How do I use scipy curve_fit with a custom objective function? - python

I wish to do a curve fit to some tabulated data using my own objective function, not the in-built normal least squares.
I can make the normal curve_fit work, but I can't understand how to properly formulate my objective function to feed it into the method.
I am interested in knowing the values of my fitted curve at each tabulated x value.
x = np.array([-5.0,-4.5,-4.0,-3.5,-3.0,-2.5,-2.0,-1.5,-1.0,-0.5,0.0,0.5,1.0,1.5,2.0,2.5,3.0,3.5,4.0,4.5,5.0,5.5,6.0,6.5,7.0,7.5,8.0,8.5,9.0,9.5,10.0])
y = np.array([300,300,1000,350,340,1230,500,360,360,920,365,365,350,1000,375,1050,380,385,385,390,400,395,780,410,420,420,415,435,440,435,455])
e = np.array([math.sqrt(i) for i in y]) #uncertainty in y values
def test_func(x, a0, a1):
""" This is the function I want to fit to my data """
return a0 + a1*x
def norm_residual(test_func, x, y, e, params):
""" This calculates the normalised residuals, given the tabulated data and function parameters"""
yhat = test_func(x,*params)
z = (y-yhat)/e
return z
def f(z):
""" This modifies the normalised residual value, depending on it's sign."""
if z <= 0:
return z**2
else:
return 6*np.log(2*z/(np.sqrt(math.pi) * sp.special.erf(z/np.sqrt(2))))-3*np.log(2)
def objective(test_func, x, y, e, params):
"""This returns the sum of the modified normalised residuals. Smaller is better"""
z = norm_residual(test_func, x, y, e, params)
return np.sum(np.array([f(i) for i in z]))
#normal scipy curve fit
params, params_covariance = sp.optimize.curve_fit(test_func, x, y, p0=[0,0])
plt.scatter(x, y, label='Data')
plt.plot(x, test_func(x, params[0], params[1]), label='Fitted function', color="orange")
plt.legend(loc='best')
plt.show()
#how do I use my objective function to do my curve fit?

This is what I came up with, for my slightly more realistic requirements.
Lesson: vectorise everything! Don't just wrap it in a np.vectorize function call. I got a speed-up of ~100x by doing so.
Some guidance taken from https://hernandis.me/2020/04/05/three-examples-of-nonlinear-least-squares-fitting-in-python-with-scipy.html
import numpy as np
import scipy as sp
from scipy import optimize
import matplotlib.pyplot as plt
import math
x_data = np.array([-5.0,-4.5,-4.0,-3.5,-3.0,-2.5,-2.0,-1.5,-1.0,-0.5,0.0,0.5,1.0,1.5,2.0,2.5,3.0,3.5,4.0,4.5,5.0,5.5,6.0,6.5,7.0,7.5,8.0,8.5,9.0,9.5,10.0])
y_data = np.array([300,300,1000,350,340,1230,500,360,360,920,365,365,350,1000,375,1050,380,385,385,390,400,395,780,410,420,420,415,435,440,435,455])
e_data = np.array([math.sqrt(i) for i in y_data]) #uncertainty in y values
# https://hernandis.me/2020/04/05/three-examples-of-nonlinear-least-squares-fitting-in-python-with-scipy.html
def model(params, x):
"""Calculates the model, given params and x. Is vectorised; can be used with numpy.arrays"""
a0, a1 = params
return a0 + a1 * x
def v_f(z):
"""Modifies the residual. Used when you need to calc your own chi2 value. Is vectorised; can be used with numpy.arrays"""
return np.where(z <= 0, np.square(z), 6*np.log(z/sp.special.erf(z*0.7071067811865475)) - 1.3547481158683645)
def v_f_2(z):
"""Modifies the residual. Used when chi2 is calc'd for you. Is vectorised; can be used with numpy.arrays"""
return np.where(z <= 0, z, np.sqrt(6*np.log(z/sp.special.erf(z*0.7071067811865475)) - 1.3547481158683645))
def objective(params, model_func, data, v_modify_residuals_func = None):
""" Calculates the residuals given a model and data. Is vectorised; can be used with numpy.arrays """
if len(data) == 3:
xd, yd, ed = data
elif len(data) == 2:
xd, yd = data
ed = np.ones(len(xd))
r = (yd - model_func(params, xd)) / ed # r is an array of residuals
if v_modify_residuals_func is not None:
r = v_modify_residuals_func(r)
return r
def objective_sum(params, model_func, data, modify_residuals_func = None):
""" Calculates the sum of the residuals given a model and data. Used when you need to calc your own chi2 value. Is vectorised; can be used with numpy.arrays """
