Python program gets stuck when dealing with large integers - python

I am working on a program that determines whether (2^n) - 1 (where n is an integer) is prime or not.
def check_prime(n):
if n == 1:
print("?")
global k
k = 0
for i in range(2, (n - 1)):
if n / i == n // i:
print("/")
k = 1
break
if k != 1:
print("p")
def special_prime(a):
b = (2 ** a) - 1
check_prime(b)
for i in range(1, 143):
print(i)
check_prime(i)
special_prime(i)
print("\n")
When it gets to i = 31, it just gets stuck. I was wondering if my algorithm is too slow or if there is something else that I am missing.

Related

Pythagorean triple with python

I want to get a number 'n' and produce Pythagorean triple that total of them is equal with 'n'.
for example for n=12 my output is 3, 4, 5 (12 = 3 + 4 + 5).
I write below code but it take a lot of time for big numbers. please help me to improve it.
a = int(input())
done = False
for i in range(int(a/4)+1,2,-1):
if done:
break
for j in range(i+1,int(a/2)+1):
k = a-(i+j)
if k <= j:
break
if i**2 + j**2 == k**2:
print(i,j,k)
done = True
break
if done == False:
print('Impossible')
This code may help you
limits = int(input())
c, m = 0, 2
# Limiting c would limit
# all a, b and c
while c < limits :
# Now loop on n from 1 to m-1
for n in range(1, m) :
a = m * m - n * n
b = 2 * m * n
c = m * m + n * n
# if c is greater than
# limit then break it
if c > limits :
break
if a+b+c == limits:
print(a, b, c)
m = m + 1
>> 12
>> 3 4 5
I've used the joblib module to parallelize your code, though I haven't tested if there is a speedup for very large n; let me know:
from joblib import Parallel, delayed
done = False
def triple(a):
global done
for i in range(int(a/4)+1,2,-1):
if done:
break
for j in range(i+1,int(a/2)+1):
k = a-(i+j)
if k <= j:
break
if i**2 + j**2 == k**2:
print(i,j,k)
done = True
break
if done == False:
print('Impossible')
if __name__ == '__main__':
a = int(input("n:"))
Parallel(n_jobs=-1, backend="threading")(map(delayed(triple), [a]))
To generate a Pythagorean triplet of a given sum, you can run two loops, where the first loop runs from i = 1 to n/3, the second loop runs from j = i+1 to n/2. In second loop, we check if (n – i – j) is equal to i * i + j * j.
n = int(input()
for i in range(1, int(n / 3) + 1):
for j in range(i + 1, int(n / 2) + 1):
k = n - i - j
if (i * i + j * j == k * k):
print(i, j, k)

python recursion (exponential)

Rapid exponentiation, I need to write an algorithm that can calculate n^b faster than n multiplications! The complexity of the algorithm will be O(logn).
I have a code, I was able to pass first 20 test (I can't see the numbers), but I can't improve the algorithm to pass last 5 tests. Any suggestions how can I improve it?
def quick_power(x, n):
if n == 0:
return 1
elif n == 1:
return x
elif n == 2:
return x * x
elif n % 2 != 0:
return x * quick_power(x, n - 1)
elif n % 2 == 0:
return quick_power(x, n // 2) * quick_power(x, n // 2)
x = int(input())
n = int(input())
print(quick_power(x, n))
Your idea is in the right direction and your code is in principle not wrong. The point is that you need to distinguish two states, even and odd
if n is even: x^n = (x^(n/2))^2
if n is odd: x^n = x*x^(n-1)
, which you actually did.
Without knowing your last 5 tests, it is hard to figure out why it failed. But you can try the following simplified code.
def quick_power(x, n):
if n == 0:
return 1
elif n % 2 == 0:
return quick_power(x, n / 2)**2
else:
return x * quick_power(x, n-1)
print(quick_power(3, 5))

Probability of finding a prime (using miller-rabin test)

