creating function of Telegram inline keyboard - python

I need to write a function that creates an inline-keyboard. The function parameter is an integer, for example i.
Number of buttons in the keyboard: i + 1.
Condition number of buttons per line: <=3.

I found this variant:
def get_kb(number_of_buttons):
markup = InlineKeyboardMarkup()
lines = int(number_of_buttons/3)+1
last_lines = (number_of_buttons % 3)
for i in range(1, lines):
markup.add(InlineKeyboardButton('button ' + str(i ** i), callback_data='button_' + str(i ** i)),
InlineKeyboardButton('button ' + str(i ** i + 1), callback_data='button_' + str(i ** i + 1)),
InlineKeyboardButton('button ' + str(i ** i + 2), callback_data='button ' + str(i ** i + 2)))
if last_lines == 0:
markup.add(InlineKeyboardButton('others', callback_data='others'))
elif last_lines == 1:
markup.add(InlineKeyboardButton('button ' + str(q), callback_data='button ' + str(q)),
InlineKeyboardButton('others', callback_data='others'))
else:
markup.add(InlineKeyboardButton('button ' + str(q-1), callback_data='button ' + str(q-1)),
InlineKeyboardButton('button ' + str(q), callback_data='button ' + str(q)),
InlineKeyboardButton('others', callback_data='others'))
But I think that isn't the best variant

Based on your own answer and since you mentioned aiogram in your comment, there's already a feature implemented inside the library for your use case:
# number_of_buttons_in_row would be 3 in your case
def get_kb(number_of_buttons, number_of_buttons_in_row):
markup = InlineKeyboardMarkup()
markup.row_width = number_of_buttons_in_row # key part is here
for i in range(1, number_of_buttons):
markup.add(InlineKeyboardButton('button ' + str(i ** i), callback_data='button_' + str(i ** i)),
InlineKeyboardButton('button ' + str(i ** i + 1), callback_data='button_' + str(i ** i + 1)),
InlineKeyboardButton('button ' + str(i ** i + 2), callback_data='button ' + str(i ** i + 2)))
markup.add(InlineKeyboardButton('others', callback_data='others'))
markup.add(InlineKeyboardButton('button ' + str(q), callback_data='button ' + str(q)),
InlineKeyboardButton('others', callback_data='others'))
markup.add(InlineKeyboardButton('button ' + str(q-1), callback_data='button ' + str(q-1)),
InlineKeyboardButton('button ' + str(q), callback_data='button ' + str(q)),
InlineKeyboardButton('others', callback_data='others'))
return markup
As you can see there's a field called row_width inside markup, that's used to slice the buttons into the given width and place them in several lines

