matplotlib: Setting single title for all figures (not subplots) - python

I want to give all the figures in my code a single title #Variable_cycles. Figures are not subplots but plotted separately. I am using %matplotlib to show plots in separate window. As far as i know plt.rcParams has no such key
import matplotlib.pyplot as plt
%matplotlib
plt.figure(1), plt.scatter(x,y,marker='o'),
plt.title("Variable_cycles"),
plt.show
plt.figure(2),
plt.scatter(x,y,marker='*'),
plt.title("Variable_cycles"),
plt.show

I don't believe there is such a setting in rcParams or similar, but if there are options you are setting for all figures, you could create a simple helper function to create the figure, apply those settings (e.g. the title, axes labels, etc), and return the figure object, then you just need to call that function once for each new figure. A simple example would be:
import matplotlib.pyplot as plt
%matplotlib
def makefigure():
# Create figure and axes
fig, ax = plt.subplots()
# Set title
fig.suptitle('Variable cycles')
# Set axes labels
ax.set_xlabel('My xlabel')
ax.set_ylabel('My ylabel')
# Put any other common settings here...
return fig, ax
fig1, ax1 = makefigure()
ax1.scatter(x, y, marker='o')
fig2, ax2 = makefigure()
ax2.scatter(x, y, marker='*')

Related

Showing subplots at each pass of a loop

I would essentially like to do the following:
import matplotlib.pyplot as plt
import numpy as np
fig1, ax1 = plt.subplots()
fig2, ax2 = plt.subplots()
for i in range(10):
ax1.scatter(i, np.sqrt(i))
ax1.show() # something equivalent to this
ax2.scatter(i, i**2)
That is, each time a point is plotted on ax1, it is shown - ax2 being shown once.
You cannot show an axes alone. An axes is always part of a figure. For animations you would want to use an interactive backend. Then the code in a jupyter notebook could look like
%matplotlib notebook
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.animation import FuncAnimation
fig1, ax1 = plt.subplots()
fig2, ax2 = plt.subplots()
frames = 10
x = np.arange(frames)
line1, = ax1.plot([],[], ls="", marker="o")
line2, = ax2.plot(x, x**2, ls="", marker="o")
ax2.set_visible(False)
def animate(i):
line1.set_data(x[:i], np.sqrt(x[:i]))
ax1.set_title(f"{i}")
ax1.relim()
ax1.autoscale_view()
if i==frames-1:
ax2.set_visible(True)
fig2.canvas.draw_idle()
ani = FuncAnimation(fig1, animate, frames=frames, repeat=False)
plt.show()
If you want to change plots dynamically I'd suggest you don't redraw the whole plot every time, this will result in very laggy behavior. Instead you could use Blit to do this. I used it in a previous project. Maybe it can help you too if you just take the parts from this you need:
Python project dynamically updating plot

matplotlib: reduce axes width in subplots

I have a matplotlib bar chart, which bars are colored according to some rules through a colormap. I need a colorbar on the right of the main axes, so I added a new axes with
fig, (ax, ax_cbar) = plt.subplots(1,2)
and managed to draw my color bar in the ax_bar axes, while I have my data displayed in the ax axes. Now I need to reduce the width of the ax_bar, because it looks like this:
How can I do?
Using subplots will always divide your figure equally. You can manually divide up your figure in a number of ways. My preferred method is using subplot2grid.
In this example, we are setting the figure to have 1 row and 10 columns. We then set ax to be the start at row,column = (0,0) and have a width of 9 columns. Then set ax_cbar to start at (0,9) and has by default a width of 1 column.
import matplotlib.pyplot as plt
fig = plt.figure(figsize=(8,6))
num_columns = 10
ax = plt.subplot2grid((1,num_columns), (0,0), colspan=num_columns-1)
ax_cbar = plt.subplot2grid((1,num_columns), (0,num_columns-1))
The ususal way to add a colorbar is by simply putting it next to the axes:
fig.colorbar(sm)
where fig is the figure and sm is the scalar mappable to which the colormap refers. In the case of the bars, you need to create this ScalarMappable yourself. Apart from that there is no need for complex creation of multiple axes.
import matplotlib.pyplot as plt
import matplotlib.colors
import numpy as np
fig , ax = plt.subplots()
x = [0,1,2,3]
y = np.array([34,40,38,50])*1e3
norm = matplotlib.colors.Normalize(30e3, 60e3)
ax.bar(x,y, color=plt.cm.plasma_r(norm(y)) )
ax.axhline(4.2e4, color="gray")
ax.text(0.02, 4.2e4, "42000", va='center', ha="left", bbox=dict(facecolor="w",alpha=1),
transform=ax.get_yaxis_transform())
sm = plt.cm.ScalarMappable(cmap=plt.cm.plasma_r, norm=norm)
sm.set_array([])
fig.colorbar(sm)
plt.show()
If you do want to create a special axes for the colorbar yourself, the easiest method would be to set the width already inside the call to subplots:
fig , (ax, cax) = plt.subplots(ncols=2, gridspec_kw={"width_ratios" : [10,1]})
and later put the colorbar to the cax axes,
fig.colorbar(sm, cax=cax)
Note that the following questions have been asked for this homework assignment already:
Point picker event_handler drawing line and displaying coordinates in matplotlib
Matplotlib's widget to select y-axis value and change barplot
Display y axis value horizontal line drawn In bar chart
How to change colors automatically once a parameter is changed
Interactively Re-color Bars in Matplotlib Bar Chart using Confidence Intervals

