
A += x0 * y1 - y0 * x1
return abs(A / 2)
I have to implement __init__ methods (and no other method) of two subclasses; Rectangle and Triangle such that a rectangle can be created by:
rectangle = Rectangle(width, height)
and a triangle by:
triangle = Triangle(a, b, c)
I have coded the Rectangle one with the following:
class Rectangle(Polygon):
def __init__(self, width, height):
self.width = width
self.height = height
self.points = [(0,0), (0, height), (width, height), (width, 0)]
And the above code passes all the tests when input is only for Rectangle.
However, I have trouble doing the same for Triangle. The input should be a, b and c where those are the side lengths of the triangle. I cannot figure out which points to use to generate the length and area of the Triangle:
class Triangle(Polygon):
def __init__(self, a, b, c):
self.a = a
self.b = b
self.c = c
self.points = ??
I have tried all combinations of points using the side lengths, however, none are passing the test.
Have a look at:
https://www.omnicalculator.com/math/triangle-height#how-to-find-the-height-of-a-triangle-formulas
h = 0.5 * ((a + b + c) * (-a + b + c) * (a - b + c) * (a + b - c))**0.5 / b
ac = (c**2 - h**2)**0.5
self.points = [
(0, 0),
(a, 0),
(ac, h),
]
By getting h and then applying Pythagoras' Theorem you are obtain the co-ordinates of the "third" point. The first two are trivial: the origin, and another point along one of the axes.
A minor point: instead of setting points directly it might be cleaner to call super().__init__(points).

algorithm to create a circle in a 2D array EDIT: diamond would be okay aswel

I have a 2D in python that represents a tile map, each element in the array is either a 1 or 0, 0 representing land and 1 representing water. I need an algorithm that takes 2 random coordinates to be the center of the circle, a variable for the radius (max 5) and replace the necessary elements in the array to form a full circle.
x = random.randint(0,MAPWIDTH)
y = random.randint(0,MAPHEIGHT)
rad = random.randint(0,5)
tileMap[x][y] = 1 #this creates the center of the circle
how would I do this?
As previously said, you can use the definition of a circle, like so:
import math
def dist(x1, y1, x2, y2):
return math.sqrt((x1 - x2) ** 2 + (y1 - y2) ** 2)
def make_circle(tiles, cx, cy, r):
for x in range(cx - r, cx + r):
for y in range(cy - r, cy + r):
if dist(cx, cy, x, y) <= r:
tiles[x][y] = 1
width = 50
height = 50
cx = width // 2
cy = height // 2
r = 23
tiles = [[0 for _ in range(height)] for _ in range(width)]
make_circle(tiles, cx, cy, r)
print("\n".join("".join(map(str, i)) for i in tiles))
This outputs
00000000000000000000000000000000000000000000000000
00000000000000000000000000000000000000000000000000
00000000000000000000000001000000000000000000000000
00000000000000000001111111111111000000000000000000
00000000000000001111111111111111111000000000000000
00000000000000111111111111111111111110000000000000
00000000000001111111111111111111111111000000000000
00000000000111111111111111111111111111110000000000
00000000001111111111111111111111111111111000000000
00000000011111111111111111111111111111111100000000
00000000111111111111111111111111111111111110000000
00000001111111111111111111111111111111111111000000
00000001111111111111111111111111111111111111000000
00000011111111111111111111111111111111111111100000
00000111111111111111111111111111111111111111110000
00000111111111111111111111111111111111111111110000
00001111111111111111111111111111111111111111111000
00001111111111111111111111111111111111111111111000
00001111111111111111111111111111111111111111111000
00011111111111111111111111111111111111111111111100
00011111111111111111111111111111111111111111111100
00011111111111111111111111111111111111111111111100
00011111111111111111111111111111111111111111111100
00011111111111111111111111111111111111111111111100