r = objective(params, model_func, data, modify_residuals_func)
return np.sum(r)
def v_cheb(n, x):
""" Calculate a chebyshev polynomial. -1.0 <= x <= 1.0, n >= 0, int. Is vectorised; can be used with numpy.arrays """
return np.cos(n * np.arccos(x))
def bkg_model(params, x):
""" Calculate a bkg curve from a number of chebyshev polynomials. Polynomial degree given by len(params). Is vectorised; can be used with numpy.arrays """
r = 0
for i, p in enumerate(params):
r += p * v_cheb(i, x)
return r
def v_normaliseList(nparray):
""" Given a monotonically increasing x-ordinate array, normalise values in the range -1 <= x <= 1. Is vectorised; can be used with numpy.arrays """
min_ = nparray[0]
max_ = nparray[-1]
r = (2*(nparray - min_)/(max_ - min_)) - 1
return r
initial_params = [0,0]
""" least_squares takes an array of residuals, r, and minimises Sum(r**2) """
results1 = sp.optimize.least_squares(objective,
initial_params,
method = 'lm',
args = [bkg_model,
[v_normaliseList(x_data), y_data, e_data],
v_f_2])
""" minimize takes a scalar, r, and minimises r """
results2 = sp.optimize.minimize(objective_sum,
initial_params,
#method = 'SLSQP',
args = (bkg_model,
(v_normaliseList(x_data), y_data, e_data),
v_f))
print(results1.x)
print(results2.x)

Related

How to calculate "relative error in the sum of squares" and "relative error in the approximate solution" from least squares method?

I have implemented a 3D gaussian fit using scipy.optimize.leastsq and now I would like to tweak the arguments ftol and xtol to optimize the performances. However, I don't understand the "units" of these two parameters in order to make a proper choice. Is it possible to calculate these two parameters from the results? That would give me an understanding of how to choose them. My data is numpy arrays of np.uint8. I tried to read the FORTRAN source code of MINIPACK but my FORTRAN knowledge is zero. I also read checked the Levenberg-Marquardt algorithm, but I could not really get a number that was below the ftol for example.
Here is a minimal example of what I do:
import numpy as np
import matplotlib.pyplot as plt
from scipy.optimize import leastsq
class gaussian_model:
def __init__(self):
self.prev_iter_model = None
self.f_vals = []
def gaussian_1D(self, coeffs, xx):
A, sigma, mu = coeffs
# Center rotation around peak center
x0 = xx - mu
model = A*np.exp(-(x0**2)/(2*(sigma**2)))
return model
def residuals(self, coeffs, I_obs, xx, model_func):
model = model_func(coeffs, xx)
residuals = I_obs - model
if self.prev_iter_model is not None:
self.f = np.sum(((model-self.prev_iter_model)/model)**2)
self.f_vals.append(self.f)
self.prev_iter_model = model
return residuals
# x data
x_start = 1
x_stop = 10
num = 100
xx, dx = np.linspace(x_start, x_stop, num, retstep=True)
# Simulated data with some noise
A, s_x, mu = 10, 0.5, 3
coeffs = [A, s_x, mu]
model = gaussian_model()
yy = model.gaussian_1D(coeffs, xx)
noise_ampl = 0.5
noise = np.random.normal(0, noise_ampl, size=num)
yy += noise
# LM Least squares
initial_guess = [1, 1, 1]
pred_coeffs, cov_x, info, mesg, ier = leastsq(model.residuals, initial_guess,
args=(yy, xx, model.gaussian_1D),
ftol=1E-6, full_output=True)
yy_fit = model.gaussian_1D(pred_coeffs, xx)
rel_SSD = np.sum(((yy-yy_fit)/yy)**2)
RMS_SSD = np.sqrt(rel_SSD/num)
print(RMS_SSD)
print(model.f)
print(model.f_vals)
fig, ax = plt.subplots(1,2)
# Plot results
ax[0].scatter(xx, yy)
ax[0].plot(xx, yy_fit, c='r')
ax[1].scatter(range(len(model.f_vals)), model.f_vals, c='r')
# ax[1].set_ylim(0, 1E-6)
plt.show()
rel_SSD is around 1 and definitely not something below ftol = 1E-6.
EDIT: Based on #user12750353 answer below I updated my minimal example to try to recreate how lmdif determines termination with ftol. The problem is that my f_vals are too small, so they are not the right values. The reason I would like to recreate this is that I would like to see what kind of numbers I am getting on my main code to decide on a ftol that would terminate the fitting process earlier.