Related

Python LDA Gensim model with over 20 topics does not print properly

Using the Gensim package (both LDA and Mallet), I noticed that when I create a model with more than 20 topics, and I use the print_topics function, it will print a maximum of 20 topics (note, not the first 20 topics, rather any 20 topics), and they will be out of order.
And so my question is, how do i get all of the topics to print? I am unsure if this is a bug or an issue on my end. I have looked back at my library of LDA models (over 5000, different data sources), and have noted this happens in all of them where topics are above 20.
Below is sample code with output. In the output, you will see the topics are not ordered (they should be) and topics are missing such as topic 3.
lda_model = gensim.models.ldamodel.LdaModel(corpus=jr_dict_corpus,
id2word=jr_dict,
num_topics=25,
random_state=100,
update_every=1,
chunksize=100,
passes=10,
alpha='auto',
per_word_topics=True)
pprint(lda_model.print_topics())
#note, if the model contained 20 topics, the topics would be listed in order 0-19
[(21,
'0.001*"commitment" + 0.001*"study" + 0.001*"evolve" + 0.001*"outlook" + '
'0.001*"value" + 0.001*"people" + 0.001*"individual" + 0.001*"client" + '
'0.001*"structure" + 0.001*"proposal"'),
(18,
'0.001*"self" + 0.001*"insurance" + 0.001*"need" + 0.001*"trend" + '
'0.001*"statistic" + 0.001*"propose" + 0.001*"analysis" + 0.001*"perform" + '
'0.001*"impact" + 0.001*"awareness"'),
(2,
'0.001*"link" + 0.001*"task" + 0.001*"collegiate" + 0.001*"universitie" + '
'0.001*"banking" + 0.001*"origination" + 0.001*"security" + 0.001*"standard" '
'+ 0.001*"qualifications_bachelor" + 0.001*"greenfield"'),
(11,
'0.024*"collegiate" + 0.016*"interpersonal" + 0.016*"prepare" + '
'0.016*"invite" + 0.016*"aspect" + 0.016*"college" + 0.016*"statistic" + '
'0.016*"continent" + 0.016*"structure" + 0.016*"project"'),
(10,
'0.049*"enjoy" + 0.049*"ambiguity" + 0.017*"accordance" + 0.017*"liberalize" '
'+ 0.017*"developing" + 0.017*"application" + 0.017*"vacancie" + '
'0.017*"service" + 0.017*"initiative" + 0.017*"discontinuing"'),
(20,
'0.028*"negotiation" + 0.028*"desk" + 0.018*"enhance" + 0.018*"engage" + '
'0.018*"discussion" + 0.018*"ability" + 0.018*"depth" + 0.018*"derive" + '
'0.018*"enjoy" + 0.018*"balance"'),
(12,
'0.036*"individual" + 0.024*"validate" + 0.018*"greenfield" + '
'0.018*"capability" + 0.018*"coordinate" + 0.018*"create" + '
'0.018*"programming" + 0.018*"safety" + 0.010*"evaluation" + '
'0.002*"reliability"'),
(1,
'0.028*"negotiation" + 0.021*"responsibility" + 0.014*"master" + '
'0.014*"mind" + 0.014*"experience" + 0.014*"worker" + 0.014*"ability" + '
'0.007*"summary" + 0.007*"proposal" + 0.007*"alert"'),
(23,
'0.043*"banking" + 0.026*"origination" + 0.026*"round" + 0.026*"credibility" '
'+ 0.026*"entity" + 0.018*"standard" + 0.017*"range" + 0.017*"pension" + '
'0.017*"adapt" + 0.017*"information"'),
(13,
'0.034*"priority" + 0.034*"reconciliation" + 0.034*"purchaser" + '
'0.023*"reporting" + 0.023*"offer" + 0.023*"investor" + 0.023*"share" + '
'0.023*"region" + 0.023*"service" + 0.023*"manipulate"'),
(22,
'0.017*"analyst" + 0.017*"modelling" + 0.016*"producer" + 0.016*"return" + '
'0.016*"self" + 0.009*"scope" + 0.008*"mind" + 0.008*"need" + 0.008*"detail" '
'+ 0.008*"statistic"'),
(9,
'0.021*"decision" + 0.014*"invite" + 0.014*"balance" + 0.014*"commercialize" '
'+ 0.014*"transform" + 0.014*"manage" + 0.014*"optionality" + '
'0.014*"problem_solving" + 0.014*"fuel" + 0.014*"stay"'),
(7,
'0.032*"commitment" + 0.032*"study" + 0.016*"impact" + 0.016*"outlook" + '
'0.011*"operation" + 0.011*"expand" + 0.011*"exchange" + 0.011*"management" '
'+ 0.011*"conde" + 0.011*"evolve"'),
(15,
'0.032*"agility" + 0.019*"feasibility" + 0.019*"self" + 0.014*"deploy" + '
'0.014*"define" + 0.013*"investment" + 0.013*"option" + 0.013*"control" + '
'0.013*"action" + 0.013*"incubation"'),
(5,
'0.020*"desk" + 0.018*"agility" + 0.016*"vender" + 0.016*"coordinate" + '
'0.016*"committee" + 0.012*"acquisition" + 0.012*"target" + '
'0.012*"counterparty" + 0.012*"approval" + 0.012*"trend"'),
(17,
'0.022*"option" + 0.017*"working" + 0.017*"niche" + 0.011*"business" + '
'0.011*"constrain" + 0.011*"meeting" + 0.011*"correspond" + 0.011*"exposure" '
'+ 0.011*"element" + 0.011*"face"'),
(0,
'0.025*"expertise" + 0.025*"banking" + 0.021*"universitie" + '
'0.017*"spreadsheet" + 0.013*"negotiation" + 0.013*"shipment" + '
'0.013*"arise" + 0.013*"billing" + 0.013*"assistance" + 0.013*"sector"'),
(4,
'0.024*"provide" + 0.017*"consider" + 0.017*"allow" + 0.015*"outlook" + '
'0.015*"value" + 0.015*"contract" + 0.012*"study" + 0.012*"technology" + '
'0.012*"scenario" + 0.012*"indicator"'),
(6,
'0.058*"impulse" + 0.027*"shall" + 0.027*"shape" + 0.024*"marketer" + '
'0.017*"availability" + 0.014*"determine" + 0.014*"load" + '
'0.014*"constantly_change" + 0.014*"instrument" + 0.014*"interface"'),
(19,
'0.042*"task" + 0.038*"tariff" + 0.038*"recommend" + 0.024*"example" + '
'0.023*"future" + 0.021*"people" + 0.021*"math" + 0.021*"capacity" + '
'0.021*"spirit" + 0.020*"price"')]
Same model as above, but using 20 topics. As you can see, the output is in order by topic # and it contains all the topics.
lda_model = gensim.models.ldamodel.LdaModel(corpus=jr_dict_corpus,
id2word=jr_dict,
num_topics=20,
random_state=100,
update_every=1,
chunksize=100,
passes=10,
alpha='auto',
per_word_topics=True)
pprint(lda_model.print_topics())
[(0,
'0.031*"enjoy" + 0.031*"ambiguity" + 0.028*"accordance" + 0.016*"statistic" '
'+ 0.016*"initiative" + 0.016*"service" + 0.016*"liberalize" + '
'0.016*"application" + 0.011*"community" + 0.011*"identifie"'),
(1,
'0.016*"transformation" + 0.016*"negotiation" + 0.016*"community" + '
'0.016*"clock" + 0.011*"marketer" + 0.011*"desk" + 0.011*"mandate" + '
'0.011*"closing" + 0.011*"initiative" + 0.011*"experience"'),
(2,
'0.026*"priority" + 0.026*"reconciliation" + 0.026*"purchaser" + '
'0.020*"safety" + 0.020*"region" + 0.020*"query" + 0.020*"share" + '
'0.020*"manipulate" + 0.020*"ibex" + 0.020*"investor"'),
(3,
'0.022*"improve" + 0.021*"committee" + 0.021*"affect" + 0.012*"target" + '
'0.012*"acquisition" + 0.011*"basis" + 0.011*"profitability" + '
'0.011*"economic" + 0.011*"natural" + 0.011*"profit"'),
(4,
'0.024*"provide" + 0.019*"value" + 0.017*"consider" + 0.017*"allow" + '
'0.015*"scenario" + 0.015*"outlook" + 0.015*"contract" + 0.014*"forecast" + '
'0.014*"decision" + 0.012*"indicator"'),
(5,
'0.037*"desk" + 0.030*"coordinate" + 0.030*"agility" + 0.030*"vender" + '
'0.023*"counterparty" + 0.023*"immature_emerge" + 0.023*"metric" + '
'0.022*"approval" + 0.015*"maximization" + 0.015*"undergraduate"'),
(6,
'0.053*"impulse" + 0.025*"shall" + 0.025*"shape" + 0.018*"availability" + '
'0.018*"marketer" + 0.012*"determine" + 0.012*"language" + '
'0.012*"monitoring" + 0.012*"integration" + 0.012*"month"'),
(7,
'0.026*"commitment" + 0.026*"study" + 0.013*"impact" + 0.013*"outlook" + '
'0.009*"operation" + 0.009*"management" + 0.009*"expand" + 0.009*"exchange" '
'+ 0.009*"conde" + 0.009*"balance"'),
(8,
'0.057*"insurance" + 0.029*"propose" + 0.028*"rule" + 0.026*"self" + '
'0.023*"product" + 0.023*"asset" + 0.023*"pricing" + 0.023*"amount" + '
'0.023*"result" + 0.020*"liquidity"'),
(9,
'0.012*"universitie" + 0.012*"need" + 0.012*"statistic" + 0.012*"trend" + '
'0.008*"invite" + 0.008*"commercialize" + 0.008*"transform" + 0.008*"manage" '
'+ 0.008*"problem_solving" + 0.008*"optionality"'),
(10,
'0.024*"background" + 0.024*"curve" + 0.020*"allow" + 0.019*"collect" + '
'0.019*"basis" + 0.017*"accordance" + 0.013*"improve" + 0.013*"datum" + '
'0.013*"component" + 0.013*"reliability"'),
(11,
'0.054*"task" + 0.049*"tariff" + 0.049*"recommend" + 0.031*"future" + '
'0.027*"spirit" + 0.027*"capacity" + 0.027*"math" + 0.022*"ensure" + '
'0.022*"profit" + 0.022*"variable_margin"'),
(12,
'0.001*"impulse" + 0.001*"availability" + 0.001*"reliability" + '
'0.001*"shall" + 0.001*"component" + 0.001*"agent" + 0.001*"marketer" + '
'0.001*"shape" + 0.001*"assisting" + 0.001*"supply"'),
(13,
'0.021*"region" + 0.016*"greenfield" + 0.016*"collegiate" + 0.011*"transfer" '
'+ 0.011*"remuneration" + 0.011*"organization" + 0.011*"structure" + '
'0.011*"continent" + 0.011*"project" + 0.011*"prepare"'),
(14,
'0.033*"originator" + 0.025*"vender" + 0.025*"expertise" + 0.025*"banking" + '
'0.019*"evolve" + 0.017*"management" + 0.017*"market" + 0.017*"site" + '
'0.012*"component" + 0.012*"discontinuing"'),
(15,
'0.027*"agility" + 0.022*"mind" + 0.022*"negotiation" + 0.011*"deploy" + '
'0.011*"define" + 0.011*"ecosystem" + 0.011*"control" + 0.011*"lead" + '
'0.011*"industry" + 0.011*"option"'),
(16,
'0.001*"region" + 0.001*"master" + 0.001*"orginiation" + 0.001*"greenfield" '
'+ 0.001*"agent" + 0.001*"identifie" + 0.001*"remuneration" + 0.001*"mark" + '
'0.001*"reviewing" + 0.001*"closing"'),
(17,
'0.030*"banking" + 0.018*"option" + 0.018*"round" + 0.018*"credibility" + '
'0.018*"origination" + 0.018*"entity" + 0.016*"working" + 0.015*"niche" + '
'0.015*"standard" + 0.012*"coordinate"'),
(18,
'0.027*"negotiation" + 0.018*"reporting" + 0.018*"perform" + 0.018*"world" + '
'0.015*"offer" + 0.015*"manipulate" + 0.011*"query" + 0.010*"control" + '
'0.010*"working" + 0.009*"self"'),
(19,
'0.047*"example" + 0.039*"people" + 0.039*"price" + 0.039*"excel" + '
'0.039*"excellent" + 0.038*"base" + 0.031*"office" + 0.031*"optimizing" + '
'0.031*"participate" + 0.031*"package"')]
The default number of topics for print_topics is 20. You must use the num_topics argument to include topics above 20...
print(lda_model.print_topics(num_topics=25, num_words=10))