How do I change matplotlib's subplot projection of an existing axis?

I'm trying to construct a simple function that takes a subplot instance (matplotlib.axes._subplots.AxesSubplot) and transforms its projection to another projection, for example, to one of the cartopy.crs.CRS projections.
The idea looks something like this
import cartopy.crs as ccrs
import matplotlib.pyplot as plt
def make_ax_map(ax, projection=ccrs.PlateCarree()):
# set ax projection to the specified projection
...
# other fancy formatting
ax2.coastlines()
...
# Create a grid of plots
fig, (ax1, ax2) = plt.subplots(ncols=2)
# the first subplot remains unchanged
ax1.plot(np.random.rand(10))
# the second one gets another projection
make_ax_map(ax2)
Of course, I can just use fig.add_subplot() function:
fig = plt.figure(figsize=(10,5))
ax1 = fig.add_subplot(121)
ax1.plot(np.random.rand(10))
ax2 = fig.add_subplot(122,projection=ccrs.PlateCarree())
ax2.coastlines()
but I was wondering if there is a proper matplotlib method to change a subplot axis projection after it was defined. Reading matplotlib API didn't help unfortunately.
You can't change the projection of an existing axes, the reason is given below. However the solution to your underlying problem is simply to use the subplot_kw argument to plt.subplots() described in the matplotlib documentation here. For example, if you wanted all your subplots to have the cartopy.crs.PlateCarree projection you could do
import matplotlib.pyplot as plt
import cartopy.crs as ccrs
# Create a grid of plots
fig, (ax1, ax2) = plt.subplots(ncols=2, subplot_kw={'projection': ccrs.PlateCarree()})
Regarding the actual question, specifying a projection when you create an axes set determines the axes class you get, which is different for each projection type. For example
import matplotlib.pyplot as plt
import cartopy.crs as ccrs
ax1 = plt.subplot(311)
ax2 = plt.subplot(312, projection='polar')
ax3 = plt.subplot(313, projection=ccrs.PlateCarree())
print(type(ax1))
print(type(ax2))
print(type(ax3))
This code will print the following
<class 'matplotlib.axes._subplots.AxesSubplot'>
<class 'matplotlib.axes._subplots.PolarAxesSubplot'>
<class 'cartopy.mpl.geoaxes.GeoAxesSubplot'>
Notice how each axes is actually an instance of a different class.
Assuming there are multiple axes being used for 2D plotting, like...
fig = matplotlib.pyplot.Figure()
axs = fig.subplots(3, 4) # prepare for multiple subplots
# (some plotting here)
axs[0,0].plot([1,2,3])
... one can simply destroy one of them and replace it with a new one having the 3D projection:
axs[2,3].remove()
ax = fig.add_subplot(3, 4, 12, projection='3d')
ax.plot_surface(...)
Just note that unlike rest of Python, the add_subplot uses row-column indexing starting from 1 (not from 0).
EDIT: Changed my typo about indexing.
following the answer to this question :
In python, how can I inherit and override a method on a class instance, assigning this new version to the same name as the old one?
I found a hack to change the projection of an axe after creating it which seems to work at least in the simple example below, but I have no idea if this solution is the best way
from matplotlib.axes import Axes
from matplotlib.projections import register_projection
class CustomAxe(Axes):
name = 'customaxe'
def plotko(self, x):
self.plot(x, 'ko')
self.set_title('CustomAxe')
register_projection(CustomAxe)
if __name__ == '__main__':
import matplotlib.pyplot as plt
fig = plt.figure()
## use this syntax to create a customaxe directly
# ax = fig.add_subplot(111, projection="customaxe")
## change the projection after creation
ax = plt.gca()
ax.__class__ = CustomAxe
ax.plotko(range(10))
plt.show()
You can use the following function, which removes the axis and generates the axis in the specified projection, similar to dominecf answer, with the advantage that the specific subplot parameters (row, col, and index) are retrieved automatically.
import matplotlib.pyplot as plt
def update_projection(ax, axi, projection='3d', fig=None):
if fig is None:
fig = plt.gcf()
rows, cols, start, stop = axi.get_subplotspec().get_geometry()
ax.flat[start].remove()
ax.flat[start] = fig.add_subplot(rows, cols, start+1, projection=projection)
and generate a plot with all available projections
import matplotlib.projections
import numpy as np
# test data
x = np.linspace(-np.pi, np.pi, 10)
# plot all projections available
projections = matplotlib.projections.get_projection_names()
fig, ax = plt.subplots(nrows=1, ncols=len(projections), figsize=[3.5*len(projections), 4], squeeze=False)
for i, pro_i in enumerate(projections):
update_projection(ax, ax.flat[i], pro_i)
ax.flat[i].set_title(pro_i)
try:
ax.flat[i].grid(True)
ax.flat[i].plot(x, x)
except Exception as a:
print(pro_i, a)
plt.tight_layout(pad=.5)

