Invalid prop for this component - python

I'm running this app using Python Dash .I keep getting this error even though the app is loading for me perfectly. Can you please help me spot where I'm going wrong?
import dash
import dash_core_components as dcc
import dash_html_components as html
import pandas as pd
import plotly.graph_objects as go
from dash.dependencies import Input, Output
import plotly.express as px
df = px.data.tips()
sales1 = pd.read_csv("sales_data_sample.csv", encoding='unicode_escape')
app = dash.Dash(__name__)
app.layout = html.Div([
html.Div([
html.Label('Process Monitoring Dashboard',style={'font-size':'25px','color':'blue','margin-left': '50%'},id='w_countries')
]),
html.P("Process End Date",style={'margin-left': '10%'}),
dcc.Dropdown(
id='ped',
value='-Select Process End Date',
options=[{'value': x, 'label': x}
for x in ['2021', '2022', '2023', '2024']],
clearable=False,
style={'width': '30%','margin-left': '10%'}
),
html.P("User Or Role",style={'margin-left': '10%'}),
dcc.Dropdown(
id='uor',
value='-Select User Or Role',
options=[{'value': x, 'label': x}
for x in ['Admin', 'Guest User']],
clearable=False,
style={'width': '30%','margin-left': '10%'}
),
html.P("Process Start Date",style={'margin-left': '10%'}),
dcc.Dropdown(
id='psd',
value='-Select Process Start Date',
options=[{'value': x, 'label': x}
for x in ['2021', '2022', '2023', '2024']],
clearable=False,
style={'width': '30%','margin-left': '10%'}
),
html.P("Process",style={'margin-left': '10%'}),
dcc.Dropdown(
id='p',
value='-Select Process',
options=[{'value': x, 'label': x}
for x in ['Disputed','In Process','On Hold','Resolved','Cancelled']],
clearable=False,
style={'width': '30%','margin-left': '10%'}
),
# Create pie chart
html.Div([
html.Br(),
dcc.Graph(id='pie',
config={'displayModeBar': 'hover'}),
],style={'margin-left': '1.4%', 'width': '50%', 'display': 'inline-block'}),
# Create horizontal bar chart (top 10 countries)
html.Div([
html.Br(),
dcc.Graph(id='top_10',
config={'displayModeBar': 'hover'}),
], style={'width': '48.6%', 'display': 'inline-block', 'float': 'right'})
])
#app.callback(Output('pie', 'figure'),
[Input('w_countries', 'value')])
def display_content(w_countries):
Cancelled = sales1.loc[sales1['STATUS'] == 'Cancelled'].count()[0]
Disputed = sales1.loc[sales1['STATUS'] == 'Disputed'].count()[0]
In_Process = sales1.loc[sales1['STATUS'] == 'In Process'].count()[0]
On_Hold = sales1.loc[sales1['STATUS'] == 'On Hold'].count()[0]
Resolved = sales1.loc[sales1['STATUS'] == 'Resolved'].count()[0]
Shipped = sales1.loc[sales1['STATUS'] == 'Shipped'].count()[0]
return {
'data': [go.Pie(labels=['Cancelled', 'Disputed', 'In Process', 'On Hold', 'Resolved', 'Shipped'],
values=[Cancelled, Disputed, In_Process, On_Hold, Resolved, Shipped],
hoverinfo='label+value+percent',
textinfo='label+value',
textposition='auto',
textfont=dict(size=13),
insidetextorientation='radial',
rotation=70,
)],
'layout': go.Layout(
width=780,
height=520,
hovermode='closest',
title={
'text': 'Instance By Process',
'y': 0.93,
'x': 0.43,
'xanchor': 'center',
'yanchor': 'top'},
titlefont={'family': 'Oswald',
'color': 'rgb(230, 34, 144)',
'size': 25},
legend={
'orientation': 'h',
'bgcolor': 'rgba(255,255,255,0)',
'xanchor': 'center', 'x': 0.5, 'y': -0.05},
),
}
# Create horizontal bar chart (top 10 countries)
#app.callback(Output('top_10', 'figure'),
[Input('w_countries', 'value')])
def update_graph(w_countries):
top_countries = sales1.groupby(['COUNTRY'])[['SALES', 'QUANTITYORDERED']].sum().sort_values(by=['SALES'], ascending=False).nlargest(10, columns=['SALES']).reset_index()
return {
'data': [go.Bar(x=top_countries['SALES'],
y=top_countries['COUNTRY'],
text=top_countries['SALES'],
texttemplate='%{text:.2s}',
textposition='inside',
marker=dict(
color=top_countries['SALES'],
colorscale='portland',
showscale=False),
orientation='h',
hoverinfo='text',
hovertext=
'<b>Country</b>: ' + top_countries['COUNTRY'].astype(str) + '<br>' +
'<b>Sales</b>: $' + [f'{x:,.0f}' for x in top_countries['SALES']] + '<br>' +
'<b>Q.Ordered</b>: $' + [f'{x:,.0f}' for x in top_countries['QUANTITYORDERED']] + '<br>'
)],
'layout': go.Layout(
width=780,
height=520,
# plot_bgcolor='rgb(250, 242, 242)',
# paper_bgcolor='rgb(250, 242, 242)',
title={
'text': 'Top 10 Countries with active customers',
'y': 0.93,
'x': 0.43,
'xanchor': 'center',
'yanchor': 'top'},
titlefont={'family': 'Oswald',
'color': 'rgb(230, 34, 144)',
'size': 25},
hovermode='closest',
xaxis=dict(title='<b>Sales</b>',
color='rgb(230, 34, 144)',
showline=True,
showgrid=True,
showticklabels=True,
linecolor='rgb(104, 204, 104)',
linewidth=2,
ticks='outside',
tickfont=dict(
family='Arial',
size=12,
color='rgb(17, 37, 239)'
)
),
yaxis=dict(title='<b>Country</b>',
autorange='reversed',
color='rgb(230, 34, 144)',
showline=True,
showgrid=False,
showticklabels=True,
linecolor='rgb(104, 204, 104)',
linewidth=2,
ticks='outside',
tickfont=dict(
family='Arial',
size=12,
color='rgb(17, 37, 239)'
)
)
)
}
if __name__ == '__main__':
app.run_server(debug=True)
And this is my error
Invalid prop for this component
Property "value" was used with component ID:
"w_countries"
in one of the Input items of a callback.
This ID is assigned to a dash_html_components.Label component
in the layout, which does not support this property.
This ID was used in the callback(s) for Output(s):
pie.figure
top_10.figure