Generate a Bode-form transfer function using ratsimp

I have to simplify a transfer function using sympy. I am used to maxima and I am looking for advice to get similar performances in a python environment.
Using the following Maxima code:
A:-Avol0/(1+s/(2*pi*fp));
Zph:Rsh/(1+Rsh*Cj*s);
Zf:Rf/(1+Rf*Cf*s);
alpha:Zf*Zph/(Zf+Zph);
beta:Zph/(Zf+Zph);
BetaA:ratsimp(beta*A,s);
H:ratsimp(alpha*A/(1-BetaA),s);
I get the following:
(H)-> -(2*Avol0*Rf*Rsh*fp*pi)/((Cj+Cf)*Rf*Rsh*s^2+((2*Cj+(2*Avol0+2)*Cf)*Rf*Rsh*fp*pi+Rsh+Rf)*s+((2*Avol0+2)*Rsh+2*Rf)*fp*pi)
The same opertions in sympy do not get to such a nice result:
import numpy as np
import sympy as sy
"""
Formulas
"""
s, Rf, Cf, Rsh, Cj, Cd, Ccm, GBP, Avol0, fp, w = \
sy.symbols("s Rf Cf Rsh Cj Cd Ccm GBP Avol0 fp w")
A = -Avol0/(1+s/(2*np.pi*fp))
Zph = Rsh/(1+Rsh*Cj*s)
Zf = Rf/(1+Rf*Cf*s)
alpha = Zf*Zph/(Zf+Zph)
beta = Zph/(Zf+Zph)
Gloop = sy.ratsimp(beta*A)
H = alpha*A/(1-Gloop)
sy.ratsimp(H)
returns an unreadable result:
-1.0*(1.0*Avol0*Cf**2*Cj*Rf**3*Rsh**3*fp**2*s**3 + 0.159154943091895*Avol0*Cf**2*Cj*Rf**3*Rsh**3*fp*s**4 + 1.0*Avol0*Cf**2*Rf**3*Rsh**2*fp**2*s**2 + 0.159154943091895*Avol0*Cf**2*Rf**3*Rsh**2*fp*s**3 + 1.0*Avol0*Cf*Cj**2*Rf**3*Rsh**3*fp**2*s**3 + 0.159154943091895*Avol0*Cf*Cj**2*Rf**3*Rsh**3*fp*s**4 + 2.0*Avol0*Cf*Cj*Rf**3*Rsh**2*fp**2*s**2 + 0.318309886183791*Avol0*Cf*Cj*Rf**3*Rsh**2*fp*s**3 + 2.0*Avol0*Cf*Cj*Rf**2*Rsh**3*fp**2*s**2 + 0.318309886183791*Avol0*Cf*Cj*Rf**2*Rsh**3*fp*s**3 + 1.0*Avol0*Cf*Rf**3*Rsh*fp**2*s + 0.159154943091895*Avol0*Cf*Rf**3*Rsh*fp*s**2 + 2.0*Avol0*Cf*Rf**2*Rsh**2*fp**2*s + 0.318309886183791*Avol0*Cf*Rf**2*Rsh**2*fp*s**2 + 1.0*Avol0*Cj**2*Rf**2*Rsh**3*fp**2*s**2 + 0.159154943091895*Avol0*Cj**2*Rf**2*Rsh**3*fp*s**3 + 2.0*Avol0*Cj*Rf**2*Rsh**2*fp**2*s + 0.318309886183791*Avol0*Cj*Rf**2*Rsh**2*fp*s**2 + 1.0*Avol0*Cj*Rf*Rsh**3*fp**2*s + 0.159154943091895*Avol0*Cj*Rf*Rsh**3*fp*s**2 + 1.0*Avol0*Rf**2*Rsh*fp**2 + 0.159154943091895*Avol0*Rf**2*Rsh*fp*s + 1.0*Avol0*Rf*Rsh**2*fp**2 + 0.159154943091895*Avol0*Rf*Rsh**2*fp*s)/(1.0*Avol0*Cf**3*Cj*Rf**3*Rsh**3*fp**2*s**4 + 0.159154943091895*Avol0*Cf**3*Cj*Rf**3*Rsh**3*fp*s**5 + 1.0*Avol0*Cf**3*Rf**3*Rsh**2*fp**2*s**3 + 0.159154943091895*Avol0*Cf**3*Rf**3*Rsh**2*fp*s**4 + 1.0*Avol0*Cf**2*Cj**2*Rf**3*Rsh**3*fp**2*s**4 + 0.159154943091895*Avol0*Cf**2*Cj**2*Rf**3*Rsh**3*fp*s**5 + 2.0*Avol0*Cf**2*Cj*Rf**3*Rsh**2*fp**2*s**3 + 0.318309886183791*Avol0*Cf**2*Cj*Rf**3*Rsh**2*fp*s**4 + 3.0*Avol0*Cf**2*Cj*Rf**2*Rsh**3*fp**2*s**3 + 0.477464829275686*Avol0*Cf**2*Cj*Rf**2*Rsh**3*fp*s**4 + 1.0*Avol0*Cf**2*Rf**3*Rsh*fp**2*s**2 + 0.159154943091895*Avol0*Cf**2*Rf**3*Rsh*fp*s**3 + 3.0*Avol0*Cf**2*Rf**2*Rsh**2*fp**2*s**2 + 0.477464829275686*Avol0*Cf**2*Rf**2*Rsh**2*fp*s**3 + 2.0*Avol0*Cf*Cj**2*Rf**2*Rsh**3*fp**2*s**3 + 0.318309886183791*Avol0*Cf*Cj**2*Rf**2*Rsh**3*fp*s**4 + 4.0*Avol0*Cf*Cj*Rf**2*Rsh**2*fp**2*s**2 + 0.636619772367581*Avol0*Cf*Cj*Rf**2*Rsh**2*fp*s**3 + 3.0*Avol0*Cf*Cj*Rf*Rsh**3*fp**2*s**2 + 0.477464829275686*Avol0*Cf*Cj*Rf*Rsh**3*fp*s**3 + 2.0*Avol0*Cf*Rf**2*Rsh*fp**2*s + 0.318309886183791*Avol0*Cf*Rf**2*Rsh*fp*s**2 + 3.0*Avol0*Cf*Rf*Rsh**2*fp**2*s + 0.477464829275686*Avol0*Cf*Rf*Rsh**2*fp*s**2 + 1.0*Avol0*Cj**2*Rf*Rsh**3*fp**2*s**2 + 0.159154943091895*Avol0*Cj**2*Rf*Rsh**3*fp*s**3 + 2.0*Avol0*Cj*Rf*Rsh**2*fp**2*s + 0.318309886183791*Avol0*Cj*Rf*Rsh**2*fp*s**2 + 1.0*Avol0*Cj*Rsh**3*fp**2*s + 