Since you are giving a function without the gradient, the method called is lmdif. Instead of gradients it will use forward difference gradient estimate, f(x + delta) - f(x) ~ delta * df(x)/dx (I will write as if the parameter).
There you find the following description
c ftol is a nonnegative input variable. termination
c occurs when both the actual and predicted relative
c reductions in the sum of squares are at most ftol.
c therefore, ftol measures the relative error desired
c in the sum of squares.
c
c xtol is a nonnegative input variable. termination
c occurs when the relative error between two consecutive
c iterates is at most xtol. therefore, xtol measures the
c relative error desired in the approximate solution.
Looking in the code the actual reduction acred = 1 - (fnorm1/fnorm)**2 is what you calculated for rel_SSD, but between the two last iterations, not between the fitted function and the target points.
Example
The problem here is that we need to discover what are the values assumed by the internal variables. An attempt to do so is to save the coefficients and the residual norm every time the function is called as follows.
import numpy as np
import matplotlib.pyplot as plt
from scipy.optimize import leastsq
class gaussian_model:
def __init__(self):
self.prev_iter_model = None
self.fnorm = []
self.x = []
def gaussian_1D(self, coeffs, xx):
A, sigma, mu = coeffs
# Center rotation around peak center
x0 = xx - mu
model = A*np.exp(-(x0**2)/(2*(sigma**2)))
grad = np.array([
model / A,
model * x0**2 / (sigma**3),
model * 2 * x0 / (2*(sigma**2))
]).transpose();
return model, grad
def residuals(self, coeffs, I_obs, xx, model_func):
model, grad = model_func(coeffs, xx)
residuals = I_obs - model
self.x.append(np.copy(coeffs));
self.fnorm.append(np.sqrt(np.sum(residuals**2)))
return residuals
def grad(self, coeffs, I_obs, xx, model_func):
model, grad = model_func(coeffs, xx)
residuals = I_obs - model
return -grad
def plot_progress(self):
x = np.array(self.x)
dx = np.sqrt(np.sum(np.diff(x, axis=0)**2, axis=1))
plt.plot(dx / np.sqrt(np.sum(x[1:, :]**2, axis=1)))
fnorm = np.array(self.fnorm)
plt.plot(1 - (fnorm[1:]/fnorm[:-1])**2)
plt.legend(['$||\Delta f||$', '$||\Delta x||$'], loc='upper left');
# x data
x_start = 1
x_stop = 10
num = 100
xx, dx = np.linspace(x_start, x_stop, num, retstep=True)
# Simulated data with some noise
A, s_x, mu = 10, 0.5, 3
coeffs = [A, s_x, mu]
model = gaussian_model()
yy, _ = model.gaussian_1D(coeffs, xx)
noise_ampl = 0.5
noise = np.random.normal(0, noise_ampl, size=num)
yy += noise
Then we can see the relative variation of $x$ and $f$
initial_guess = [1, 1, 1]
pred_coeffs, cov_x, info, mesg, ier = leastsq(model.residuals, initial_guess,
args=(yy, xx, model.gaussian_1D),
xtol=1e-6,
ftol=1e-6, full_output=True)
plt.figure(figsize=(14, 6))
plt.subplot(121)
model.plot_progress()
plt.yscale('log')
plt.grid()
plt.subplot(122)
yy_fit,_ = model.gaussian_1D(pred_coeffs, xx)
# Plot results
plt.scatter(xx, yy)
plt.plot(xx, yy_fit, c='r')
plt.show()
The problem with this is that the function is evaluated both to compute f and to compute the gradient of f. To produce a cleaner plot what can be done is to implement pass Dfun so that it evaluate func only once per iteration.
# x data
x_start = 1
x_stop = 10
num = 100
xx, dx = np.linspace(x_start, x_stop, num, retstep=True)
# Simulated data with some noise
A, s_x, mu = 10, 0.5, 3
coeffs = [A, s_x, mu]
model = gaussian_model()
yy, _ = model.gaussian_1D(coeffs, xx)
noise_ampl = 0.5
noise = np.random.normal(0, noise_ampl, size=num)
yy += noise
# LM Least squares
initial_guess = [1, 1, 1]
pred_coeffs, cov_x, info, mesg, ier = leastsq(model.residuals, initial_guess,
args=(yy, xx, model.gaussian_1D),
Dfun=model.grad,
xtol=1e-6,
ftol=1e-6, full_output=True)
plt.figure(figsize=(14, 6))
plt.subplot(121)
model.plot_progress()
plt.yscale('log')
plt.grid()
plt.subplot(122)
yy_fit,_ = model.gaussian_1D(pred_coeffs, xx)
# Plot results
plt.scatter(xx, yy)
plt.plot(xx, yy_fit, c='r')
plt.show()
Well, the value I am obtaining for xtol is not exactly what is in the lmdif implementation.