You've told Dash to use the value from a Label component as an input for your callback. But Label doesn't have a value, and it isn't interactive like that. You need to use a different input for that callback.

Related

Scatter plot color and clickData mismatch

I'm trying to make interactive graphs based on hover_data and using this doc for reference. And below is code from this doc.
from dash import Dash, html, dcc, Input, Output
import pandas as pd
import plotly.express as px
external_stylesheets = ['https://codepen.io/chriddyp/pen/bWLwgP.css']
app = Dash(__name__, external_stylesheets=external_stylesheets)
df = pd.read_csv('https://plotly.github.io/datasets/country_indicators.csv')
app.layout = html.Div([
html.Div([
html.Div([
dcc.Dropdown(
df['Indicator Name'].unique(),
'Fertility rate, total (births per woman)',
id='crossfilter-xaxis-column',
),
dcc.RadioItems(
['Linear', 'Log'],
'Linear',
id='crossfilter-xaxis-type',
labelStyle={'display': 'inline-block', 'marginTop': '5px'}
)
],
style={'width': '49%', 'display': 'inline-block'}),
html.Div([
dcc.Dropdown(
df['Indicator Name'].unique(),
'Life expectancy at birth, total (years)',
id='crossfilter-yaxis-column'
),
dcc.RadioItems(
['Linear', 'Log'],
'Linear',
id='crossfilter-yaxis-type',
labelStyle={'display': 'inline-block', 'marginTop': '5px'}
)
], style={'width': '49%', 'float': 'right', 'display': 'inline-block'})
], style={
'padding': '10px 5px'
}),
html.Div([
dcc.Graph(
id='crossfilter-indicator-scatter',
hoverData={'points': [{'customdata': 'Japan'}]}
)
], style={'width': '49%', 'display': 'inline-block', 'padding': '0 20'}),
html.Div([
dcc.Graph(id='x-time-series'),
dcc.Graph(id='y-time-series'),
], style={'display': 'inline-block', 'width': '49%'}),
html.Div(dcc.Slider(
df['Year'].min(),
df['Year'].max(),
step=None,
id='crossfilter-year--slider',
value=df['Year'].max(),
marks={str(year): str(year) for year in df['Year'].unique()}
), style={'width': '49%', 'padding': '0px 20px 20px 20px'})
])
#app.callback(
Output('crossfilter-indicator-scatter', 'figure'),
Input('crossfilter-xaxis-column', 'value'),
Input('crossfilter-yaxis-column', 'value'),
Input('crossfilter-xaxis-type', 'value'),
Input('crossfilter-yaxis-type', 'value'),
Input('crossfilter-year--slider', 'value'))
def update_graph(xaxis_column_name, yaxis_column_name,
xaxis_type, yaxis_type,
year_value):
dff = df[df['Year'] == year_value]
fig = px.scatter(x=dff[dff['Indicator Name'] == xaxis_column_name]['Value'],
y=dff[dff['Indicator Name'] == yaxis_column_name]['Value'],
hover_name=dff[dff['Indicator Name'] == yaxis_column_name]['Country Name']
)
fig.update_traces(customdata=dff[dff['Indicator Name'] == yaxis_column_name]['Country Name'])
fig.update_xaxes(title=xaxis_column_name, type='linear' if xaxis_type == 'Linear' else 'log')
fig.update_yaxes(title=yaxis_column_name, type='linear' if yaxis_type == 'Linear' else 'log')
fig.update_layout(margin={'l': 40, 'b': 40, 't': 10, 'r': 0}, hovermode='closest')
return fig
def create_time_series(dff, axis_type, title):
fig = px.scatter(dff, x='Year', y='Value')
fig.update_traces(mode='lines+markers')
fig.update_xaxes(showgrid=False)