0.159154943091895*Avol0*Cj*Rsh**3*fp*s**2 + 1.0*Avol0*Rf*Rsh*fp**2 + 0.159154943091895*Avol0*Rf*Rsh*fp*s + 1.0*Avol0*Rsh**2*fp**2 + 0.159154943091895*Avol0*Rsh**2*fp*s + 1.0*Cf**3*Cj*Rf**3*Rsh**3*fp**2*s**4 + 0.318309886183791*Cf**3*Cj*Rf**3*Rsh**3*fp*s**5 + 0.0253302959105844*Cf**3*Cj*Rf**3*Rsh**3*s**6 + 1.0*Cf**3*Rf**3*Rsh**2*fp**2*s**3 + 0.318309886183791*Cf**3*Rf**3*Rsh**2*fp*s**4 + 0.0253302959105844*Cf**3*Rf**3*Rsh**2*s**5 + 2.0*Cf**2*Cj**2*Rf**3*Rsh**3*fp**2*s**4 + 0.636619772367581*Cf**2*Cj**2*Rf**3*Rsh**3*fp*s**5 + 0.0506605918211689*Cf**2*Cj**2*Rf**3*Rsh**3*s**6 + 4.0*Cf**2*Cj*Rf**3*Rsh**2*fp**2*s**3 + 1.27323954473516*Cf**2*Cj*Rf**3*Rsh**2*fp*s**4 + 0.101321183642338*Cf**2*Cj*Rf**3*Rsh**2*s**5 + 3.0*Cf**2*Cj*Rf**2*Rsh**3*fp**2*s**3 + 0.954929658551372*Cf**2*Cj*Rf**2*Rsh**3*fp*s**4 + 0.0759908877317533*Cf**2*Cj*Rf**2*Rsh**3*s**5 + 2.0*Cf**2*Rf**3*Rsh*fp**2*s**2 + 0.636619772367581*Cf**2*Rf**3*Rsh*fp*s**3 + 0.0506605918211689*Cf**2*Rf**3*Rsh*s**4 + 3.0*Cf**2*Rf**2*Rsh**2*fp**2*s**2 + 0.954929658551372*Cf**2*Rf**2*Rsh**2*fp*s**3 + 0.0759908877317533*Cf**2*Rf**2*Rsh**2*s**4 + 1.0*Cf*Cj**3*Rf**3*Rsh**3*fp**2*s**4 + 0.318309886183791*Cf*Cj**3*Rf**3*Rsh**3*fp*s**5 + 0.0253302959105844*Cf*Cj**3*Rf**3*Rsh**3*s**6 + 3.0*Cf*Cj**2*Rf**3*Rsh**2*fp**2*s**3 + 0.954929658551372*Cf*Cj**2*Rf**3*Rsh**2*fp*s**4 + 0.0759908877317533*Cf*Cj**2*Rf**3*Rsh**2*s**5 + 4.0*Cf*Cj**2*Rf**2*Rsh**3*fp**2*s**3 + 1.27323954473516*Cf*Cj**2*Rf**2*Rsh**3*fp*s**4 + 0.101321183642338*Cf*Cj**2*Rf**2*Rsh**3*s**5 + 3.0*Cf*Cj*Rf**3*Rsh*fp**2*s**2 + 0.954929658551372*Cf*Cj*Rf**3*Rsh*fp*s**3 + 0.0759908877317533*Cf*Cj*Rf**3*Rsh*s**4 + 8.0*Cf*Cj*Rf**2*Rsh**2*fp**2*s**2 + 2.54647908947033*Cf*Cj*Rf**2*Rsh**2*fp*s**3 + 0.202642367284676*Cf*Cj*Rf**2*Rsh**2*s**4 + 3.0*Cf*Cj*Rf*Rsh**3*fp**2*s**2 + 0.954929658551372*Cf*Cj*Rf*Rsh**3*fp*s**3 + 0.0759908877317533*Cf*Cj*Rf*Rsh**3*s**4 + 1.0*Cf*Rf**3*fp**2*s + 0.318309886183791*Cf*Rf**3*fp*s**2 + 0.0253302959105844*Cf*Rf**3*s**3 + 4.0*Cf*Rf**2*Rsh*fp**2*s + 1.27323954473516*Cf*Rf**2*Rsh*fp*s**2 + 0.101321183642338*Cf*Rf**2*Rsh*s**3 + 3.0*Cf*Rf*Rsh**2*fp**2*s + 0.954929658551372*Cf*Rf*Rsh**2*fp*s**2 + 0.0759908877317533*Cf*Rf*Rsh**2*s**3 + 1.0*Cj**3*Rf**2*Rsh**3*fp**2*s**3 + 0.318309886183791*Cj**3*Rf**2*Rsh**3*fp*s**4 + 0.0253302959105844*Cj**3*Rf**2*Rsh**3*s**5 + 3.0*Cj**2*Rf**2*Rsh**2*fp**2*s**2 + 0.954929658551372*Cj**2*Rf**2*Rsh**2*fp*s**3 + 0.0759908877317533*Cj**2*Rf**2*Rsh**2*s**4 + 2.0*Cj**2*Rf*Rsh**3*fp**2*s**2 + 0.636619772367581*Cj**2*Rf*Rsh**3*fp*s**3 + 0.0506605918211689*Cj**2*Rf*Rsh**3*s**4 + 3.0*Cj*Rf**2*Rsh*fp**2*s + 0.954929658551372*Cj*Rf**2*Rsh*fp*s**2 + 0.0759908877317533*Cj*Rf**2*Rsh*s**3 + 4.0*Cj*Rf*Rsh**2*fp**2*s + 1.27323954473516*Cj*Rf*Rsh**2*fp*s**2 + 0.101321183642338*Cj*Rf*Rsh**2*s**3 + 1.0*Cj*Rsh**3*fp**2*s + 0.318309886183791*Cj*Rsh**3*fp*s**2 + 0.0253302959105844*Cj*Rsh**3*s**3 + 1.0*Rf**2*fp**2 + 0.318309886183791*Rf**2*fp*s + 0.0253302959105844*Rf**2*s**2 + 2.0*Rf*Rsh*fp**2 + 0.636619772367581*Rf*Rsh*fp*s + 0.0506605918211689*Rf*Rsh*s**2 + 1.0*Rsh**2*fp**2 + 0.318309886183791*Rsh**2*fp*s + 0.0253302959105844*Rsh**2*s**2)
There is a difference between the maxima code and the python one: const 'pi' is kept symbolic in the first case, and approximated to a floating-point value in the second. Replacing np.pi with pi solves the problem, anyway it is weird how sympy tries to simplify the expression when pi is numeric.

