I am trying merge 2 dataframes.
df1
Date A B C
01.01.2021 1 8 14
02.01.2021 2 9 15
03.01.2021 3 10 16
04.01.2021 4 11 17
05.01.2021 5 12 18
06.01.2021 6 13 19
07.01.2021 7 14 20
df2
Date B
07.01.2021 14
08.01.2021 27
09.01.2021 28
10.01.2021 29
11.01.2021 30
12.01.2021 31
13.01.2021 32
Both dataframes have one same row (although there could be several overlappings).
So I want to get df3 that looks as follows:
df3
Date A B C
01.01.2021 1 8 14
02.01.2021 2 9 15
03.01.2021 3 10 16
04.01.2021 4 11 17
05.01.2021 5 12 18
06.01.2021 6 13 19
07.01.2021 7 14 20
08.01.2021 Nan 27 Nan
09.01.2021 Nan 28 Nan
10.01.2021 Nan 29 Nan
11.01.2021 Nan 30 Nan
12.01.2021 Nan 31 Nan
13.01.2021 Nan 32 Nan
I've tried
df3=df1.merge(df2, on='Date', how='outer') but it gives extra A,B,C columns. Could you give some idea how to get df3?
Thanks a lot.
merge outer without specifying on (default on is the intersection of columns between the two DataFrames in this case ['Date', 'B']):
df3 = df1.merge(df2, how='outer')
df3:
Date A B C
0 01.01.2021 1.0 8 14.0
1 02.01.2021 2.0 9 15.0
2 03.01.2021 3.0 10 16.0
3 04.01.2021 4.0 11 17.0
4 05.01.2021 5.0 12 18.0
5 06.01.2021 6.0 13 19.0
6 07.01.2021 7.0 14 20.0
7 08.01.2021 NaN 27 NaN
8 09.01.2021 NaN 28 NaN
9 10.01.2021 NaN 29 NaN
10 11.01.2021 NaN 30 NaN
11 12.01.2021 NaN 31 NaN
12 13.01.2021 NaN 32 NaN
Assuming you always want to keep the first full version, you can concat the df2 on the end of df1 and drop duplicates on the Date column.
pd.concat([df1,df2]).drop_duplicates(subset='Date')
Output
Date A B C
0 01.01.2021 1.0 8 14.0
1 02.01.2021 2.0 9 15.0
2 03.01.2021 3.0 10 16.0
3 04.01.2021 4.0 11 17.0
4 05.01.2021 5.0 12 18.0
5 06.01.2021 6.0 13 19.0
6 07.01.2021 7.0 14 20.0
1 08.01.2021 NaN 27 NaN
2 09.01.2021 NaN 28 NaN
3 10.01.2021 NaN 29 NaN
4 11.01.2021 NaN 30 NaN
5 12.01.2021 NaN 31 NaN
6 13.01.2021 NaN 32 NaN
Related
I want to take the surface-weighted average of the columns in my dataframe. I have two surface-columns and two U-value-columns. I want to create an extra column 'U_av' (surface-weighted-average U-value) and U_av = (A1*U1 + A2*U2) / (A1+A2). If NaN occurs in one of the columns, NaN should be returned.
Initial df:
ID A1 A2 U1 U2
0 14 2 1.0 10.0 11
1 16 2 2.0 12.0 12
2 18 2 3.0 24.0 13
3 20 2 NaN 8.0 14
4 22 4 5.0 84.0 15
5 24 4 6.0 84.0 16
Desired Output:
ID A1 A2 U1 U2 U_av
0 14 2 1.0 10.0 11 10.33
1 16 2 2.0 12.0 12 12
2 18 2 3.0 24.0 13 17.4
3 20 2 NaN 8.0 14 NaN
4 22 4 5.0 84.0 15 45.66
5 24 4 6.0 84.0 16 43.2
Code:
import numpy as np
import pandas as pd
df = pd.DataFrame({"ID": [14,16,18,20,22,24],
"A1": [2,2,2,2,4,4],
"U1": [10,12,24,8,84,84],
"A2": [1,2,3,np.nan,5,6],
"U2": [11,12,13,14,15,16]})
print(df)
#the mean of two columns U1 and U2 and dropping NaN is easy (U1+U2/2 in this case)
#but what to do for the surface-weighted mean (U_av = (A1*U1 + A2*U2) / (A1+A2))?