I've implemented Miller-Rabin primality test and every function seems to be working properly in isolation. However, when I try to find a prime by generating random numbers of 70 bits my program generates in average more than 100000 numbers before finding a number that passes the Miller-Rabin test (10 steps). This is very strange, the probability of being prime for a random odd number of less than 70 bits should be very high (more than 1/50 according to Hadamard-de la Vallée Poussin Theorem). What could be wrong with my code? Would it be possible that the random number generator throws prime numbers with very low probability? I guess not... Any help is very welcome.
import random
def miller_rabin_rounds(n, t):
'''Runs miller-rabin primallity test t times for n'''
# First find the values r and s such that 2^s * r = n - 1
r = (n - 1) / 2
s = 1
while r % 2 == 0:
s += 1
r /= 2
# Run the test t times
for i in range(t):
a = random.randint(2, n - 1)
y = power_remainder(a, r, n)
if y != 1 and y != n - 1:
# check there is no j for which (a^r)^(2^j) = -1 (mod n)
j = 0
while j < s - 1 and y != n - 1:
y = (y * y) % n
if y == 1:
return False
j += 1
if y != n - 1:
return False
return True
def power_remainder(a, k, n):
'''Computes (a^k) mod n efficiently by decomposing k into binary'''
r = 1
while k > 0:
if k % 2 != 0:
r = (r * a) % n
a = (a * a) % n
k //= 2
return r
def random_odd(n):
'''Generates a random odd number of max n bits'''
a = random.getrandbits(n)
if a % 2 == 0:
a -= 1
return a
if __name__ == '__main__':
t = 10 # Number of Miller-Rabin tests per number
bits = 70 # Number of bits of the random number
a = random_odd(bits)
count = 0
while not miller_rabin_rounds(a, t):
count += 1
if count % 10000 == 0:
print(count)
a = random_odd(bits)
print(a)
The reason this works in python 2 and not python 3 is that the two handle integer division differently. In python 2, 3/2 = 1, whereas in python 3, 3/2=1.5.
It looks like you should be forcing integer division in python 3 (rather than float division). If you change the code to force integer division (//) as such:
# First find the values r and s such that 2^s * r = n - 1
r = (n - 1) // 2
s = 1
while r % 2 == 0:
s += 1
r //= 2
You should see the correct behaviour regardless of what python version you use.

How to check if the number can be represented prime power (nth root is prime or not)