"out of memory" issue with PETsc in Ubuntu

I am running an OpenMDAO code that uses 2 parallel groups. I have installed PETSc4py and mpi4py inside a virtual python environment. I am getting the following error while running my code. The error reads as follows: "Out of memory. Allocated: 0, Used by process: 236814336"
Here is the full error message:
File "PETSc/Scatter.pyx", line 42, in petsc4py.PETSc.Scatter.create
petsc4py.PETSc.Error: error code 55
[1] VecScatterCreate() line 282 in /tmp/pycharm-packaging/petsc/src/vec/vscat/interface/vscreate.c
[1] VecScatterSetUp() line 211 in /tmp/pycharm-packaging/petsc/src/vec/vscat/interface/vscatfce.c
[1] VecScatterSetUp_MPI1() line 2543 in /tmp/pycharm-packaging/petsc/src/vec/vscat/impls/mpi1/vpscat_mpi1.c
[1] VecScatterSetUp_vectype_private() line 865 in /tmp/pycharm-packaging/petsc/src/vec/vscat/impls/vscat.c
[1] VecScatterCreate_PtoP() line 746 in /tmp/pycharm-packaging/petsc/src/vec/vscat/impls/vscat.c
[1] VecScatterCreateLocal_PtoP_MPI1() line 2436 in /tmp/pycharm-packaging/petsc/src/vec/vscat/impls/mpi1/vpscat_mpi1.c
[1] PetscMallocA() line 390 in /tmp/pycharm-packaging/petsc/src/sys/memory/mal.c
[1] VecScatterCreateLocal_PtoP_MPI1() line 2436 in /tmp/pycharm-packaging/petsc/src/vec/vscat/impls/mpi1/vpscat_mpi1.c
[1] Out of memory. Allocated: 0, Used by process: 237649920
[1] Memory requested 18446744062962991104
-------------------------------------------------------
Primary job terminated normally, but 1 process returned
a non-zero exit code.. Per user-direction, the job has been aborted.
-------------------------------------------------------
--------------------------------------------------------------------------
mpirun detected that one or more processes exited with non-zero status, thus causing
the job to be terminated. The first process to do so was:
Process name: [[43240,1],1]
Exit code: 1
--------------------------------------------------------------------------
I call the process with the following code:
mpirun -np 2 python ./parallel_processing.py
Here is the code for IDF optimization:
from __future__ import print_function
import pickle
import numpy as np
import pandas as pd
import matplotlib.pylab as plt
from openmdao.api import Problem, ScipyOptimizeDriver, SqliteRecorder
import time
import random
from openmdao.recorders.case_reader import CaseReader
from ssbj_vanaret_mda import SsbjMda
from ssbj_vanaret_idf2_mda import SsbjIdf2Mda
def idf_run2(nx, ny):
# make a counter for discipline calls
[str_count, aer_count, pro_count] = np.zeros(3)
a = ["str_count.p", "aer_count.p", "pro_count.p"]
for i in a:
with open(i, "wb") as f:
pickle.dump(0, f)
# Initialize an MDA to generate the starting point for IDF
prob_init = Problem() # initialize the optimization problem
prob_init.model = SsbjMda(nx_input=nx) # create the MDA
# Design variables
prob_init.model.add_design_var('z', lower=np.zeros(nx), upper=np.ones(nx))
prob_init.model.add_design_var('x1', lower=np.zeros(nx), upper=np.ones(nx))
prob_init.model.add_design_var('x2', lower=np.zeros(nx), upper=np.ones(nx))
prob_init.model.add_design_var('x3', lower=np.zeros(nx), upper=np.ones(nx))
# Objective function
prob_init.model.add_objective('range')
# Constraints
for i in range(nx):
prob_init.model.add_constraint('con_g1' + str(i + 1), upper=0)
prob_init.model.add_constraint('con_g2' + str(i + 1), upper=0)
prob_init.model.add_constraint('con_g3' + str(i + 1), upper=0)
prob_init.driver = ScipyOptimizeDriver(optimizer='SLSQP')
prob_init.driver.options['maxiter'] = 0
prob_init.setup(mode='fwd')
prob_init.set_solver_print(1)
prob_init.run_driver()
prob_init.cleanup()
y12_initial = prob_init['y12']
y23_initial = prob_init['y23']
y32_initial = prob_init['y32']
y21_initial = prob_init['y21']
y31_initial = prob_init['y31']
# : initialize MDA for IDF
prob = Problem()
prob.model = SsbjIdf2Mda(nx, ny, y12_initial, y23_initial, y32_initial, y21_initial, y31_initial)
# create the MDA
# Design variables
prob.model.add_design_var('z', lower=np.zeros(nx), upper=np.ones(nx)) # shared variables
prob.model.add_design_var('x1', lower=np.zeros(nx), upper=np.ones(nx)) # local variable for structural discipline
prob.model.add_design_var('x2', lower=np.zeros(nx), upper=np.ones(nx)) # local variable for aerodynamic discipline
prob.model.add_design_var('x3', lower=np.zeros(nx), upper=np.ones(nx)) # local variable for propulsion discipline
# # coupling variables
prob.model.add_design_var('y31')
prob.model.add_design_var('y12')
prob.model.add_design_var('y32')
prob.model.add_design_var('y23')
prob.model.add_design_var('y21')
# Objective function
prob.model.add_objective('obj')
# Constraints
for i in range(nx):
prob.model.add_constraint('con_g1' + str(i + 1), upper=0)
prob.model.add_constraint('con_g2' + str(i + 1), upper=0)
prob.model.add_constraint('con_g3' + str(i + 1), upper=0)
epsilon = 1e-9
# Coupling constraints
for i in range(ny):
prob.model.add_constraint('con_y12' + str(i + 1), upper=epsilon)
prob.model.add_constraint('con_y21' + str(i + 1), upper=epsilon)
prob.model.add_constraint('con_y23' + str(i + 1), upper=epsilon)
prob.model.add_constraint('con_y32' + str(i + 1), upper=epsilon)
prob.model.add_constraint('con_y31' + str(i + 1), upper=epsilon)
# Optimizer options
prob.driver = ScipyOptimizeDriver()
prob.set_solver_print(2)
prob.driver.options['optimizer'] = 'SLSQP'
for tol in [1e-3]:
prob.driver.options['maxiter'] = random.randint(40, 50)
prob.driver.options['tol'] = tol
prob.driver.add_recorder(SqliteRecorder("cases_idf.sql"))
# Run optimization
start_time = time.time()
prob.setup(mode='fwd')
# view_model(prob, outfile='n2_mdfgs.html', show_browser=True)
prob.run_driver()
prob.run_model()
# prob.check_partials()
prob.cleanup()
end_time = time.time()
total_time = end_time - start_time
if prob.driver.options['tol'] == 1e-6:
iters = len(CaseReader('cases_idf.sql').get_cases())
cr = CaseReader('cases_idf.sql')
case_ids = cr.get_cases()
obj_list = ['obj']
z = []
[z.append(case.get_objectives(case)[obj_list[0]]) for case in case_ids]
with open("df_idf.p", "rb") as f:
df_idf = pickle.load(f).append(pd.DataFrame({'total iterations[IDF]': [iters],
'total time[IDF]': [total_time],
'final_objective[IDF]': z[-1]}))
with open("df_idf.p", "wb") as f:
pickle.dump(df_idf, f)
elif prob.driver.options['tol'] == 1e-3:
iters = len(CaseReader('cases_idf.sql').get_cases())