fig.update_yaxes(type='linear' if axis_type == 'Linear' else 'log')
fig.add_annotation(x=0, y=0.85, xanchor='left', yanchor='bottom',
xref='paper', yref='paper', showarrow=False, align='left',
text=title)
fig.update_layout(height=225, margin={'l': 20, 'b': 30, 'r': 10, 't': 10})
return fig
#app.callback(
Output('x-time-series', 'figure'),
Input('crossfilter-indicator-scatter', 'hoverData'),
Input('crossfilter-xaxis-column', 'value'),
Input('crossfilter-xaxis-type', 'value'))
def update_y_timeseries(hoverData, xaxis_column_name, axis_type):
country_name = hoverData['points'][0]['customdata']
dff = df[df['Country Name'] == country_name]
dff = dff[dff['Indicator Name'] == xaxis_column_name]
title = '<b>{}</b><br>{}'.format(country_name, xaxis_column_name)
return create_time_series(dff, axis_type, title)
#app.callback(
Output('y-time-series', 'figure'),
Input('crossfilter-indicator-scatter', 'hoverData'),
Input('crossfilter-yaxis-column', 'value'),
Input('crossfilter-yaxis-type', 'value'))
def update_x_timeseries(hoverData, yaxis_column_name, axis_type):
dff = df[df['Country Name'] == hoverData['points'][0]['customdata']]
dff = dff[dff['Indicator Name'] == yaxis_column_name]
return create_time_series(dff, axis_type, yaxis_column_name)
if __name__ == '__main__':
app.run_server(debug=True)
With this code, every dots colored blue and I want to color dots based on Country name and I added to fig as below:
fig = px.scatter(x=dff[dff['Indicator Name'] == xaxis_column_name]['Value'],
y=dff[dff['Indicator Name'] == yaxis_column_name]['Value'],
hover_name=dff[dff['Indicator Name'] == yaxis_column_name]['Country Name'],
color=dff[dff['Indicator Name'] == yaxis_column_name]['Country Name']
)
But after adding color, it didn't return exact Country name when hover over dots.
Before adding color:
After adding color:
What should I do in this case. Thank you.
Use hovertext instead of customdata : just replace the occurrences in dcc.Graph() and in the callbacks, and remove the line
fig.update_traces(customdata=dff[dff['Indicator Name'] == yaxis_column_name]['Country Name'])
This is because hovertext refers to the hover_name value of the data point being hovered, which in your case is the country name.
Actually, hoverData already receives (in callbacks) the 'x', 'y', and 'hover_name' data from the figure, so you would refer to customdata only in cases when you need other information set via custom_data or hover_data, for example in the function update_graph() :
country = dff[dff['Indicator Name'] == yaxis_column_name]['Country Name']
dff = pd.DataFrame({
'x': dff[dff['Indicator Name'] == xaxis_column_name]['Value'].values,
'y': dff[dff['Indicator Name'] == yaxis_column_name]['Value'].values,
'country': country,
'other': country.map('TEST : {}'.format), # another column
})
fig = px.scatter(x='x', y='y',
data_frame=dff,
hover_name='country',
color='country',
custom_data=['other']
)
... would let you retrieve data from other in the callbacks :
country_name = hoverData['points'][0]['hovertext']
other = hoverData['points'][0]['customdata'][0]
# [0] because 'other' is the first element in custom_data list.