df.loc[:,'Umean'] = df[['U1','U2']].dropna().mean(axis=1)
EDIT:
adding to the solutions below:
df["U_av"] = (df.A1.mul(df.U1) + df.A2.mul(df.U2)).div(df[['A1','A2']].sum(axis=1))
Hope I got you correct:
df['U_av'] = (df['A1']*df['U1'] + df['A2']*df['U2']) / (df['A1']+df['A2'])
df
ID A1 U1 A2 U2 U_av
0 14 2 10 1.0 11 10.333333
1 16 2 12 2.0 12 12.000000
2 18 2 24 3.0 13 17.400000
3 20 2 8 NaN 14 NaN
4 22 4 84 5.0 15 45.666667
5 24 4 84 6.0 16 43.200000
Try this code:
numerator = df.A1.mul(df.U1) + (df.A2.mul(df.U2))
denominator = df.A1.add(df.A2)
df["U_av"] = numerator.div(denominator)
df
ID A1 A2 U1 U2 U_av
0 14 2 1.0 10.0 11 10.333333
1 16 2 2.0 12.0 12 12.000000
2 18 2 3.0 24.0 13 17.400000
3 20 2 NaN 8.0 14 NaN
4 22 4 5.0 84.0 15 45.666667
5 24 4 6.0 84.0 16 43.200000
I have the following dataframe grouped by datafile and I want to fillna(method ='bfill') only for those 'groups' that contain more than half of the data.
df.groupby('datafile').count()
datafile column1 column2 column3 column4
datafile1 5 5 3 4
datafile2 5 5 4 5
datafile3 5 5 5 5
datafile4 5 5 0 0
datafile5 5 5 1 1
As you can see in the df above, I'd like to fill those groups that contain most of the information but not those who has none or little information. So I was thinking in a condition something like fillna those who have more than half of the counts and don't fill the rest or those with less than half.
I'm struggling on how to set up my condition since it involves working with a result of a groupby and the original df.
Help is appreciated it.
example df:
index datafile column1 column2 column3 column4
0 datafile1 5 5 NaN 20
1 datafile1 6 6 NaN 21
2 datafile1 7 7 9 NaN
3 datafile1 8 8 10 23
4 datafile1 9 9 11 24
5 datafile2 3 3 2 7
6 datafile2 4 4 3 8
7 datafile2 5 5 4 9
8 datafile2 6 6 NaN 10
9 datafile2 7 7 6 11
10 datafile3 10 10 24 4
11 datafile3 11 11 25 5
12 datafile3 12 12 26 6
13 datafile3 13 13 27 7
14 datafile3 14 14 28 8
15 datafile4 4 4 NaN NaN
16 datafile4 5 5 NaN NaN
17 datafile4 6 6 NaN NaN
18 datafile4 7 7 NaN NaN
19 datafile4 8 8 NaN NaN
19 datafile4 9 9 NaN NaN
20 datafile5 7 7 1 3
21 datafile5 8 8 NaN NaN
22 datafile5 9 9 NaN NaN
23 datafile5 10 10 NaN NaN
24 datafile5 11 1 NaN NaN
expected output df:
index datafile column1 column2 column3 column4
0 datafile1 5 5 9 20
1 datafile1 6 6 9 21
2 datafile1 7 7 9 23
3 datafile1 8 8 10 23
4 datafile1 9 9 11 24
5 datafile2 3 3 2 7
6 datafile2 4 4 3 8
7 datafile2 5 5 4 9
8 datafile2 6 6 6 10
9 datafile2 7 7 6 11
10 datafile3 10 10 24 4
11 datafile3 11 11 25 5
12 datafile3 12 12 26 6
13 datafile3 13 13 27 7
14 datafile3 14 14 28 8
15 datafile4 4 4 NaN NaN
16 datafile4 5 5 NaN NaN
17 datafile4 6 6 NaN NaN
18 datafile4 7 7 NaN NaN
19 datafile4 8 8 NaN NaN
19 datafile4 9 9 NaN NaN
20 datafile5 7 7 1 3
21 datafile5 8 8 NaN NaN
22 datafile5 9 9 NaN NaN
23 datafile5 10 10 NaN NaN
24 datafile5 11 1 NaN NaN
if the proportion of NON-null values is greater than or equal to 0.5 in each column then it is filled with the bfill method:
rate = 0.5
not_na = df.notna()
g = not_na.groupby(df['datafile'])
df_fill = (
df.bfill()
.where(
g.transform('sum')
.div(g['datafile'].transform('size'), axis=0)
.ge(rate) |
not_na
)
)
print(df_fill)
index datafile column1 column2 column3 column4
0 0 datafile1 5 5 9.0 20.0