cr = CaseReader('cases_idf.sql')
case_ids = cr.get_cases()
obj_list = ['obj']
z = []
a = ["str_count.p", "aer_count.p", "pro_count.p"]
k = []
for i in a:
with open(i, "rb") as f:
k.append(pickle.load(f))
[z.append(case.get_objectives(case)[obj_list[0]]) for case in case_ids]
with open("df_idf_tol.p", "rb") as f:
df_idf = pickle.load(f).append(pd.DataFrame({'10.total iterations[IDF_tol]': [iters],
'11.total time[IDF_tol]': [total_time],
'12.final_objective[IDF_tol]': z[-1],
'13.str_count[IDF_tol]': k[0],
'14.aer_count[IDF_tol]': k[1],
'15.pro_count[IDF_tol]': k[2]
}))
with open("df_idf_tol.p", "wb") as f:
pickle.dump(df_idf, f)
The MDA for IDF optimization goes here:
from openmdao.api import Group
import numpy as np
from openmdao.api import IndepVarComp, ExecComp, ParallelGroup
from ssbj_vanaret_discipline import StructureDisc
from ssbj_vanaret_discipline import AerodynamicsDisc
from ssbj_vanaret_discipline import PropulsionDisc
from ssbj_vanaret_discipline import PerformanceDisc
class SsbjIdf2Mda(Group):
"""
Analysis for IDF formulation where couplings are managed as additional constraints
on input/output variables of related disciplines.
"""
def __init__(self, nx_input, ny_input, y12_initial, y23_initial, y32_initial, y21_initial, y31_initial):
super(SsbjIdf2Mda, self).__init__()
self.nx = nx_input
self.ny = ny_input
self.y12 = y12_initial
self.y23 = y23_initial
self.y32 = y32_initial
self.y31 = y31_initial
self.y21 = y21_initial
def setup(self):
# Design variables
self.add_subsystem('z_ini', IndepVarComp('z', .5 * np.ones(self.nx)), promotes=['*'])
self.add_subsystem('x1_ini', IndepVarComp('x1', .5 * np.ones(self.nx)), promotes=['*'])
self.add_subsystem('x2_ini', IndepVarComp('x2', .5 * np.ones(self.nx)), promotes=['*'])
self.add_subsystem('x3_ini', IndepVarComp('x3', .5 * np.ones(self.nx)), promotes=['*'])
# Couplings
self.add_subsystem('y31_ini', IndepVarComp('y31', self.y31), promotes=['*'])
self.add_subsystem('y12_ini', IndepVarComp('y12', self.y12), promotes=['*'])
self.add_subsystem('y32_ini', IndepVarComp('y32', self.y32), promotes=['*'])
self.add_subsystem('y23_ini', IndepVarComp('y23', self.y23), promotes=['*'])
self.add_subsystem('y21_ini', IndepVarComp('y21', self.y21), promotes=['*'])
# Disciplines
parallel = self.add_subsystem('parallel', ParallelGroup())
parallel.add_subsystem('Structure', StructureDisc())
parallel.add_subsystem('Aerodynamics', AerodynamicsDisc())
self.add_subsystem('Propulsion', PropulsionDisc())
self.add_subsystem('Performance', PerformanceDisc())
# Shared variables z
self.connect('z', 'parallel.Structure.z')
self.connect('z', 'parallel.Aerodynamics.z')
self.connect('z', 'Propulsion.z')
self.connect('z', 'Performance.z')
# Local variables
self.connect('x1', 'parallel.Structure.x1')
self.connect('x2', 'parallel.Aerodynamics.x2')
self.connect('x3', 'Propulsion.x3')
self.connect('x1', 'Performance.x1')
self.connect('x2', 'Performance.x2')
self.connect('x3', 'Performance.x3')
# Coupling variables
self.connect('y21', 'parallel.Structure.y21')
self.connect('y31', 'parallel.Structure.y31')
self.connect('y32', 'parallel.Aerodynamics.y32')
self.connect('y12', 'parallel.Aerodynamics.y12')
self.connect('y23', 'Propulsion.y23')
# Objective function
self.add_subsystem('Obj', ExecComp('obj=range'), promotes=['obj'])
# Connections
self.connect('Performance.range', 'Obj.range')
# self.connect('Propulsion.y34', 'Performance.y34')
# self.connect('Aerodynamics.y24', 'Performance.y24')
# self.connect('Structure.y14', 'Performance.y14')
self.connect('parallel.Aerodynamics.y21', 'Performance.y21')
self.connect('Propulsion.y31', 'Performance.y31')
self.connect('Propulsion.y32', 'Performance.y32')
self.connect('parallel.Structure.y12', 'Performance.y12')
self.connect('parallel.Aerodynamics.y23', 'Performance.y23')
# Coupling constraints
for i in range(self.ny):
self.add_subsystem('con_Y12' + str(i + 1),
ExecComp('con_y12' + str(i + 1) + '=(y12[' + str(i) + '] - y12k[' + str(i) + ']) ** 2',
y12=self.y12,
y12k=self.y12
),
promotes=['con_y12' + str(i + 1)])
self.connect('parallel.Structure.y12', 'con_Y12' + str(i + 1) + '.y12')
self.connect('y12', 'con_Y12' + str(i + 1) + '.y12k')
for i in range(self.ny):
self.add_subsystem('con_Y21' + str(i + 1),
ExecComp('con_y21' + str(i + 1) + '=(y21[' + str(i) + '] - y21k[' + str(i) + ']) ** 2',
y21=self.y21,
y21k=self.y21
),
promotes=['con_y21' + str(i + 1)])
self.connect('parallel.Aerodynamics.y21', 'con_Y21' + str(i + 1) + '.y21')
self.connect('y21', 'con_Y21' + str(i + 1) + '.y21k')
for i in range(self.ny):
self.add_subsystem('con_Y32' + str(i + 1),
ExecComp('con_y32' + str(i + 1) + '=(y32[' + str(i) + '] - y32k[' + str(i) + ']) ** 2',
y32=self.y32,
y32k=self.y32
),
promotes=['con_y32' + str(i + 1)])
self.connect('Propulsion.y32', 'con_Y32' + str(i + 1) + '.y32')
self.connect('y32', 'con_Y32' + str(i + 1) + '.y32k')
for i in range(self.ny):
self.add_subsystem('con_Y23' + str(i + 1),
ExecComp('con_y23' + str(i + 1) + '=(y23[' + str(i) + '] - y23k[' + str(i) + ']) ** 2',
y23=self.y23,
y23k=self.y23
),
promotes=['con_y23' + str(i + 1)])
self.connect('parallel.Aerodynamics.y23', 'con_Y23' + str(i + 1) + '.y23')
self.connect('y23', 'con_Y23' + str(i + 1) + '.y23k')
for i in range(self.ny):
self.add_subsystem('con_Y31' + str(i + 1),
ExecComp('con_y31' + str(i + 1) + '=(y31[' + str(i) + '] - y31k[' + str(i) + ']) ** 2',
y31=self.y31,
y31k=self.y31
),
promotes=['con_y31' + str(i + 1)])
self.connect('Propulsion.y31', 'con_Y31' + str(i + 1) + '.y31')
self.connect('y31', 'con_Y31' + str(i + 1) + '.y31k')
# Local constraints
for i in range(self.nx):
self.add_subsystem('con_G1' + str(i + 1),
ExecComp('con_g1' + str(i + 1) + '=g1[' + str(i) + ']', g1=np.zeros(self.nx)),
promotes=['con_g1' + str(i + 1)])
self.connect('parallel.Structure.g1', 'con_G1' + str(i + 1) + '.g1')
for i in range(self.nx):
self.add_subsystem('con_G2' + str(i + 1),
ExecComp('con_g2' + str(i + 1) + '=g2[' + str(i) + ']', g2=np.zeros(self.nx)),
promotes=['con_g2' + str(i + 1)])
self.connect('parallel.Aerodynamics.g2', 'con_G2' + str(i + 1) + '.g2')
for i in range(self.nx):
self.add_subsystem('con_G3' + str(i + 1),
ExecComp('con_g3' + str(i + 1) + '=g3[' + str(i) + ']', g3=np.zeros(self.nx)),
promotes=['con_g3' + str(i + 1)])
self.connect('Propulsion.g3', 'con_G3' + str(i + 1) + '.g3')