Fit vector autoregression with statsmodels

Consider the following signals and responses:
import numpy as np
def s1(t, delay):
"""An example of a noisy signal (heaviside function)"""
return (t > delay).astype(int) + np.random.normal(scale=0.01, size=t.shape)
def s2(t, delay):
"""An example of another noisy signal (delayed sin)"""
return np.sin(2*np.pi*(t - delay)/36) * (t > delay).astype(int) + np.random.normal(scale=0.01, size=t.shape)
def response(signal, delay):
"""
An example of a noisy delayed response (delayed identity function)
"""
delayed_signal = np.append(np.zeros(shape=delay), signal[:-delay])
return delayed_signal + np.random.normal(scale=0.01, size=signal.shape)
t = np.arange(0, 256, 1)
x1 = s1(t, delay=12)
x2 = s2(t, delay=36)
# the response is the sum of the two signals with different delays
y = response(x1, delay=24) + response(x2, delay=48)
plt.figure(1, figsize=(10, 10))
plt.subplot(511)
plt.ylabel('signal 1')
plt.plot(t, x1, '.')
plt.subplot(512)
plt.ylabel('signal 2')
plt.plot(t, x2, '.')
plt.subplot(513)
plt.ylabel('response')
plt.plot(t, y, '.')
I want to recover, using vector autoregression (VAR) and Python, the fact that the signal y has a delayed response to x1 of 24, and a delayed response to x2 of 48. I would prefer to have Lasso to reduce the number of relevant parameters, and that I do not model x1 nor x2 as a function of themselves and y, just y as a function of x1 and x2.
How can this be done in Python?
I was able to achieve this using sklearn as follows (continue the code above):
def build_matrix(x):
"""
Converts a signal into a matrix of delayed signals.
I.e. `row_j` is each time `t`, `column_i` is the signal at `t - i`,
It assumes that no past signal => no signal: each row is left-padded with zeros.
For example, for 3 times, the matrix would be:
```
[0, 0 , 0 ] (-> y[0])
[0, 0 , x[0]] (-> y[1])
[0, x[0], x[1]] (-> y[2])
```
I.e.
The parameter fitted to column 2, a2, is the influence of `x[t - 1]` on `y[t]`.
The parameter fitted to column 1, a1, is the influence of `x[t - 2]` on `y[t]`.
It assumes that we only measure x[t] when we measure y[t], the reason why that column does not appear
"""
data_x = []
for i in range(len(x)):
data_x.append(np.append(np.zeros(len(x) - i), x[:i]))
return np.array(data_x)
class VARClassifier:
"""
A Classifier based on any sklearn linear classifier that contain a method to return the fitted response function
"""
def __init__(self, classifier):
self.classifier = classifier
self.number_of_signals_ = None
self.time_len_ = None
def _transform_x(self, x):
for x_i in x:
assert len(x_i) == self.time_len_
assert len(x_i.shape) == 1, 'Each of the elements must be a time-series (1D)'
return np.concatenate(tuple(build_matrix(x_i) for x_i in x), axis=1)
def fit(self, x, y):
self.number_of_signals_ = len(x)
self.time_len_ = len(x[0])
return self.classifier.fit(self._transform_x(x), y)
def predict(self, x):
return self.classifier.predict(self._transform_x(x))
#property
def response_functions(self):
# ::-1 because the coefficients are reversed, see `build_matrix `
return [self.classifier.coef_[i*self.time_len_:(i+1)*self.time_len_][::-1]
for i in range(self.number_of_signals_)]
def __getattr__(self, item):
return self.classifier.__getattr__(item)
classifier = VARClassifier(Lasso(alpha=0.1))
classifier.fit((x1, x2), y)
plt.subplot(514)
plt.xlabel('delay')
plt.ylabel('fitted response\nfunction 1')
r1, r2 = classifier.response_functions
plt.plot(t, r1, '.')
plt.subplot(515)
plt.xlabel('delay')
plt.ylabel('fitted response\nfunction 2')
plt.plot(t, r2, '.')
plt.savefig('fit_var.png')
However, this does not have all the goodies from statsmodels (e.g. confidence intervals, p-values, model metrics, etc.)

Separating gaussian components of a curve using python

I am trying to deblend the emission lines of low resolution spectrum in order to get the gaussian components. This plot represents the kind of data I am using:
After searching a bit, the only option I found was the application of the gauest function from the kmpfit package (http://www.astro.rug.nl/software/kapteyn/kmpfittutorial.html#gauest). I have copied their example but I cannot make it work.