I am trying this problem for a while but getting wrong answer again and again.
number can be very large <=2^2014.
22086. Prime Power Test
Explanation about my algorithm:
For a Given number I am checking if the number can be represented as form of prime power or not.
So the the maximum limit to check for prime power is log n base 2.
Finally problem reduced to finding nth root of a number and if it is prime we have our answer else check for all i till log (n base 2) and exit.
I have used all sort of optimizations and have tested enormous test-cases and for all my algorithm gives correct answer
but Judge says wrong answer.
Spoj have another similar problem with small constraints n<=10^18 for which I already got accepted with Python and C++(Best solver in c++)
Here is My python code Please suggest me if I am doing something wrong I am not very proficient in python so my algorithm is a bit lengthy. Thanks in advance.
My Algorithm:
import math
import sys
import fractions
import random
import decimal
write = sys.stdout.write
def sieve(n):
sqrtn = int(n**0.5)
sieve = [True] * (n+1)
sieve[0] = False
sieve[1] = False
for i in range(2, sqrtn+1):
if sieve[i]:
m = n//i - i
sieve[i*i:n+1:i] = [False] * (m+1)
return sieve
def gcd(a, b):
while b:
a, b = b, a%b
return a
def mr_pass(a, s, d, n):
a_to_power = pow(a, d, n)
if a_to_power == 1:
return True
for i in range(s-1):
if a_to_power == n - 1:
return True
a_to_power = (a_to_power * a_to_power) % n
return a_to_power == n - 1
isprime=sieve(1000000)
sprime= [2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97,101,103,107,109,113,127,131,137,139,149,151,157,163,167,173,179,181,191,193,197,199,211,223,227,229,233,239,241,251,257,263,269,271,277,281,283,293,307,311,313,317,331,337,347,349,353,359,367,373,379,383,389,397,401,409,419,421,431,433,439,443,449,457,461,463,467,479,487,491,499,503,509,521,523,541,547,557,563,569,571,577,587,593,599,601,607,613,617,619,631,641,643,647,653,659,661,673,677,683,691,701,709,719,727,733,739,743,751,757,761,769,773,787,797,809,811,821,823,827,829,839,853,857,859,863,877,881,883,887,907,911,919,929,937,941,947,953,967,971,977,983,991,997]
def smooth_num(n):
c=0
for a in sprime:
if(n%a==0):
c+=1
if(c>=2):
return True;
return False
def is_prime(n):
if(n<1000000):
return isprime[n]
if any((n % p) == 0 for p in sprime):
return False
if n==2:
return True
d = n - 1
s = 0
while d % 2 == 0:
d >>= 1
s += 1
for repeat in range(10):
a=random.randint(1,n-1)
if not mr_pass(a, s, d, n):
return False
return True
def iroot(n,k):
hi = 1
while pow(hi, k) < n:
hi *= 2
lo = hi // 2
while hi - lo > 1:
mid = (lo + hi) // 2
midToK = (mid**k)
if midToK < n:
lo = mid
elif n < midToK:
hi = mid
else:
return mid
if (hi**k) == n:
return hi
else:
return lo
def isqrt(x):
n = int(x)
if n == 0:
return 0
a, b = divmod(n.bit_length(), 2)
x = pow(2,(a+b))
while True:
y = (x + n//x)>>1
if y >= x:
return x
x = y
maxx=2**1024;minn=2**64
def nth_rootp(n,k):
return int(round(math.exp(math.log(n)/k),0))
def main():
for cs in range(int(input())):
n=int(sys.stdin.readline().strip())
if(smooth_num(n)):
write("Invalid order\n")
continue;
order = 0;m=0
power =int(math.log(n,2))
for i in range(1,power+1):
if(n<=maxx):
if i==1:m=n
elif(i==2):m=isqrt(n)