Integration error in SymPy 1.0

I'm trying to write my mathcad model in python language, but I get some mistake.
The integration function should look like this:
In python I wrote such code
from __future__ import division
import sympy as sp
import numpy as np
import math
from pylab import *
print(sp.__version__)
s = sp.Symbol('s')
x = sp.symbols('x')
t_start = 11
t_info = 1
t_transf = 2
t_stat_analyze = 3
t_repeat = 3.2
P = 0.1
def M1(s):
return P/(t_info*t_start*t_stat_analyze*t_transf*(1 - (-P + 1)/(t_repeat*t_transf*(s + 1/t_repeat)*(s + 1/t_transf)))*(s + 1/t_info)*(s + 1/t_start)*(s + 1/t_stat_analyze)*(s + 1/t_transf)**2) + P/( t_info*t_start*t_stat_analyze*t_transf*(1 - (-P + 1)/(t_repeat*t_transf*(s + 1/t_repeat)*(s + 1/t_transf)))*(s + 1/t_info)*(s + 1/t_start)*(s + 1/t_stat_analyze)**2*(s + 1/t_transf)) + P/(t_info*t_start*t_stat_analyze*t_transf*(1 - (-P + 1)/(t_repeat*t_transf*(s + 1/t_repeat)*(s + 1/t_transf)))*(s + 1/t_info)*(s + 1/t_start)**2*(s + 1/t_stat_analyze)*(s + 1/t_transf)) + P/(t_info*t_start*t_stat_analyze*t_transf*(1 - (-P + 1)/(t_repeat*t_transf*(s + 1/t_repeat)*(s + 1/ t_transf)))*(s + 1/t_info)**2*(s + 1/t_start)*(s + 1/t_stat_analyze)*(s + 1/t_transf)) - P*(-(-P + 1)/(t_repeat*t_transf*(s + 1/t_repeat)*(s + 1/t_transf)**2) - (-P + 1)/(t_repeat*t_transf*(s + 1/t_repeat)**2*(s + 1/t_transf)))/( t_info*t_start*t_stat_analyze*t_transf*(1 - (-P + 1)/(t_repeat*t_transf*(s + 1/t_repeat)*(s + 1/t_transf)))**2*(s + 1/t_info)*(s + 1/t_start)*(s + 1/t_stat_analyze)*(s + 1/t_transf))
def M2(s):
return 2*P*((s + 1/t_transf)**(-2) + 1/((s + 1/t_stat_analyze)*(s + 1/t_transf)) + (s + 1/t_stat_analyze)**(-2) + 1/((s + 1/t_start)*(s + 1/t_transf)) + 1/((s + 1/t_start)*(s + 1/t_stat_analyze)) + (s + 1/t_start)**(-2) + 1/((s + 1/ t_info)*(s + 1/t_transf)) + 1/((s + 1/t_info)*(s + 1/t_stat_analyze)) + 1/((s + 1/t_info)*(s + 1/t_start)) + (s + 1/t_info)**(-2) - (P - 1)*((s + 1/t_transf)**(-2) + 1/((s + 1/t_repeat)*(s + 1/t_transf)) + (s + 1/t_repeat)**(-2))/( t_repeat*t_transf*(1 + (P - 1)/(t_repeat*t_transf*(s + 1/t_repeat)*(s + 1/t_transf)))*(s + 1/t_repeat)*(s + 1/t_transf)) - (P - 1)*(1/(s + 1/t_transf) + 1/(s + 1/t_repeat))/(t_repeat*t_transf*(1 + (P - 1)/(t_repeat*t_transf*(s + 1/ t_repeat)*(s + 1/t_transf)))*(s + 1/t_repeat)*(s + 1/t_transf)**2) - (P - 1)*(1/(s + 1/t_transf) + 1/(s + 1/t_repeat))/(t_repeat*t_transf*(1 + (P - 1)/(t_repeat*t_transf*(s + 1/t_repeat)*(s + 1/t_transf)))*(s + 1/t_repeat)*(s + 1/ t_stat_analyze)*(s + 1/t_transf)) - (P - 1)*(1/(s + 1/t_transf) + 1/(s + 1/t_repeat))/(t_repeat*t_transf*(1 + (P - 1)/(t_repeat*t_transf*(s + 1/t_repeat)*(s + 1/t_transf)))*(s + 1/t_repeat)*(s + 1/t_start)*(s + 1/t_transf)) - (P - 1)*(1/( s + 1/t_transf) + 1/(s + 1/t_repeat))/(t_repeat*t_transf*(1 + (P - 1)/(t_repeat*t_transf*(s + 1/t_repeat)*(s + 1/t_transf)))*(s + 1/t_info)*(s + 1/t_repeat)*(s + 1/t_transf)) + (P - 1)**2*(1/(s + 1/t_transf) + 1/(s + 1/t_repeat))**2/( t_repeat**2*t_transf**2*(1 + (P - 1)/(t_repeat*t_transf*(s + 1/t_repeat)*(s + 1/t_transf)))**2*(s + 1/t_repeat)**2*(s + 1/t_transf)**2))/(t_info*t_start*t_stat_analyze*t_transf*(1 + (P - 1)/(t_repeat*t_transf*(s + 1/t_repeat)*(s + 1/ t_transf)))*(s + 1/t_info)*(s + 1/t_start)*(s + 1/t_stat_analyze)*(s + 1/t_transf))
T_realyze = M1(0)
D = M2(0)-M1(0)**2
alpha = T_realyze**2/D
myu = T_realyze/D
def F(t):
if t<0:
return 0
else:
return sp.integrate((myu**alpha)/(sp.gamma(alpha)*(x**(alpha-1))*sp.exp(myu*x)), (x, 0, t))
t=arange(0, 200, 1)
for i in t:
print(F(i))
i = i+1
So, when I'm trying to execute it, I had such error in
return sp.integrate
function:
$ python2.7 nta.py
1.0
('T_realyze = ', 63.800000000000026)
('D = ', 2696.760000000001)
('alpha = ', 1.5093816283243602)
('myu = ', 0.02365801925273291)
0
('myu*x = ', 0.0236580192527329*x)
('sp.exp(myu*x)', exp(0.0236580192527329*x))
0
1
('myu*x = ', 0.0236580192527329*x)
('sp.exp(myu*x)', exp(0.0236580192527329*x))
Traceback (most recent call last):
File "nta.py", line 48, in <module>
print(F(i))
File "nta.py", line 43, in F
return sp.integrate((myu**alpha)/(sp.gamma(alpha)*(x**(alpha-1))*sp.exp(myu*x)), (x, 0, t))
File "/root/anaconda2/lib/python2.7/site-packages/sympy/integrals/integrals.py", line 1280, in integrate
risch=risch, manual=manual)
File "/root/anaconda2/lib/python2.7/site-packages/sympy/integrals/integrals.py", line 486, in doit
conds=conds)
File "/root/anaconda2/lib/python2.7/site-packages/sympy/integrals/integrals.py", line 887, in _eval_integral
h = heurisch_wrapper(g, x, hints=[])
File "/root/anaconda2/lib/python2.7/site-packages/sympy/integrals/heurisch.py", line 130, in heurisch_wrapper
unnecessary_permutations)
File "/root/anaconda2/lib/python2.7/site-packages/sympy/integrals/heurisch.py", line 657, in heurisch
solution = _integrate('Q')
File "/root/anaconda2/lib/python2.7/site-packages/sympy/integrals/heurisch.py", line 646, in _integrate
numer = ring.from_expr(raw_numer)
File "/root/anaconda2/lib/python2.7/site-packages/sympy/polys/rings.py", line 371, in from_expr
raise ValueError("expected an expression convertible to a polynomial in %s, got %s" % (self, expr))
ValueError: expected an expression convertible to a polynomial in Polynomial ring in _x0, _x1, _x2, _x3 over RR[_A0,_A1,_A2,_A3,_A4,_A5,_A6,_A7,_A8,_A9,_A10,_A11,_A12,_A13,_A14,_A15,_A16,_A17,_A18,_A19,_A20,_A21,_A22,_A23,_A24,_A25,_A26,_A27,_A28,_A29,_A30,_A31,_A32,_A33,_A34] with lex order, got 0.50938162832436*_x3**2.96316463805253*(_A0 + _A10*_x0*_x1 + 2*_A11*_x1*_x3 + _x0**2*_A12 + _A14*_x0*_x2 + _A2*_x0 + 2*_A20*_x0*_x3 + _A24*_x1*_x2 + _x2**2*_A27 + 2*_A28*_x3 + _x1**2*_A30 + 3*_x3**2*_A31 + 2*_A6*_x2*_x3 + _A8*_x2 + _A9*_x1) + 1.50938162832436*_x3**4.92632927610506*(_A10*_x1*_x3 + 2*_A12*_x0*_x3 + _A13*_x1*_x2 + _A14*_x2*_x3 + 2*_A15*_x0 + _A16*_x2 + _x2**2*_A18 + _A2*_x3 + _x3**2*_A20 + _A21 + _x1**2*_A3 + 2*_A33*_x0*_x2 + _A34*_x1 + 3*_x0**2*_A5 + 2*_A7*_x0*_x1) - _A10*_x0*_x3 - _x3**2*_A11 - _A13*_x0*_x2 - _x2**2*_A17 - 2*_A19*_x1*_x2 - _A22 - _A24*_x2*_x3 - 2*_A25*_x1 - 3*_x1**2*_A29 - 2*_A3*_x0*_x1 - 2*_A30*_x1*_x3 - _A34*_x0 - _A4*_x2 - _x0**2*_A7 - _A9*_x3 + _x2*_x3 + 0.0236580192527329*_x2*(_A13*_x0*_x1 + _A14*_x0*_x3 + _A16*_x0 + 2*_A17*_x1*_x2 + 2*_A18*_x0*_x2 + _x1**2*_A19 + 2*_A23*_x2 + _A24*_x1*_x3 + 3*_x2**2*_A26 + 2*_A27*_x2*_x3 + _A32 + _x0**2*_A33 + _A4*_x1 + _x3**2*_A6 + _A8*_x3)
Sympy appears to have difficulties evaluating the integral with floating point coefficients (in this case). However, it can find the integral in closed form when the constants of the integrand expression are symbolic.
a, b, c, t = sp.symbols('a,b,c,t', positive = True)
f = sp.Integral(a * sp.exp(-c*x)/(x**b),(x,0,t)).doit()
print f
Output:
-a*(-b*c**b*gamma(-b + 1)*lowergamma(-b + 1, 0)/(c*gamma(-b + 2)) + c**b*gamma(-b + 1)*lowergamma(-b + 1, 0)/(c*gamma(-b + 2))) + a*(-b*c**b*gamma(-b + 1)*lowergamma(-b + 1, c*t)/(c*gamma(-b + 2)) + c**b*gamma(-b + 1)*lowergamma(-b + 1, c*t)/(c*gamma(-b + 2)))
You can substitute the constants in this expression to get numerical results as follows (here, I use an example value of t=4):
f.subs({a:(myu**alpha)/sp.gamma(alpha), b:(alpha-1), c:myu, t:4}).n()
0.0154626407404632
Another option is to use quad from scipy (again using t=4):
from scipy.integrate import quad
quad(lambda x: (myu**alpha)/(sp.gamma(alpha)*(x**(alpha-1))*sp.exp(myu*x)), 0 ,4)[0]
0.015462640740458165