Aligning the height of the first and second column in Python Dash app

I have a probably simple problem that I cannot solve. I have two columns in my Python Dash dashboard, which are not aligned in height, see here:
What do I need to change in my code so that the two columns are on the same height?
Any help is much appreciated.
This is my code:
app = dash.Dash(__name__)
app.layout = html.Div([
html.Div([
html.Label('Material 1'),
dcc.Dropdown(
id='s1m1s',
options=[{'label': i, 'value': i} for i in available_indicators],
value=options1[0],
),
html.Label('Material 1'),
dcc.Dropdown(
id='s1mdf45',
options=[{'label': i, 'value': i} for i in available_indicators],
value=options1[0],
),
], style={'width': '20%', 'display': 'inline-block'}),
html.Div([
html.Label('m3'),
daq.NumericInput(
id='s2m1_num',
min=0,
max=200,
value=0,
),
html.Label('m3'),
daq.NumericInput(
id='s2m2_num',
min=0,
max=200,
value=0,
),
], style={'width': '20%', 'display': 'inline-block'})
])
You can add 'vertical-align': 'top' to the style dictionaries of the two columns to make sure that they are aligned at the top, see below.
import dash
import dash_html_components as html
import dash_core_components as dcc
import dash_daq as daq
app = dash.Dash(__name__)
app.layout = html.Div([
# first column
html.Div(
children=[
html.Label('Material 1'),
dcc.Dropdown(
id='s1m1s',
options=[{'label': i, 'value': i} for i in ['option_1', 'option_2', 'option_3']],
value='option_1',
),
html.Label('Material 1'),
dcc.Dropdown(
id='s1mdf45',
options=[{'label': i, 'value': i} for i in ['option_1', 'option_2', 'option_3']],
value='option_2',
),
],
style={
'width': '20%',
'display': 'inline-block',
'vertical-align': 'top',
}
),
# second column
html.Div(
children=[
html.Label('m3'),
daq.NumericInput(
id='s2m1_num',
min=0,
max=200,
value=0,
),
html.Label('m3'),
daq.NumericInput(
id='s2m2_num',
min=0,
max=200,
value=0,
),
],
style={
'width': '20%',
'display': 'inline-block',
'vertical-align': 'top',
}
)
])
if __name__ == '__main__':
app.run_server(debug=True, host='127.0.0.1')