elif(i==4):m=isqrt(isqrt(n))
elif(i==8):m=isqrt(isqrt(isqrt(n)))
elif(i==16):m=isqrt(isqrt(isqrt(isqrt(n))))
elif(i==32):m=isqrt(isqrt(isqrt(isqrt(isqrt(n)))))
elif(i==64):m=isqrt(isqrt(isqrt(isqrt(isqrt(isqrt(n))))))
elif(i==128):m=isqrt(isqrt(isqrt(isqrt(isqrt(isqrt(isqrt(n)))))))
elif(i==256):m=isqrt(isqrt(isqrt(isqrt(isqrt(isqrt(isqrt(isqrt(n))))))))
else:m=int(nth_rootp(n,i))
else:
if i==1:m=n
elif i==2:m=isqrt(n)
elif(i==4):m=isqrt(isqrt(n))
elif(i==8):m=isqrt(isqrt(isqrt(n)))
elif(i==16):m=isqrt(isqrt(isqrt(isqrt(n))))
elif(i==32):m=isqrt(isqrt(isqrt(isqrt(isqrt(n)))))
elif(i==64):m=isqrt(isqrt(isqrt(isqrt(isqrt(isqrt(n))))))
elif(i==128):m=isqrt(isqrt(isqrt(isqrt(isqrt(isqrt(isqrt(n)))))))
elif(i==256):m=isqrt(isqrt(isqrt(isqrt(isqrt(isqrt(isqrt(isqrt(n))))))))
else:m=iroot(n,i)
if m<2:
order=0
break
if(is_prime(m) and n==(m**i)):
write("%d %d\n"%(m,i))
order = 1
break
if(order==0):
write("Invalid order\n")
main()
I'm not going to read all that code, though I suspect the problem is floating-point inaccuracy. Here is my program to determine if a number n is a prime power; it returns the prime p and the power k:
# prime power predicate
from random import randint
from fractions import gcd
def findWitness(n, k=5): # miller-rabin
s, d = 0, n-1
while d % 2 == 0:
s, d = s+1, d/2
for i in range(k):
a = randint(2, n-1)
x = pow(a, d, n)
if x == 1 or x == n-1: continue
for r in range(1, s):
x = (x * x) % n
if x == 1: return a
if x == n-1: break
else: return a
return 0
# returns p,k such that n=p**k, or 0,0
# assumes n is an integer greater than 1
def primePower(n):
def checkP(n, p):
k = 0
while n > 1 and n % p == 0:
n, k = n / p, k + 1
if n == 1: return p, k
else: return 0, 0
if n % 2 == 0: return checkP(n, 2)
q = n
while True:
a = findWitness(q)
if a == 0: return checkP(n, q)
d = gcd(pow(a,q,n)-a, q)
if d == 1 or d == q: return 0, 0
q = d
The program uses Fermat's Little Theorem and exploits the witness a to the compositeness of n that is found by the Miller-Rabin algorithm. It is given as Algorithm 1.7.5 in Henri Cohen's book A Course in Computational Algebraic Number Theory. You can see the program in action at http://ideone.com/cNzQYr.
this is not really an answer, but I don't have enough space to write it as a comment.
So, if the problem still not solved, you may try the following function for nth_rootp, though it is a bit ugly (it is just a binary search to find the precise value of the function):
def nth_rootp(n,k):
r = int(round(math.log(n,2)/k))
left = 2**(r-1)
right = 2**(r+1)
if left**k == n:
return left
if right**k == n:
return right
while left**k < n and right**k > n:
tmp = (left + right)/2
if tmp**k == n:
return tmp
if tmp == left or tmp == right:
return tmp
if tmp**k < n:
left = tmp
else:
if tmp**k > n:
right = tmp
your code look like a little overcomplicated for this task, I will not bother to check it, but the thing you need are the following
is_prime, naturally
a prime generator, optional
calculate the nth root of a number in a precise way
for the first one I recommend the deterministic form of the Miller-Rabin test with a appropriate set of witness to guaranty a exact result until 1543267864443420616877677640751301 (1.543 x 1033) for even bigger numbers you can use the probabilistic one or use a bigger list of witness chosen at your criteria