Naming LDA topics in Python

I am new to python and trying to implement topic modelling. I am successful in implementing LDA in pything using gensim , but I am not able to give any label/name to these topics.
How do we name these topics? please help out with the best way to implement in python.
My LDA output is somewhat like this(please let me know if you need the code) :-
0.024*research + 0.021*students + 0.019*conference + 0.019*chi + 0.017*field + 0.014*work + 0.013*student + 0.013*hci + 0.013*group + 0.013*researchers
0.047*research + 0.034*students + 0.020*ustars + 0.018*underrepresented + 0.017*participants + 0.012*researchers + 0.012*mathematics + 0.012*graduate + 0.012*mathematical + 0.012*conference
0.027*students + 0.026*research + 0.018*conference + 0.017*field + 0.015*new + 0.014*participants + 0.013*chi + 0.012*robotics + 0.010*researchers + 0.010*student
0.023*students + 0.019*robotics + 0.018*conference + 0.017*international + 0.016*interact + 0.016*new + 0.016*ph.d. + 0.016*meet + 0.016*ieee + 0.015*u.s.
0.033*research + 0.030*flow + 0.028*field + 0.023*visualization + 0.020*challenges + 0.017*students + 0.015*project + 0.013*shape + 0.013*visual + 0.012*data
0.044*research + 0.020*mathematics + 0.017*program + 0.014*june + 0.014*conference + 0.014*- + 0.013*mathematicians + 0.013*conferences + 0.011*field + 0.011*mrc
0.023*research + 0.021*students + 0.015*field + 0.014*hovering + 0.014*mechanisms + 0.014*dpiv + 0.013*aerodynamic + 0.012*unsteady + 0.012*conference + 0.012*hummingbirds
0.031*research + 0.018*mathematics + 0.016*program + 0.014*flow + 0.014*mathematicians + 0.012*conferences + 0.011*field + 0.011*june + 0.010*visualization + 0.010*communities
0.028*students + 0.028*research + 0.018*ustars + 0.018*mathematics + 0.015*underrepresented + 0.010*program + 0.010*encouraging + 0.010*'', + 0.010*participants + 0.010*conference
0.049*research + 0.021*conference + 0.021*program + 0.020*mathematics + 0.014*mathematicians + 0.013*field + 0.013*- + 0.011*conferences + 0.010*areas
Labeling topics is completely distinct from topic modeling. Here's an article that describes using a keyword extraction technique (KERA) to apply meaningful labels to topics: http://arxiv.org/abs/1308.2359

Categories