Python Dash - Graph not updating upon selecting new dropdown value

Hey guys,
I’m an intern python developer and I just found out about dash and Plotly, its amazing!
For my app I’m using a dataset containing info about fortune 500’s revenue in 1955-2005 period.
The problem I have is that the graph won’t update itself upon selecting additional company from the dropdown list, however, if I select a new company and delete a previous one - then the graph updates. It seems like something prevents the graph to show multiple lines at once. Also, is there any way I could add the legend telling which color is what company? Below is my code:
import dash
import dash_html_components as html
import dash_core_components as dcc
import pandas as pd
import plotly.graph_objs as go
from dash.dependencies import Input, Output
#Read CSV and change col. names
df = pd.read_csv('fortune500-full.csv')
df.columns = ['Year', 'Rank', 'Company', 'Revenue', 'Profit']
#Get a list of unique company names
Companies = df['Company'].unique()
#Stylesheet
external_stylesheets = ['https://codepen.io/chriddyp/pen/bWLwgP.css']
app = dash.Dash(__name__, external_stylesheets=external_stylesheets)
#App layout
app.layout = html.Div([
#Dropdown
html.Div([
html.Label('Dropdown'),
dcc.Dropdown(
id = 'Dropdown',
options=[{'label': i, 'value': i} for i in Companies],
value=["General Motors"],
multi = True
),]),
#Graph
dcc.Graph(
id='Graph',
figure={
'data': [
go.Scatter(
x=df.loc[df['Company'] == i, 'Year'],
y=df.loc[df['Company'] == i, 'Revenue'],
text =df.loc[df['Company'] == i, 'Company'],
mode='lines',
name=i
) for i in df.Company.unique()],
'layout': go.Layout(
xaxis={'title': 'Year'},
yaxis={'title': 'Revenue'},
margin={'l': 50, 'b': 30, 't': 10, 'r': 0},
legend={'x': 1, 'y': 1},
hovermode='closest'
)}),
html.Div(dcc.RangeSlider(
id='Slider',
min=df['Year'].min(),
max=df['Year'].max(),
value=[1955, 2005],
marks={str(year): str(year) for year in df['Year'].unique()}
), style={'width': '98%', 'padding': '0px 20px 20px 20px'}),
html.Div(id='Output_slider',
style={'textAlign': 'center', 'color': ['#7FDBFF']}
)])
#app.callback(
dash.dependencies.Output('Graph', 'figure'),
[dash.dependencies.Input('Dropdown', 'value')])
def callback_a(dropdown_value):
trace = []
for val in dropdown_value:
trace.append(
go.Scatter(
x=df.loc[df['Company'] == val, 'Year'],
y=df.loc[df['Company'] == val, 'Revenue'],
text =df.loc[df['Company'] == val, 'Company'],
mode='lines',
name=val
),)
layout = go.Layout(
xaxis={'title': 'Year'},
yaxis={'title': 'Revenue'},
margin={'l': 50, 'b': 30, 't': 10, 'r': 0},
legend={'x': 1, 'y': 1},
hovermode='closest'
)
figure = {'data': trace, 'layout': layout}
return figure
#app.callback(
dash.dependencies.Output('Output_slider', 'children'),
[dash.dependencies.Input('Slider', 'value')])
def update_output(value):
return 'Wybrane lata: "{}"'.format(value)
#App
if __name__ == '__main__':
app.run_server(debug=True)
Could any of you please take a look at this and help me find root of this problem?
Kind regards.