with all that a template for the solution is as follow
import math
def is_prime(n):
...
def sieve(n):
"list of all primes p such that p<n"
...
def inthroot(x,n):
"calculate floor(x**(1/n))"
...
def is_a_power(n):
"return (a,b) if n=a**b otherwise throw ValueError"
for b in sieve( math.log2(n) +1 ):
a = inthroot(n,b)
if a**b == n:
return a,b
raise ValueError("is not a power")
def smooth_factorization(n):
"return (p,e) where p is prime and n = p**e if such value exists, otherwise throw ValueError"
e=1
p=n
while True:
try:
p,n = is_a_power(p)
e = e*n
except ValueError:
break
if is_prime(p):
return p,e
raise ValueError
def main():
for test in range( int(input()) ):
try:
p,e = smooth_factorization( int(input()) )
print(p,e)
except ValueError:
print("Invalid order")
main()
And the code above should be self explanatory
Filling the blacks
As you are familiar with Miller-Rabin test, I will only mention that if you are interested you can find a implementation of the determinist version here just update the list of witness and you are ready to go.
For the sieve, just change the one you are using to return a list with primes number like this for instance [ p for p,is_p in enumerate(sieve) if is_p ]
With those out of the way, the only thing left is calculate the nth root of the number and to do that in a precise way we need to get rip of that pesky floating point arithmetic that only produce headaches, and the answer is implement the Nth root algorithm using only integer arithmetic, which is pretty similar to the one of isqrt that you already use, I guide myself with the one made by Mark Dickinson for cube root and generalize it and I get this
def inthroot(A, n) :
"calculate floor( A**(1/n) )"
#https://en.wikipedia.org/wiki/Nth_root_algorithm
#https://en.wikipedia.org/wiki/Nth_root#nth_root_algorithm
#https://stackoverflow.com/questions/35254566/wrong-answer-in-spoj-cubert/35276426#35276426
#https://stackoverflow.com/questions/39560902/imprecise-results-of-logarithm-and-power-functions-in-python/39561633#39561633
if A<0:
if n%2 == 0:
raise ValueError
return - inthroot(-A,n)
if A==0:
return 0
n1 = n-1
if A.bit_length() < 1024: # float(n) safe from overflow
xk = int( round( pow(A,1.0/n) ) )
xk = ( n1*xk + A//pow(xk,n1) )//n # Ensure xk >= floor(nthroot(A)).
else:
xk = 1 << -(-A.bit_length()//n) # 1 << sum(divmod(A.bit_length(),n))
# power of 2 closer but greater than the nth root of A
while True:
sig = A // pow(xk,n1)
if xk <= sig:
return xk
xk = ( n1*xk + sig )//n
and with all the above you can solve the problem without inconvenient
from sympy.ntheory import factorint
q=int(input("Give me the number q="))
fact=factorint(q) #We factor the number q=p_1^{n_1}*p_2^{n_2}*...
p_1=list(fact.keys()) #We create a list from keys to be the the numbers p_1,p_2,...
n_1=list(fact.values()) #We create a list from values to be the the numbers n_1,n_2,...
p=int(p_1[0])
n=int(n_1[0])
if q!=p**n: #Check if the number q=p_{1}[0]**n_{1}[0]=p**n.
print("The number "+str(q)+" is not a prime power")
else:
print("The number "+str(q)+" is a prime power")
print("The prime number p="+str(p))
print("The natural number n="+str(n))