00011111111111111111111111111111111111111111111100
00111111111111111111111111111111111111111111111100
00011111111111111111111111111111111111111111111100
00011111111111111111111111111111111111111111111100
00011111111111111111111111111111111111111111111100
00011111111111111111111111111111111111111111111100
00011111111111111111111111111111111111111111111100
00011111111111111111111111111111111111111111111100
00001111111111111111111111111111111111111111111000
00001111111111111111111111111111111111111111111000
00001111111111111111111111111111111111111111111000
00000111111111111111111111111111111111111111110000
00000111111111111111111111111111111111111111110000
00000011111111111111111111111111111111111111100000
00000001111111111111111111111111111111111111000000
00000001111111111111111111111111111111111111000000
00000000111111111111111111111111111111111110000000
00000000011111111111111111111111111111111100000000
00000000001111111111111111111111111111111000000000
00000000000111111111111111111111111111110000000000
00000000000001111111111111111111111111000000000000
00000000000000111111111111111111111110000000000000
00000000000000001111111111111111111000000000000000
00000000000000000001111111111111000000000000000000
00000000000000000000000000000000000000000000000000
00000000000000000000000000000000000000000000000000
Note that I deliberately used a rather large array and radius - this results in being able to actually see the circle a bit better. For some radius around 5, it would probably be pixelated beyond belief.
You would have to set a coordinate to one if
((x – h)(x - h)) + ((y – k)(y - k)) = r * r is true.
h is the centre x coordinate and k is the centre y coordinate.
Inspired by Izaak van Dongen, just re-worked a bit:
from pylab import imshow, show, get_cmap
from numpy import random
import math
def dist(x1, y1, x2, y2):
return math.sqrt((x1 - x2) ** 2 + (y1 - y2) ** 2)
def make_circle(tiles, cx, cy, r):
for x in range(cx - r, cx + r):
for y in range(cy - r, cy + r):
if dist(cx, cy, x, y) < r:
tiles[x][y] = 1
return tiles
def generate_image_mask(iw,ih,cx,cy,cr):
mask = [[0 for _ in range(ih)] for _ in range(iw)]
mask = make_circle(mask, cx, cy, cr)
#print("\n".join("".join(map(str, i)) for i in mask))
imshow(mask, cmap=get_cmap("Spectral"), interpolation='nearest')
show()
if __name__ == '__main__':
image_w = 60
image_h = 60
circle_x = image_w/2
circle_y = image_h/2
circle_r = 15
generate_image_mask(image_w,image_h,circle_x,circle_y,circle_r)

Calculate the area of intersection of two rotated rectangles in python

I have two 2D rotated rectangles, defined as an (center x,center y, height, width) and an angle of rotation (0-360°). How would I calculate the area of intersection of these two rotated rectangles.
Such tasks are solved using computational geometry packages, e.g. Shapely:
import shapely.geometry
import shapely.affinity
class RotatedRect:
def __init__(self, cx, cy, w, h, angle):
self.cx = cx
self.cy = cy
self.w = w
self.h = h
self.angle = angle
def get_contour(self):
w = self.w
h = self.h
c = shapely.geometry.box(-w/2.0, -h/2.0, w/2.0, h/2.0)
rc = shapely.affinity.rotate(c, self.angle)
return shapely.affinity.translate(rc, self.cx, self.cy)
def intersection(self, other):
return self.get_contour().intersection(other.get_contour())
r1 = RotatedRect(10, 15, 15, 10, 30)
r2 = RotatedRect(15, 15, 20, 10, 0)
from matplotlib import pyplot
from descartes import PolygonPatch
fig = pyplot.figure(1, figsize=(10, 4))
ax = fig.add_subplot(121)
ax.set_xlim(0, 30)
ax.set_ylim(0, 30)
ax.add_patch(PolygonPatch(r1.get_contour(), fc='#990000', alpha=0.7))
ax.add_patch(PolygonPatch(r2.get_contour(), fc='#000099', alpha=0.7))
ax.add_patch(PolygonPatch(r1.intersection(r2), fc='#009900', alpha=1))
pyplot.show()
Here is a solution that does not use any libraries outside of Python's standard library.