Layout and Dropdown menu in Dash - Python

I cannot seem to be able to get the layout of my dropdown menu boxes correctly. Basically I want for the dropdown box to be on the right of their matching question and on the same line.
Can anyone help please?
I have tried multiple combinations of style={'display': 'inline-block', 'width:'X%'} and className = 'X columns' with no luck.
import dash
from dash.dependencies import Input, Output, State
import dash_core_components as dcc
import dash_html_components as html
import dash_auth
external_stylesheets = ['https://codepen.io/chriddyp/pen/bWLwgP.css']
app = dash.Dash(__name__, external_stylesheets=external_stylesheets)
app.layout = html.Div([
html.Div(
[
html.Div(
[
html.H6("""Select your current industry""",
style={'textAlign': 'right', 'font-weight':'bold', 'margin-left': '0em', 'margin-right': '2em', 'display': 'inline-block', 'width': '40%'})
],
),
dcc.Dropdown(
id = 'business_area_dropdown',
options=[
{'label': 'Academia', 'value': 'academia'},
{'label': 'Energy', 'value': 'energy'},
{'label': 'Research', 'value': 'research'}
],
placeholder="Select Business Area",
style = dict(
width = '40%',
display = 'inline-block',
verticalAlign = "middle"
)
)
],
className='row'
),
html.Div(
[
html.Div(
[
html.H6("""Are you happy where you are?""",
style={'textAlign': 'right', 'font-weight':'bold', 'margin-left': '0em', 'margin-right': '2em', 'display': 'inline-block', 'width': '40%'})
],
),
dcc.Dropdown(
id = 'search_preference',
options=[
{'label': 'Yes', 'value': 'yes'},
{'label': 'No', 'value': 'no'}
],
placeholder="Select Answer",
style = dict(
width = '40%',
display = 'inline-block',
verticalAlign = "middle"
)
)
],
className='row'
),],
style={'display': 'inline-block', 'backgroundColor': '#fff7dd', 'width': '99%'}
)
if __name__ == '__main__':
app.run_server()
The dropdown boxes appear in a completely different line. I'd like for the dropdown boxes to be aligned horizontally to their respective questions to be answered.
My favorite styling trick, Flexbox, is how I would solve this one.
app.layout = html.Div([
html.Div(
[
html.Div(
[
html.H6("""Select your current industry""",
style={'margin-right': '2em'})
],
),
dcc.Dropdown(
id='business_area_dropdown',
options=[
{'label': 'Academia', 'value': 'academia'},
{'label': 'Energy', 'value': 'energy'},
{'label': 'Research', 'value': 'research'}
],
placeholder="Select Business Area",
style=dict(
width='40%',
verticalAlign="middle"
)
)
],
style=dict(display='flex')
),
html.Div(
[
html.Div(
[
html.H6("""Are you happy where you are?""",
style={'margin-right': '2em'})
],
),
dcc.Dropdown(
id='search_preference',
options=[
{'label': 'Yes', 'value': 'yes'},
{'label': 'No', 'value': 'no'}
],
placeholder="Select Answer",
style=dict(
width='40%',
display='inline-block',
verticalAlign="middle"
)
)
],
style=dict(display='flex')
), ],
)
And here is a screenshot of the results:

Pandas 'key' error while creating charts through Dash

I am trying to create a scatter plot between two metrics after asking for the dimension level drill down. However, I am getting the the error: KeyError: u’brand’(one of the column names). I am new do Dash and cannot debug the error because there is nothing wrong with the column name. Following is the code:
import dash
import dash_core_components as dcc
import dash_html_components as html
import plotly.graph_objs as go
import pandas as pd
import sqlalchemy as sq
import numpy as np
from datetime import datetime
engine_prd = sq.create_engine(“connection url”)
df=pd.read_sql(“SELECT t1.date,
t1.article_type as article_type,
t1.product_gender as product_gender,
t1.brand as brand,
t1.master_category as master_category,
t1.business_unit as business_unit,
SUM(t1.revenue) as revenue,
SUM(t1.sold_quantity) as units_sold,
SUM(t1.total_discount) / NULLIF( SUM(t1.total_mrp),0) AS discount_perc,
SUM(t1.approved_po_quantity) - SUM(t1.po_inwarded_quantity) AS pending_invard_quantity,
SUM(t1.revenue) / NULLIF(SUM(t1.list_count), 0) AS rpi,
SUM(t1.list_count),
100 *ratio_to_report(SUM(t1.list_count)) OVER (PARTITION BY t1.DATE) AS lc_share
FROM fact_category_over_view_metrics t1
WHERE t1.DATE> 20180101 and is_live_style=1
GROUP BY
t1.DATE,t1.article_type,t1.product_gender,t1.brand,t1.master_category,
t1.business_unit;”,engine_prd)
df[[‘date_format’]] = df[[‘date’]].applymap(str).applymap(lambda s: “{}/{}/{}”.format(s[4:6],s[6:], s[0:4]))
df[[‘year_month’]]=df[[‘date’]].applymap(str).applymap(lambda s: “{}-{}”.format(s[0:4],s[4:6]))
df[‘year_month’]=df[‘year_month’].astype(str)
year_month=df[‘year_month’].unique()
available_indicators = np.array([‘revenue’,‘units_sold’,‘discount_perc’,‘pending_invard_quantity’,‘rpi’,‘lc_share’])
dimension_level=np.array([‘brand’,‘product_gender’,‘article_type’,‘master_category’,‘business_unit’])
#available_indicators=list(df)
app=dash.Dash()
app.layout = html.Div([
html.Div([
html.Div([
dcc.Dropdown(
id='dimension-level',
options=[{'label': i, 'value': i} for i in dimension_level],
value='brand'
)]),
html.Div([
dcc.Dropdown(
id='crossfilter-xaxis-column',
options=[{'label': i, 'value': i} for i in available_indicators],
value='revenue'
),
dcc.RadioItems(
id='crossfilter-xaxis-type',
options=[{'label': i, 'value': i} for i in ['Linear', 'Log']],
value='Linear',
labelStyle={'display': 'inline-block'}
)
],
style={'width': '48%', 'display': 'inline-block'}),
html.Div([
dcc.Dropdown(
id='crossfilter-yaxis-column',
options=[{'label': i, 'value': i} for i in available_indicators],
value='units_sold'
),
dcc.RadioItems(
id='crossfilter-yaxis-type',
options=[{'label': i, 'value': i} for i in ['Linear', 'Log']],
value='Linear',
labelStyle={'display': 'inline-block'}
)
], style={'width': '48%', 'float': 'right', 'display': 'inline-block'})
]),
dcc.Graph(
id='crossfilter-indicator-scatter'),
dcc.Slider(
id='crossfilter-year-month--slider',
min=0,
max=len(df['year_month'].unique()),
value=0,
step=None,
marks={i : str(yearm) for i, yearm in enumerate(df['year_month'].unique())} # enumerate the dates
)
])
#app.callback(
dash.dependencies.Output(‘crossfilter-indicator-scatter’, ‘figure’),
[dash.dependencies.Input(‘dimension-level’, ‘value’),
dash.dependencies.Input(‘crossfilter-xaxis-column’, ‘value’),
dash.dependencies.Input(‘crossfilter-yaxis-column’, ‘value’),
dash.dependencies.Input(‘crossfilter-xaxis-type’, ‘value’),
dash.dependencies.Input(‘crossfilter-yaxis-type’, ‘value’),
dash.dependencies.Input(‘crossfilter-year-month–slider’, ‘value’)],
[dash.dependencies.State(‘crossfilter-year-month–slider’, ‘marks’)])
def update_graph(dimension_level_name,xaxis_column_name, yaxis_column_name,xaxis_type, yaxis_type, selected_year_month_key,marks):
selected_year_month=marks[str(selected_year_month_key)]
df_filtered = df[df['year_month'] == selected_year_month]
dff=df_filtered.groupby([dimension_level_name]).sum()
return {
'data': [go.Scatter(
x=dff[xaxis_column_name],
y=dff[yaxis_column_name],
text=dff[dimension_level_name],
#customdata=dff['article_type'],
mode='markers',
marker={
'size': 15,
'opacity': 0.5,
'line': {'width': 0.5, 'color': 'white'}
}
)],
'layout': go.Layout(
xaxis={
'title': xaxis_column_name,
'type': 'linear' if xaxis_type == 'Linear' else 'log'
},
yaxis={
'title': yaxis_column_name,
'type': 'linear' if yaxis_type == 'Linear' else 'log'
},
margin={'l': 40, 'b': 30, 't': 10, 'r': 0},
height=450,
hovermode='closest'
)
}
if name == ‘main’:
app.run_server()
The errors occurs while grouping by the df using the input value from dropdown. The data frame’s head looks has been linked to The sample data:
The key error occurs in "text=dff[dimension_level_name]". It is because while grouping by the dataframe , as_index is not set to False. This will throw a key error. The problem was solved by replacing dff=df_filtered.groupby([dimension_level_name]).sum() with:
dff=df_filtered.groupby([dimension_level_name].as_index=False).sum()

Categories