1 1 datafile1 6 6 9.0 21.0
2 2 datafile1 7 7 9.0 23.0
3 3 datafile1 8 8 10.0 23.0
4 4 datafile1 9 9 11.0 24.0
5 5 datafile2 3 3 2.0 7.0
6 6 datafile2 4 4 3.0 8.0
7 7 datafile2 5 5 4.0 9.0
8 8 datafile2 6 6 6.0 10.0
9 9 datafile2 7 7 6.0 11.0
10 10 datafile3 10 10 24.0 4.0
11 11 datafile3 11 11 25.0 5.0
12 12 datafile3 12 12 26.0 6.0
13 13 datafile3 13 13 27.0 7.0
14 14 datafile3 14 14 28.0 8.0
15 15 datafile4 4 4 NaN NaN
16 16 datafile4 5 5 NaN NaN
17 17 datafile4 6 6 NaN NaN
18 18 datafile4 7 7 NaN NaN
19 19 datafile4 8 8 NaN NaN
20 19 datafile4 9 9 NaN NaN
21 20 datafile5 7 7 1.0 3.0
22 21 datafile5 8 8 NaN NaN
23 22 datafile5 9 9 NaN NaN
24 23 datafile5 10 10 NaN NaN
25 24 datafile5 11 1 NaN NaN
Also we can use:
m = (not_na.groupby(df['datafile'], sort=False)
.sum()
.div(df['datafile'].value_counts(), axis=0)
.ge(rate)
.reindex(df['datafile']).reset_index(drop=True))
df.bfill().where(m | not_na)
both methods have similar returns for the sample dataframe
%%timeit
rate = 0.5
not_na = df.notna()
m = (not_na.groupby(df['datafile'], sort=False)
.sum()
.div(df['datafile'].value_counts(),axis=0)
.ge(rate)
.reindex(df['datafile']).reset_index(drop=True))
df.bfill().where(m | not_na)
11.1 ms ± 53.3 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
%%timeit
rate = 0.5
not_na = df.notna()
g = not_na.groupby(df['datafile'])
df_fill = (df.bfill()
.where(g.transform('sum').div(g['datafile'].transform('size'),
axis=0).ge(rate) |
not_na)
)
12.9 ms ± 225 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
Use pandas.groupby.filter
def most_not_null(x): return x.isnull().sum().sum() < (x.notnull().sum().sum() // 2)
filtered_groups = df.groupby('datafile').filter(most_not_null)
df.loc[filtered_groups.index] = filtered_groups.bfill()
Output
>>> df
index datafile column1 column2 column3 column4
0 0 datafile1 5 5 9.0 20.0
1 1 datafile1 6 6 9.0 21.0
2 2 datafile1 7 7 9.0 23.0
3 3 datafile1 8 8 10.0 23.0
4 4 datafile1 9 9 11.0 24.0
5 5 datafile2 3 3 2.0 7.0
6 6 datafile2 4 4 3.0 8.0
7 7 datafile2 5 5 4.0 9.0
8 8 datafile2 6 6 6.0 10.0
9 9 datafile2 7 7 6.0 11.0
10 10 datafile3 10 10 24.0 4.0
11 11 datafile3 11 11 25.0 5.0
12 12 datafile3 12 12 26.0 6.0
13 13 datafile3 13 13 27.0 7.0
14 14 datafile3 14 14 28.0 8.0
15 15 datafile4 4 4 NaN NaN
16 16 datafile4 5 5 NaN NaN
17 17 datafile4 6 6 NaN NaN
18 18 datafile4 7 7 NaN NaN
19 19 datafile4 8 8 NaN NaN
20 19 datafile4 9 9 NaN NaN
21 20 datafile5 7 7 1.0 3.0
22 21 datafile5 8 8 NaN NaN
23 22 datafile5 9 9 NaN NaN
24 23 datafile5 10 10 NaN NaN
25 24 datafile5 11 1 NaN NaN
I have two dataframes of different size:
df1 = pd.DataFrame({'A':[1,2,None,4,None,6,7,8,None,10], 'B':[11,12,13,14,15,16,17,18,19,20]})
df1
A B
0 1.0 11
1 2.0 12
2 NaN 13
3 4.0 14
4 NaN 15
5 6.0 16
6 7.0 17
7 8.0 18
8 NaN 19
9 10.0 20
df2 = pd.DataFrame({'A':[2,3,4,5,6,8], 'B':[12,13,14,15,16,18]})
df2['A'] = df2['A'].astype(float)
df2
A B
0 2.0 12
1 3.0 13
2 4.0 14
3 5.0 15
4 6.0 16
5 8.0 18
I need to fill missing values (and only them) in column A of the first dataframe with values from the second dataframe with common key in the column B. It is equivalent to a SQL query:
UPDATE df1 JOIN df2
ON df1.B = df2.B
SET df1.A = df2.A WHERE df1.A IS NULL;
I tried to use answers to similar questions from this site, but it does not work as I need:
df1.fillna(df2)
A B
0 1.0 11
1 2.0 12
2 4.0 13
3 4.0 14
4 6.0 15
5 6.0 16
6 7.0 17
7 8.0 18
8 NaN 19
9 10.0 20
df1.combine_first(df2)
A B
0 1.0 11
1 2.0 12
2 4.0 13
3 4.0 14
4 6.0 15
5 6.0 16
6 7.0 17
7 8.0 18
8 NaN 19
9 10.0 20
Intended output is:
A B
0 1.0 11
1 2.0 12
2 3.0 13
3 4.0 14
4 5.0 15
5 6.0 16
6 7.0 17
7 8.0 18
8 NaN 19
9 10.0 20
How do I get this result?
You were right about using combine_first(), except that both dataframes must share the same index, and the index must be the column B:
df1.set_index('B').combine_first(df2.set_index('B')).reset_index()
One column has NaN and some values, the other columns also has NaN and some values. It is not possible for both columns to have values but it is possible for both columns to have NaN. Is there a way I can merge the columns together?
I've tried selecting one column and df.fillna with a forumla, that doesn't work.
quad_data['new'] = quad_data.apply(lambda x: function(x.a, x.b, const_a, const_b), axis=1)
df1 = pd.merge(df1, quad_data[['a','b','new']], left_on=['a','b'], right_on = ['a','b'], how='inner')
new_x new_y
0 NaN 0.997652
1 NaN 0.861592
2 0 NaN
3 0.997652 NaN
4 0.861592 NaN
5 2.673742 NaN
6 2.618845 NaN
7 NaN 0.432525
8 NaN NaN
9 0.582576 NaN
10 0.50845 NaN
11 NaN 0.341510
12 NaN 0.351510
13 1.404787 NaN
14 2.410116 NaN
15 0.540265 NaN
16 NaN 1.404787
17 NaN 2.410116
18 NaN 0.540265
19 NaN 1.403903
20 1.448987 NaN
combine_first and fillna are good alternatives in general, but these alternatives work since your NaNs are exclusive.
Option 1
df.max
s = quad_data.max(1)
print(s)
0 0.997652
1 0.861592
2 0.000000
3 0.997652
4 0.861592
5 2.673742
6 2.618845
7 0.432525
8 NaN
9 0.582576
10 0.508450
11 0.341510
12 0.351510
13 1.404787
14 2.410116
15 0.540265
16 1.404787
17 2.410116
18 0.540265
19 1.403903
20 1.448987
dtype: float64
Option 2
df.sum
s = quad_data.sum(1)
print(s)
0 0.997652
1 0.861592
2 0.000000
3 0.997652
4 0.861592
5 2.673742
6 2.618845
7 0.432525
8 NaN
9 0.582576
10 0.508450
11 0.341510
12 0.351510
13 1.404787
14 2.410116
15 0.540265
16 1.404787
17 2.410116
18 0.540265
19 1.403903
20 1.448987
dtype: float64
quad_data['new'] = s
Try this .. LOL
df.bfill(1)['new_x']
Out[45]:
0 0.997652
1 0.861592
2 0.000000
3 0.997652
4 0.861592
5 2.673742
6 2.618845
7 0.432525
8 NaN
9 0.582576
10 0.508450
11 0.341510
12 0.351510
13 1.404787
14 2.410116
15 0.540265
16 1.404787
17 2.410116
18 0.540265
19 1.403903
20 1.448987
Name: new_x, dtype: float64
You can use combine_first
df['new'] = df['new_x'].combine_first(df['new_y'])
Or simply
df['new'] = df['new_x'].fillna(df['new_y'])
You get
new_x new_y new
0 NaN 0.997652 0.997652
1 NaN 0.861592 0.861592
2 0.000000 NaN 0.000000
3 0.997652 NaN 0.997652
4 0.861592 NaN 0.861592
5 2.673742 NaN 2.673742
6 2.618845 NaN 2.618845
7 NaN 0.432525 0.432525
8 NaN NaN NaN
9 0.582576 NaN 0.582576
10 0.508450 NaN 0.508450
11 NaN 0.341510 0.341510
12 NaN 0.351510 0.351510
13 1.404787 NaN 1.404787
14 2.410116 NaN 2.410116
15 0.540265 NaN 0.540265
16 NaN 1.404787 1.404787
17 NaN 2.410116 2.410116
18 NaN 0.540265 0.540265
19 NaN 1.403903 1.403903
20 1.448987 NaN 1.448987
I have a list of students in a csv file. I want (using Python) to display four columns in that I want to display the male students who have higher marks in Maths, Computer, and Physics.