Determining the area of the intersection of two rectangles can be divided in two subproblems:
Finding the intersection polygon, if any;
Determine the area of the intersection polygon.
Both problems are relatively easy when you work with the
vertices (corners) of the rectangles. So first you have to determine
these vertices. Assuming the coordinate origin is in the center
of the rectangle, the vertices are,
starting from the lower left in a counter-clockwise direction:
(-w/2, -h/2), (w/2, -h/2), (w/2, h/2), and (-w/2, h/2).
Rotating this over the angle a, and translating them
to the proper position of the rectangle's center, these become:
(cx + (-w/2)cos(a) - (-h/2)sin(a), cy + (-w/2)sin(a) + (-h/2)cos(a)), and similar for the other corner points.
A simple way to determine the intersection polygon is the following:
you start with one rectangle as the candidate intersection polygon.
Then you apply the process of sequential cutting (as described here.
In short: you take each edges of the second rectangle in turn,
and remove all parts from the candidate intersection polygon that are on the "outer" half plane defined by the edge
(extended in both directions).
Doing this for all edges leaves the candidate intersection polygon
with only the parts that are inside the second rectangle or on its boundary.
The area of the resulting polygon (defined by a series of vertices) can be calculated
from the coordinates of the vertices.
You sum the cross products of the vertices
of each edge (again in counter-clockwise order),
and divide that by two. See e.g. www.mathopenref.com/coordpolygonarea.html
Enough theory and explanation. Here is the code:
from math import pi, cos, sin
class Vector:
def __init__(self, x, y):
self.x = x
self.y = y
def __add__(self, v):
if not isinstance(v, Vector):
return NotImplemented
return Vector(self.x + v.x, self.y + v.y)
def __sub__(self, v):
if not isinstance(v, Vector):
return NotImplemented
return Vector(self.x - v.x, self.y - v.y)
def cross(self, v):
if not isinstance(v, Vector):
return NotImplemented
return self.x*v.y - self.y*v.x
class Line:
# ax + by + c = 0
def __init__(self, v1, v2):
self.a = v2.y - v1.y
self.b = v1.x - v2.x
self.c = v2.cross(v1)
def __call__(self, p):
return self.a*p.x + self.b*p.y + self.c
def intersection(self, other):
# See e.g. https://en.wikipedia.org/wiki/Line%E2%80%93line_intersection#Using_homogeneous_coordinates
if not isinstance(other, Line):
return NotImplemented
w = self.a*other.b - self.b*other.a
return Vector(
(self.b*other.c - self.c*other.b)/w,
(self.c*other.a - self.a*other.c)/w
)
def rectangle_vertices(cx, cy, w, h, r):
angle = pi*r/180
dx = w/2
dy = h/2
dxcos = dx*cos(angle)
dxsin = dx*sin(angle)
dycos = dy*cos(angle)
dysin = dy*sin(angle)
return (
Vector(cx, cy) + Vector(-dxcos - -dysin, -dxsin + -dycos),
Vector(cx, cy) + Vector( dxcos - -dysin, dxsin + -dycos),
Vector(cx, cy) + Vector( dxcos - dysin, dxsin + dycos),
Vector(cx, cy) + Vector(-dxcos - dysin, -dxsin + dycos)
)
def intersection_area(r1, r2):
# r1 and r2 are in (center, width, height, rotation) representation
# First convert these into a sequence of vertices
rect1 = rectangle_vertices(*r1)
rect2 = rectangle_vertices(*r2)
# Use the vertices of the first rectangle as
# starting vertices of the intersection polygon.
intersection = rect1
# Loop over the edges of the second rectangle
for p, q in zip(rect2, rect2[1:] + rect2[:1]):
if len(intersection) <= 2:
break # No intersection
line = Line(p, q)