Rabin-Miller Strong Pseudoprime Test Implementation won't work

Been trying to implement Rabin-Miller Strong Pseudoprime Test today.
Have used Wolfram Mathworld as reference, lines 3-5 sums up my code pretty much.
However, when I run the program, it says (sometimes) that primes (even low such as 5, 7, 11) are not primes. I've looked over the code for a very long while and cannot figure out what is wrong.
For help I've looked at this site aswell as many other sites but most use another definition (probably the same, but since I'm new to this kind of math, I can't see the same obvious connection).
My Code:
import random
def RabinMiller(n, k):
# obviously not prime
if n < 2 or n % 2 == 0:
return False
# special case
if n == 2:
return True
s = 0
r = n - 1
# factor n - 1 as 2^(r)*s
while r % 2 == 0:
s = s + 1
r = r // 2 # floor
# k = accuracy
for i in range(k):
a = random.randrange(1, n)
# a^(s) mod n = 1?
if pow(a, s, n) == 1:
return True
# a^(2^(j) * s) mod n = -1 mod n?
for j in range(r):
if pow(a, 2**j*s, n) == -1 % n:
return True
return False
print(RabinMiller(7, 5))
How does this differ from the definition given at Mathworld?
1. Comments on your code
A number of the points I'll make below were noted in other answers, but it seems useful to have them all together.
In the section
s = 0
r = n - 1
# factor n - 1 as 2^(r)*s
while r % 2 == 0:
s = s + 1
r = r // 2 # floor
you've got the roles of r and s swapped: you've actually factored n − 1 as 2sr. If you want to stick to the MathWorld notation, then you'll have to swap r and s in this section of the code:
# factor n - 1 as 2^(r)*s, where s is odd.
r, s = 0, n - 1
while s % 2 == 0:
r += 1
s //= 2
In the line
for i in range(k):
the variable i is unused: it's conventional to name such variables _.
You pick a random base between 1 and n − 1 inclusive:
a = random.randrange(1, n)
This is what it says in the MathWorld article, but that article is written from the mathematician's point of view. In fact it is useless to pick the base 1, since 1s = 1 (mod n) and you'll waste a trial. Similarly, it's useless to pick the base n − 1, since s is odd and so (n − 1)s = −1 (mod n). Mathematicians don't have to worry about wasted trials, but programmers do, so write instead:
a = random.randrange(2, n - 1)
(n needs to be at least 4 for this optimization to work, but we can easily arrange that by returning True at the top of the function when n = 3, just as you do for n = 2.)
As noted in other replies, you've misunderstood the MathWorld article. When it says that "n passes the test" it means that "n passes the test for the base a". The distinguishing fact about primes is that they pass the test for all bases. So when you find that as = 1 (mod n), what you should do is to go round the loop and pick the next base to test against.
# a^(s) = 1 (mod n)?
x = pow(a, s, n)
if x == 1:
continue
There's an opportunity for optimization here. The value x that we've just computed is a20 s (mod n). So we could test it immediately and save ourselves one loop iteration:
# a^(s) = ±1 (mod n)?
x = pow(a, s, n)
if x == 1 or x == n - 1:
continue
In the section where you calculate a2j s (mod n) each of these numbers is the square of the previous number (modulo n). It's wasteful to calculate each from scratch when you could just square the previous value. So you should write this loop as:
# a^(2^(j) * s) = -1 (mod n)?
for _ in range(r - 1):
x = pow(x, 2, n)
if x == n - 1:
break
else:
return False
It's a good idea to test for divisibility by small primes before trying Miller–Rabin. For example, in Rabin's 1977 paper he says:
In implementing the algorithm we incorporate some laborsaving steps. First we test for divisibility by any prime p < N, where, say N = 1000.
2. Revised code
Putting all this together:
from random import randrange
small_primes = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31] # etc.
def probably_prime(n, k):
"""Return True if n passes k rounds of the Miller-Rabin primality
test (and is probably prime). Return False if n is proved to be
composite.
"""
if n < 2: return False
for p in small_primes:
if n < p * p: return True
if n % p == 0: return False
r, s = 0, n - 1
while s % 2 == 0:
r += 1
s //= 2
for _ in range(k):
a = randrange(2, n - 1)
x = pow(a, s, n)
if x == 1 or x == n - 1:
continue
for _ in range(r - 1):
x = pow(x, 2, n)
if x == n - 1:
break
else:
return False
return True
In addition to what Omri Barel has said, there is also a problem with your for loop. You will return true if you find one a that passes the test. However, all a have to pass the test for n to be a probable prime.
I'm wondering about this piece of code:
# factor n - 1 as 2^(r)*s
while r % 2 == 0:
s = s + 1
r = r // 2 # floor
Let's take n = 7. So n - 1 = 6. We can express n - 1 as 2^1 * 3. In this case r = 1 and s = 3.
But the code above finds something else. It starts with r = 6, so r % 2 == 0. Initially, s = 0 so after one iteration we have s = 1 and r = 3. But now r % 2 != 0 and the loop terminates.
We end up with s = 1 and r = 3 which is clearly incorrect: 2^r * s = 8.
You should not update s in the loop. Instead, you should count how many times you can divide by 2 (this will be r) and the result after the divisions will be s. In the example of n = 7, n - 1 = 6, we can divide it once (so r = 1) and after the division we end up with 3 (so s = 3).
Here's my version:
# miller-rabin pseudoprimality checker
from random import randrange
def isStrongPseudoprime(n, a):
d, s = n-1, 0
while d % 2 == 0:
d, s = d/2, s+1
t = pow(a, d, n)
if t == 1:
return True
while s > 0:
if t == n - 1:
return True
t, s = pow(t, 2, n), s - 1
return False
def isPrime(n, k):
if n % 2 == 0:
return n == 2
for i in range(1, k):
a = randrange(2, n)
if not isStrongPseudoprime(n, a):
return False
return True
If you want to know more about programming with prime numbers, I modestly recommend this essay on my blog.
You should also have a look at Wikipedia, where known "random" sequences gives guaranteed answers up to a given prime.
if n < 1,373,653, it is enough to test a = 2 and 3;
if n < 9,080,191, it is enough to test a = 31 and 73;
if n < 4,759,123,141, it is enough to test a = 2, 7, and 61;
if n < 2,152,302,898,747, it is enough to test a = 2, 3, 5, 7, and 11;
if n < 3,474,749,660,383, it is enough to test a = 2, 3, 5, 7, 11, and 13;
if n < 341,550,071,728,321, it is enough to test a = 2, 3, 5, 7, 11, 13, and 17;

Categories