I tried to use pandas library.
marks = pd.concat([data['name'],
data.loc[data['students']==1, 'maths'].nlargest(n=10)], 'computer'].nlargest(n=10)], 'physics'].nlargest(n=10)])
I used 1 for male students and 0 for female students.
It gives me an error saying: Invalid syntax.
Here's a way to show the top 10 students in each of the disciplines. You could of course just sum the three scores and select the students with the highest total if you want the combined as opposed to the individual performance (see illustration below).
df1 = pd.DataFrame(data={'name': [''.join(random.choice('abcdefgh') for _ in range(8)) for i in range(100)],
'students': np.random.randint(0, 2, size=100)})
df2 = pd.DataFrame(data=np.random.randint(0, 10, size=(100, 3)), columns=['math', 'physics', 'computers'])
data = pd.concat([df1, df2], axis=1)
data.info()
RangeIndex: 100 entries, 0 to 99
Data columns (total 5 columns):
name 100 non-null object
students 100 non-null int64
math 100 non-null int64
physics 100 non-null int64
computers 100 non-null int64
dtypes: int64(4), object(1)
memory usage: 4.0+ KB
res = pd.concat([data.loc[:, ['name']], data.loc[data['students'] == 1, 'math'].nlargest(n=10), data.loc[data['students'] == 1, 'physics'].nlargest(n=10), data.loc[data['students'] == 1, 'computers'].nlargest(n=10)], axis=1)
res.dropna(how='all', subset=['math', 'physics', 'computers'])
name math physics computers
0 geghhbce NaN 9.0 NaN
1 hbbdhcef NaN 7.0 NaN
4 ghgffgga NaN NaN 8.0
6 hfcaccgg 8.0 NaN NaN
14 feechdec NaN NaN 8.0
15 dfaabcgh 9.0 NaN NaN
16 ghbchgdg 9.0 NaN NaN
23 fbeggcha NaN NaN 9.0
27 agechbcf 8.0 NaN NaN
28 bcddedeg NaN NaN 9.0
30 hcdgbgdg NaN 8.0 NaN
38 fgdfeefd NaN NaN 9.0
39 fbcgbeda 9.0 NaN NaN
41 agbdaegg 8.0 NaN 9.0
49 adgbefgg NaN 8.0 NaN
50 dehdhhhh NaN NaN 9.0
55 ccbaaagc NaN 8.0 NaN
68 hhggfffe 8.0 9.0 NaN
71 bhggbheg NaN 9.0 NaN
84 aabcefhf NaN NaN 9.0
85 feeeefbd 9.0 NaN NaN
86 hgeecacc NaN 8.0 NaN
88 ggedgfeg 9.0 8.0 NaN
89 faafgbfe 9.0 NaN 9.0
94 degegegd NaN 8.0 NaN
99 beadccdb NaN NaN 9.0
data['total'] = data.loc[:, ['math', 'physics', 'computers']].sum(axis=1)
data[data.students==1].nlargest(10, 'total').sort_values('total', ascending=False)
name students math physics computers total
29 fahddafg 1 8 8 8 24
79 acchhcdb 1 8 9 7 24
9 ecacceff 1 7 9 7 23
16 dccefaeb 1 9 9 4 22
92 dhaechfb 1 4 9 9 22
47 eefbfeef 1 8 8 5 21
60 bbfaaada 1 4 7 9 20
82 fbbbehbf 1 9 3 8 20
18 dhhfgcbb 1 8 8 3 19
1 ehfdhegg 1 5 7 6 18