I wonder if anyone could please offer me any alternative to do this or how to correct my code:
import numpy as np
import matplotlib.pyplot as plt
from scipy import optimize
def CurveData():
x = np.array([3963.67285156, 3964.49560547, 3965.31835938, 3966.14111328, 3966.96362305,
3967.78637695, 3968.60913086, 3969.43188477, 3970.25463867, 3971.07714844,
3971.89990234, 3972.72265625, 3973.54541016, 3974.36791992, 3975.19067383])
y = np.array([1.75001533e-16, 2.15520995e-16, 2.85030769e-16, 4.10072843e-16, 7.17558032e-16,
1.27759917e-15, 1.57074192e-15, 1.40802933e-15, 1.45038722e-15, 1.55195653e-15,
1.09280316e-15, 4.96611341e-16, 2.68777266e-16, 1.87075114e-16, 1.64335999e-16])
return x, y
def FindMaxima(xval, yval):
xval = np.asarray(xval)
yval = np.asarray(yval)
sort_idx = np.argsort(xval)
yval = yval[sort_idx]
gradient = np.diff(yval)
maxima = np.diff((gradient > 0).view(np.int8))
ListIndeces = np.concatenate((([0],) if gradient[0] < 0 else ()) + (np.where(maxima == -1)[0] + 1,) + (([len(yval)-1],) if gradient[-1] > 0 else ()))
X_Maxima, Y_Maxima = [], []
for index in ListIndeces:
X_Maxima.append(xval[index])
Y_Maxima.append(yval[index])
return X_Maxima, Y_Maxima
def GaussianMixture_Model(p, x, ZeroLevel):
y = 0.0
N_Comps = int(len(p) / 3)
for i in range(N_Comps):
A, mu, sigma = p[i*3:(i+1)*3]
y += A * np.exp(-(x-mu)*(x-mu)/(2.0*sigma*sigma))
Output = y + ZeroLevel
return Output
def Residuals_GaussianMixture(p, x, y, ZeroLevel):
return GaussianMixture_Model(p, x, ZeroLevel) - y
Wave, Flux = CurveData()
Wave_Maxima, Flux_Maxima = FindMaxima(Wave, Flux)
EmLines_Number = len(Wave_Maxima)
ContinuumLevel = 1.64191e-16
# Define initial values
p_0 = []
for i in range(EmLines_Number):
p_0.append(Flux_Maxima[i])
p_0.append(Wave_Maxima[i])
p_0.append(2.0)
p1, conv = optimize.leastsq(Residuals_GaussianMixture, p_0[:],args=(Wave, Flux, ContinuumLevel))
Fig = plt.figure(figsize = (16, 10))
Axis1 = Fig.add_subplot(111)
Axis1.plot(Wave, Flux, label='Emission line')
Axis1.plot(Wave, GaussianMixture_Model(p1, Wave, ContinuumLevel), 'r', label='Fit with optimize.leastsq')
print p1
Axis1.plot(Wave, GaussianMixture_Model([p1[0],p1[1],p1[2]], Wave, ContinuumLevel), 'g:', label='Gaussian components')
Axis1.plot(Wave, GaussianMixture_Model([p1[3],p1[4],p1[5]], Wave, ContinuumLevel), 'g:')
Axis1.set_xlabel( r'Wavelength $(\AA)$',)
Axis1.set_ylabel('Flux' + r'$(erg\,cm^{-2} s^{-1} \AA^{-1})$')
plt.legend()
plt.show()
A typical simplistic way to fit:
def model(p,x):
A,x1,sig1,B,x2,sig2 = p
return A*np.exp(-(x-x1)**2/sig1**2) + B*np.exp(-(x-x2)**2/sig2**2)
def res(p,x,y):
return model(p,x) - y
from scipy import optimize
p0 = [1e-15,3968,2,1e-15,3972,2]
p1,conv = optimize.leastsq(res,p0[:],args=(x,y))
plot(x,y,'+') # data
#fitted function
plot(arange(3962,3976,0.1),model(p1,arange(3962,3976,0.1)),'-')
Where p0 is your initial guess. By the looks of things, you might want to use Lorentzian functions...
If you use full_output=True, you get all kind of info about the fitting. Also check out curve_fit and the fmin* functions in scipy.optimize. There are plenty of wrappers around these around, but often, like here, it's easier to use them directly.

Why is my 2D interpolant generating a matrix with swapped axes in SciPy?