Changing matplotlib subplot size/position after axes creation

Is it possible to set the size/position of a matplotlib subplot after the axes are created? I know that I can do:
import matplotlib.pyplot as plt
ax = plt.subplot(111)
ax.change_geometry(3,1,1)
to put the axes on the top row of three. But I want the axes to span the first two rows. I have tried this:
import matplotlib.gridspec as gridspec
ax = plt.subplot(111)
gs = gridspec.GridSpec(3,1)
ax.set_subplotspec(gs[0:2])
but the axes still fill the whole window.
Update for clarity
I want to change the position of an existing axes instance rather than set it when it is created. This is because the extent of the axes will be modified each time I add data (plotting data on a map using cartopy). The map may turn out tall and narrow, or short and wide (or something in between). So the decision on the grid layout will happen after the plotting function.
Thanks to Molly pointing me in the right direction, I have a solution:
import matplotlib.pyplot as plt
import matplotlib.gridspec as gridspec
fig = plt.figure()
ax = fig.add_subplot(111)
gs = gridspec.GridSpec(3,1)
ax.set_position(gs[0:2].get_position(fig))
ax.set_subplotspec(gs[0:2]) # only necessary if using tight_layout()
fig.add_subplot(gs[2])
fig.tight_layout() # not strictly part of the question
plt.show()
You can create a figure with one subplot that spans two rows and one subplot that spans one row using the rowspan argument to subplot2grid:
import matplotlib.pyplot as plt
fig = plt.figure()
ax1 = plt.subplot2grid((3,1), (0,0), rowspan=2)
ax2 = plt.subplot2grid((3,1), (2,0))
plt.show()
If you want to change the subplot size and position after it's been created you can use the set_position method.
ax1.set_position([0.1,0.1, 0.5, 0.5])
Bu you don't need this to create the figure you described.
You can avoid ax.set_position() by using fig.tight_layout() instead which recalculates the new gridspec:
import matplotlib.pyplot as plt
import matplotlib.gridspec as gridspec
# create the first axes without knowing of further subplot creation
fig, ax = plt.subplots()
ax.plot(range(5), 'o-')
# now update the existing gridspec ...
gs = gridspec.GridSpec(3, 1)
ax.set_subplotspec(gs[0:2])
# ... and recalculate the positions
fig.tight_layout()
# add a new subplot
fig.add_subplot(gs[2])
fig.tight_layout()
plt.show()

How to make the plot not disappear?

Suppose you need to store the figure and subplot in variables (to later modify attributes). How can you make the whole figure to stay and not quickly disappear after some millisecs?
import matplotlib.pyplot as plt
fig = plt.figure()
ax = fig.add_subplot(2,2,1)
ax.plot(1)
fig.show()
Change fig to plt:
plt.show()

Categories