# Any point p with line(p) <= 0 is on the "inside" (or on the boundary),
# any point p with line(p) > 0 is on the "outside".
# Loop over the edges of the intersection polygon,
# and determine which part is inside and which is outside.
new_intersection = []
line_values = [line(t) for t in intersection]
for s, t, s_value, t_value in zip(
intersection, intersection[1:] + intersection[:1],
line_values, line_values[1:] + line_values[:1]):
if s_value <= 0:
new_intersection.append(s)
if s_value * t_value < 0:
# Points are on opposite sides.
# Add the intersection of the lines to new_intersection.
intersection_point = line.intersection(Line(s, t))
new_intersection.append(intersection_point)
intersection = new_intersection
# Calculate area
if len(intersection) <= 2:
return 0
return 0.5 * sum(p.x*q.y - p.y*q.x for p, q in
zip(intersection, intersection[1:] + intersection[:1]))
if __name__ == '__main__':
r1 = (10, 15, 15, 10, 30)
r2 = (15, 15, 20, 10, 0)
print(intersection_area(r1, r2))
intersection, pnt = contourIntersection(rect1, rect2)
After looking at the possible duplicate page for this problem I couldn't find a completed answer for python so here is my solution using masking. This function will work with complex shapes on any angle, not just rectangles
You pass in the 2 contours of your rotated rectangles as parameters and it returns 'None' if no intersection occurs or an image of the intersected area and the left/top position of that image in relation to the original image the contours were taken from
Uses python, cv2 and numpy
import cv2
import math
import numpy as np
def contourIntersection(con1, con2, showContours=False):
# skip if no bounding rect intersection
leftmost1 = tuple(con1[con1[:, :, 0].argmin()][0])
topmost1 = tuple(con1[con1[:, :, 1].argmin()][0])
leftmost2 = tuple(con2[con2[:, :, 0].argmin()][0])
topmost2 = tuple(con2[con2[:, :, 1].argmin()][0])
rightmost1 = tuple(con1[con1[:, :, 0].argmax()][0])
bottommost1 = tuple(con1[con1[:, :, 1].argmax()][0])
rightmost2 = tuple(con2[con2[:, :, 0].argmax()][0])
bottommost2 = tuple(con2[con2[:, :, 1].argmax()][0])
if rightmost1[0] < leftmost2[0] or rightmost2[0] < leftmost1[0] or bottommost1[1] < topmost2[1] or bottommost2[1] < topmost1[1]:
return None, None
# reset top / left to 0
left = leftmost1[0] if leftmost1[0] < leftmost2[0] else leftmost2[0]
top = topmost1[1] if topmost1[1] < topmost2[1] else topmost2[1]
newCon1 = []
for pnt in con1:
newLeft = pnt[0][0] - left
newTop = pnt[0][1] - top
newCon1.append([newLeft, newTop])
# next
con1_new = np.array([newCon1], dtype=np.int32)
newCon2 = []
for pnt in con2:
newLeft = pnt[0][0] - left
newTop = pnt[0][1] - top
newCon2.append([newLeft, newTop])
# next
con2_new = np.array([newCon2], dtype=np.int32)
# width / height
right1 = rightmost1[0] - left
bottom1 = bottommost1[1] - top
right2 = rightmost2[0] - left
bottom2 = bottommost2[1] - top
width = right1 if right1 > right2 else right2
height = bottom1 if bottom1 > bottom2 else bottom2
# create images
img1 = np.zeros([height, width], np.uint8)
cv2.drawContours(img1, con1_new, -1, (255, 255, 255), -1)
img2 = np.zeros([height, width], np.uint8)
cv2.drawContours(img2, con2_new, -1, (255, 255, 255), -1)