I solve a differential equation with vector inputs
y' = f(t,y), y(t_0) = y_0
where y0 = y(x)
using the explicit Euler method, which says that
y_(i+1) = y_i + h*f(t_i, y_i)
where t is a time vector, h is the step size, and f is the right-hand side of the differential equation.
The python code for the method looks like this:
for i in np.arange(0,n-1):
y[i+1,...] = y[i,...] + dt*myode(t[i],y[i,...])
The result is a k,m matrix y, where k is the size of the t dimension, and m is the size of y.
The vectors y and t are returned.
t, x, and y are passed to scipy.interpolate.RectBivariateSpline(t, x, y, kx=1, ky=1):
g = scipy.interpolate.RectBivariateSpline(t, x, y, kx=1, ky=1)
The resulting object g takes new vectors ti,xi ( g(p,q) ) to give y_int, which is y interpolated at the points defined by ti and xi.
Here is my problem:
The documentation for RectBivariateSpline describes the __call__ method in terms of x and y:
__call__(x, y[, mth]) Evaluate spline at the grid points defined by the coordinate arrays
The matplotlib documentation for plot_surface uses similar notation:
Axes3D.plot_surface(X, Y, Z, *args, **kwargs)
with the important difference that X and Y are 2D arrays which are generated by numpy.meshgrid().
When I compute simple examples, the input order is the same in both and the result is exactly what I would expect. In my explicit Euler example, however, the initial order is ti,xi, yet the surface plot of the interpolant output only makes sense if I reverse the order of the inputs, like so:
ax2.plot_surface(xi, ti, u, cmap=cm.coolwarm)
While I am glad that it works, I'm not satisfied because I cannot explain why, nor why (apart from the array geometry) it is necessary to swap the inputs. Ideally, I would like to restructure the code so that the input order is consistent.
Here is a working code example to illustrate what I mean:
# Heat equation example with explicit Euler method
import numpy as np
import matplotlib.pyplot as mplot
import matplotlib.cm as cm
import scipy.sparse as sp
import scipy.interpolate as interp
from mpl_toolkits.mplot3d import Axes3D
import pdb
# explicit Euler method
def eev(myode,tspan,y0,dt):
# Preprocessing
# Time steps
tspan[1] = tspan[1] + dt
t = np.arange(tspan[0],tspan[1],dt,dtype=float)
n = t.size
m = y0.shape[0]
y = np.zeros((n,m),dtype=float)
y[0,:] = y0
# explicit Euler recurrence relation
for i in np.arange(0,n-1):
y[i+1,...] = y[i,...] + dt*myode(t[i],y[i,...])
return y,t
# generate matrix A
# u'(t) = A*u(t) + g*u(t)
def a_matrix(n):
aa = sp.diags([1, -2, 1],[-1,0,1],(n,n))
return aa
# System of ODEs with finite differences
def f(t,u):
dydt = np.divide(1,h**2)*A.dot(u)
return dydt
# homogenous Dirichlet boundary conditions
def rbd(t):
ul = np.zeros((t,1))
return ul
# Initial value problem -----------
def main():
# Metal rod
# spatial discretization
# number of inner nodes
m = 20
x0 = 0
xn = 1
x = np.linspace(x0,xn,m+2)
# Step size
global h
h = x[1]-x[0]
# Initial values
u0 = np.sin(np.pi*x)
# A matrix
global A
A = a_matrix(m)
# Time
t0 = 0
tend = 0.2
# Time step width
dt = 0.0001
tspan = [t0,tend]
# Test r for stability
r = np.divide(dt,h**2)
if r <= 0.5:
u,t = eev(f,tspan,u0[1:-1],dt)
else:
print('r = ',r)
print('r > 0.5. Explicit Euler method will not be stable.')
# Add boundary values back
rb = rbd(t.size)
u = np.hstack((rb,u,rb))
# Interpolate heat values
# Create interpolant. Note the parameter order
fi = interp.RectBivariateSpline(t, x, u, kx=1, ky=1)
# Create vectors for interpolant
xi = np.linspace(x[0],x[-1],100)
ti = np.linspace(t0,tend,100)
# Compute function values from interpolant
u_int = fi(ti,xi)
# Change xi, ti in to 2D arrays
xi,ti = np.meshgrid(xi,ti)
# Create figure and axes objects
fig3 = mplot.figure(1)
ax3 = fig3.gca(projection='3d')
print('xi.shape =',xi.shape,'ti.shape =',ti.shape,'u_int.shape =',u_int.shape)
# Plot surface. Note the parameter order, compare with interpolant!
ax3.plot_surface(xi, ti, u_int, cmap=cm.coolwarm)
ax3.set_xlabel('xi')
ax3.set_ylabel('ti')
main()
mplot.show()
As I can see you define :
# Change xi, ti in to 2D arrays
xi,ti = np.meshgrid(xi,ti)
Change this to :
ti,xi = np.meshgrid(ti,xi)
and
ax3.plot_surface(xi, ti, u_int, cmap=cm.coolwarm)
to
ax3.plot_surface(ti, xi, u_int, cmap=cm.coolwarm)
and it works fine (if I understood well ).

Fitting data to system of ODEs using Python via Scipy & Numpy

I am having some trouble translating my MATLAB code into Python via Scipy & Numpy. I am stuck on how to find optimal parameter values (k0 and k1) for my system of ODEs to fit to my ten observed data points. I currently have an initial guess for k0 and k1. In MATLAB, I can using something called 'fminsearch' which is a function that takes the system of ODEs, the observed data points, and the initial values of the system of ODEs. It will then calculate a new pair of parameters k0 and k1 that will fit the observed data. I have included my code to see if you can help me implement some kind of 'fminsearch' to find the optimal parameter values k0 and k1 that will fit my data. I want to add whatever code to do this to my lsqtest.py file.
I have three .py files - ode.py, lsq.py, and lsqtest.py
ode.py:
def f(y, t, k):
return (-k[0]*y[0],
k[0]*y[0]-k[1]*y[1],
k[1]*y[1])
lsq.py:
import pylab as py
import numpy as np
from scipy import integrate
from scipy import optimize
import ode
def lsq(teta,y0,data):
#INPUT teta, the unknowns k0,k1
# data, observed
# y0 initial values needed by the ODE
#OUTPUT lsq value
t = np.linspace(0,9,10)
y_obs = data #data points
k = [0,0]
k[0] = teta[0]
k[1] = teta[1]
#call the ODE solver to get the states:
r = integrate.odeint(ode.f,y0,t,args=(k,))
#the ODE system in ode.py
#at each row (time point), y_cal has
#the values of the components [A,B,C]
y_cal = r[:,1] #separate the measured B
#compute the expression to be minimized:
return sum((y_obs-y_cal)**2)
lsqtest.py:
import pylab as py
import numpy as np
from scipy import integrate
from scipy import optimize
import lsq
if __name__ == '__main__':
teta = [0.2,0.3] #guess for parameter values k0 and k1
y0 = [1,0,0] #initial conditions for system
y = [0.000,0.416,0.489,0.595,0.506,0.493,0.458,0.394,0.335,0.309] #observed data points
data = y
resid = lsq.lsq(teta,y0,data)
print resid
For these kind of fitting tasks you could use the package lmfit. The outcome of the fit would look like this; as you can see, the data are reproduced very well:
For now, I fixed the initial concentrations, you could also set them as variables if you like (just remove the vary=False in the code below). The parameters you obtain are:
[[Variables]]
x10: 5 (fixed)
x20: 0 (fixed)
x30: 0 (fixed)
k0: 0.12183301 +/- 0.005909 (4.85%) (init= 0.2)
k1: 0.77583946 +/- 0.026639 (3.43%) (init= 0.3)
[[Correlations]] (unreported correlations are < 0.100)
C(k0, k1) = 0.809
The code that reproduces the plot looks like this (some explanation can be found in the inline comments):
import numpy as np
import matplotlib.pyplot as plt
from scipy.integrate import odeint
from lmfit import minimize, Parameters, Parameter, report_fit
from scipy.integrate import odeint
def f(y, t, paras):
"""
Your system of differential equations
"""
x1 = y[0]
x2 = y[1]
x3 = y[2]
try:
k0 = paras['k0'].value
k1 = paras['k1'].value
except KeyError:
k0, k1 = paras
# the model equations
f0 = -k0 * x1
f1 = k0 * x1 - k1 * x2
f2 = k1 * x2
return [f0, f1, f2]
def g(t, x0, paras):
"""
Solution to the ODE x'(t) = f(t,x,k) with initial condition x(0) = x0
"""
x = odeint(f, x0, t, args=(paras,))
return x
def residual(paras, t, data):
"""
compute the residual between actual data and fitted data
"""
x0 = paras['x10'].value, paras['x20'].value, paras['x30'].value
model = g(t, x0, paras)
# you only have data for one of your variables
x2_model = model[:, 1]
return (x2_model - data).ravel()
# initial conditions
x10 = 5.
x20 = 0
x30 = 0
y0 = [x10, x20, x30]
# measured data
t_measured = np.linspace(0, 9, 10)
x2_measured = np.array([0.000, 0.416, 0.489, 0.595, 0.506, 0.493, 0.458, 0.394, 0.335, 0.309])
plt.figure()
plt.scatter(t_measured, x2_measured, marker='o', color='b', label='measured data', s=75)
# set parameters including bounds; you can also fix parameters (use vary=False)
params = Parameters()
params.add('x10', value=x10, vary=False)
params.add('x20', value=x20, vary=False)
params.add('x30', value=x30, vary=False)
params.add('k0', value=0.2, min=0.0001, max=2.)
params.add('k1', value=0.3, min=0.0001, max=2.)