# mask images together using AND
imgIntersection = cv2.bitwise_and(img1, img2)
if showContours:
img1[img1 > 254] = 128
img2[img2 > 254] = 100
imgAll = cv2.bitwise_or(img1, img2)
cv2.imshow('Merged Images', imgAll)
# end if
if not imgIntersection.sum():
return None, None
# trim
while not imgIntersection[0].sum():
imgIntersection = np.delete(imgIntersection, (0), axis=0)
top += 1
while not imgIntersection[-1].sum():
imgIntersection = np.delete(imgIntersection, (-1), axis=0)
while not imgIntersection[:, 0].sum():
imgIntersection = np.delete(imgIntersection, (0), axis=1)
left += 1
while not imgIntersection[:, -1].sum():
imgIntersection = np.delete(imgIntersection, (-1), axis=1)
return imgIntersection, (left, top)
# end function
To complete the answer so you can use the above function with the values of CenterX, CenterY, Width, Height and Angle of 2 rotated rectangles I have added the below functions. Simple change the Rect1 and Rect2 properties at the bottom of the code to your own
def pixelsBetweenPoints(xy1, xy2):
X = abs(xy1[0] - xy2[0])
Y = abs(xy1[1] - xy2[1])
return int(math.sqrt((X ** 2) + (Y ** 2)))
# end function
def rotatePoint(angle, centerPoint, dist):
xRatio = math.cos(math.radians(angle))
yRatio = math.sin(math.radians(angle))
xPotted = int(centerPoint[0] + (dist * xRatio))
yPlotted = int(centerPoint[1] + (dist * yRatio))
newPoint = [xPotted, yPlotted]
return newPoint
# end function
def angleBetweenPoints(pnt1, pnt2):
A_B = pixelsBetweenPoints(pnt1, pnt2)
pnt3 = (pnt1[0] + A_B, pnt1[1])
C = pixelsBetweenPoints(pnt2, pnt3)
angle = math.degrees(math.acos((A_B * A_B + A_B * A_B - C * C) / (2.0 * A_B * A_B)))
# reverse if above horizon
if pnt2[1] < pnt1[1]:
angle = angle * -1
# end if
return angle
# end function
def rotateRectContour(xCenter, yCenter, height, width, angle):
# calc positions
top = int(yCenter - (height / 2))
left = int(xCenter - (width / 2))
right = left + width
rightTop = (right, top)
centerPoint = (xCenter, yCenter)
# new right / top point
rectAngle = angleBetweenPoints(centerPoint, rightTop)
angleRightTop = angle + rectAngle
angleRightBottom = angle + 180 - rectAngle
angleLeftBottom = angle + 180 + rectAngle
angleLeftTop = angle - rectAngle
distance = pixelsBetweenPoints(centerPoint, rightTop)
rightTop_new = rotatePoint(angleRightTop, centerPoint, distance)
rightBottom_new = rotatePoint(angleRightBottom, centerPoint, distance)
leftBottom_new = rotatePoint(angleLeftBottom, centerPoint, distance)
leftTop_new = rotatePoint(angleLeftTop, centerPoint, distance)
contourList = [[leftTop_new], [rightTop_new], [rightBottom_new], [leftBottom_new]]
contour = np.array(contourList, dtype=np.int32)
return contour
# end function
# rect1
xCenter_1 = 40
yCenter_1 = 20
height_1 = 200
width_1 = 80
angle_1 = 45
rect1 = rotateRectContour(xCenter_1, yCenter_1, height_1, width_1, angle_1)
# rect2
xCenter_2 = 80
yCenter_2 = 25
height_2 = 180
width_2 = 50
angle_2 = 123
rect2 = rotateRectContour(xCenter_2, yCenter_2, height_2, width_2, angle_2)
intersection, pnt = contourIntersection(rect1, rect2, True)
if intersection is None:
print('No intersection')
else:
print('Area of intersection = ' + str(int(intersection.sum() / 255)))
cv2.imshow('Intersection', intersection)
# end if
cv2.waitKey(0)

Categories