# fit model
result = minimize(residual, params, args=(t_measured, x2_measured), method='leastsq') # leastsq nelder
# check results of the fit
data_fitted = g(np.linspace(0., 9., 100), y0, result.params)
# plot fitted data
plt.plot(np.linspace(0., 9., 100), data_fitted[:, 1], '-', linewidth=2, color='red', label='fitted data')
plt.legend()
plt.xlim([0, max(t_measured)])
plt.ylim([0, 1.1 * max(data_fitted[:, 1])])
# display fitted statistics
report_fit(result)
plt.show()
If you have data for additional variables, you can simply update the function residual.
The following worked for me:
import pylab as pp
import numpy as np
from scipy import integrate, interpolate
from scipy import optimize
##initialize the data
x_data = np.linspace(0,9,10)
y_data = np.array([0.000,0.416,0.489,0.595,0.506,0.493,0.458,0.394,0.335,0.309])
def f(y, t, k):
"""define the ODE system in terms of
dependent variable y,
independent variable t, and
optinal parmaeters, in this case a single variable k """
return (-k[0]*y[0],
k[0]*y[0]-k[1]*y[1],
k[1]*y[1])
def my_ls_func(x,teta):
"""definition of function for LS fit
x gives evaluation points,
teta is an array of parameters to be varied for fit"""
# create an alias to f which passes the optional params
f2 = lambda y,t: f(y, t, teta)
# calculate ode solution, retuen values for each entry of "x"
r = integrate.odeint(f2,y0,x)
#in this case, we only need one of the dependent variable values
return r[:,1]
def f_resid(p):
""" function to pass to optimize.leastsq
The routine will square and sum the values returned by
this function"""
return y_data-my_ls_func(x_data,p)
#solve the system - the solution is in variable c
guess = [0.2,0.3] #initial guess for params
y0 = [1,0,0] #inital conditions for ODEs
(c,kvg) = optimize.leastsq(f_resid, guess) #get params
print "parameter values are ",c
# fit ODE results to interpolating spline just for fun
xeval=np.linspace(min(x_data), max(x_data),30)
gls = interpolate.UnivariateSpline(xeval, my_ls_func(xeval,c), k=3, s=0)
#pick a few more points for a very smooth curve, then plot
# data and curve fit
xeval=np.linspace(min(x_data), max(x_data),200)
#Plot of the data as red dots and fit as blue line
pp.plot(x_data, y_data,'.r',xeval,gls(xeval),'-b')
pp.xlabel('xlabel',{"fontsize":16})
pp.ylabel("ylabel",{"fontsize":16})
pp.legend(('data','fit'),loc=0)
pp.show()
Look at the scipy.optimize module. The minimize function looks fairly similar to fminsearch, and I believe that both basically use a simplex algorithm for optimization.
# cleaned up a bit to get my head around it - thanks for sharing
import pylab as pp
import numpy as np
from scipy import integrate, optimize
class Parameterize_ODE():
def __init__(self):
self.X = np.linspace(0,9,10)
self.y = np.array([0.000,0.416,0.489,0.595,0.506,0.493,0.458,0.394,0.335,0.309])
self.y0 = [1,0,0] # inital conditions ODEs
def ode(self, y, X, p):
return (-p[0]*y[0],
p[0]*y[0]-p[1]*y[1],
p[1]*y[1])
def model(self, X, p):
return integrate.odeint(self.ode, self.y0, X, args=(p,))
def f_resid(self, p):
return self.y - self.model(self.X, p)[:,1]
def optim(self, p_quess):
return optimize.leastsq(self.f_resid, p_guess) # fit params
po = Parameterize_ODE(); p_guess = [0.2, 0.3]
c, kvg = po.optim(p_guess)
# --- show ---
print "parameter values are ", c, kvg
x = np.linspace(min(po.X), max(po.X), 2000)
pp.plot(po.X, po.y,'.r',x, po.model(x, c)[:,1],'-b')
pp.xlabel('X',{"fontsize":16}); pp.ylabel("y",{"fontsize":16}); pp.legend(('data','fit'),loc=0); pp.show()

Categories