Compare or diff two pandas columns element wise - python

I am new to Pandas (but not to data science and Python). This question is not anly about how to solve this specific problem but how to handle problems like this the panda-way.
Please feel free to improve the title of that question. Because I am not sure what are the correct terms here.
Here is my MWE
#!/usr/bin/env python3
import pandas as pd
data = {'A': [1, 2, 3, 3, 1, 4],
'B': ['One', 'Two', 'Three', 'Three', 'Eins', 'Four']}
df = pd.DataFrame(data)
print(df)
Resulting in
A B
0 1 One
1 2 Two
2 3 Three
3 3 Three
4 1 Eins
5 4 Four
My assumption is that when the value in A column is 1 that the value in B column is always One. And so on...
I want to proof that assumption.
Secondary I also assume that if my first assumption is incorrect that this is not an error but there are valid (human) reasons for that. e.g. see row index 4 where the A-value is related to Eins (and not One) in the B column.
Because of that I also need to see and explore the cases where my assumption is incorrect.
Update of the question:
This data is only an example. In real world I am not aware of the pairing of the two columns. Because of that solutions like this do not work in my case
df.loc[df['A'] == 1, 'B']
I do not know how many and which expressions are in column A.
I do not know how to do that with pandas. How would a panda professional would solve this?
My approach would be to use pure Python code with list(), set() and some iterations. ;)

You can filter your data frame this way:
df.loc[df['A'] == 1, 'B']
This gives you the values of B where A is 1. Next you can add an equals statement:
df.loc[df['A'] == 1, 'B'] == 'One'
Which results in a boolean series (True, False in this case). If you want to check if all are true, you add:
all(df.loc[df['A'] == 1, 'B'] == 'One')
And the answer is False because of the Eins.
EDIT
If you want to create a new column which says if your criterion is met (always the same value for B if A) then you can do this:
df['C'] = df['A'].map(df.groupby('A')['B'].nunique() < 2)
Which results in a bool column. It creates column C by mapping the values in A in a by the list in the brackets. In between the brackets it is a groupby function of the values in A and counting the unique values in B. If that is under 2 it is unique it yields True.

If solution should be testing if only one unique value per A and return all rows which failed use DataFrameGroupBy.nunique for count unique values in GroupBy.transform for repeat aggregate values per groups, so possible filter rows which are not 1, it means there are 2 or more unique values per A:
df1 = df[df.groupby('A').B.transform('nunique').ne(1)]
print (df1)
A B
0 1 One
4 1 Eins
if df1.empty:
print ('My assumption is good')
else:
print ('My assumption is wrong')
print (df1)

Related

Get penultimate values from pandas group by

I want to groupby pandas dataframe and get last n elements from each group but with any offset. For example, after group by column A i've a column 'A' with elements in column 'B' with values (1,2,3,4,5,6,7) for certain value in 'A'. And I want to take the last 10 elements excluding the most recent one or two. How can I do it?
I've tried to use tail(), df.groupby('A').tail(10), but that's not my case.
input: 'A': [1,1,1,1,1,1,1,1,1,], 'B': [1,2,3,4,5,6,7,8,9] output: (last 3 excluding the recent 2) 'A' [1], 'B': [5,6,7]
First of all, it is unusual task, since all your "A" values are the same -> it is weird to group by such a column.
This leads to 2 solutions that came to my mind...
1]
data = {'A': [1,2,3,4,5,6,7,8,9], 'B': [1,2,3,4,5,6,7,8,9]}
df_dict = pd.DataFrame.from_dict(data)
no_of_unwanted_values = 2
df_dict.groupby('A').agg(lambda a: a).head(-no_of_unwanted_values)#.tail(1)
This solution work if you group by A-column-row-specific values. The head(-x) selects all the values top down but the last x values.
I think what you are looking for is the second solution:
2]
data = {'A': [1,2,1,3,1,2,1,2,3], 'B': [1,2,3,4,5,6,7,8,9]}
df_dict = pd.DataFrame.from_dict(data)
no_of_unwanted_values = 2
df_dict.groupby('A').sum().head(-no_of_unwanted_values)#.tail(1)
Here you have 3 values to group by and then you are using some operation on those groups (in this case it is sum). Lastly you select again all but the last with head(-x). Optionaly if you would like to select also some values but the top ones from such set, you can append the query by .tail() and again specify number of rows to retrieve. The last line could be also rewriten as len(df_dict) - no_of_unwanted_values (but in this case the number of unwanted values woudl have to be x + 1). You could apply the logic with len(x) - 1 for example also to selection of lists.
PS.:
beware when using sort_values for example:
data.sort_values(['col_1','col_2']).groupby('col_3','col_2').head(x)
here the head(x) correspond to col_1 values. That is if you want all but last values for len(data.col_1.unique()) = 100, use head(99).

setting values in a pandas dataframe using loc - multiple selection criteria allowing setting value in a different column

I have a database with multiple columns and rows. I want to locate within the database rows that meet certain criteria of a subset of the columns AND if it meets that criteria change the value of a different column in that same row.
I am prototyping with the following database
df = pd.DataFrame([[1, 2], [4, 5], [5, 5], [5, 9], [55, 55]], columns=['max_speed', 'shield'])
df['frcst_stus'] = 'current'
df
which gives the following result:
max_speed shield frcst_stus
0 1 2 current
1 4 5 current
2 5 5 current
3 5 9 current
4 55 55 current
I want to change index row 2 to read 5, 5, 'hello' without changing the rest of the dataframe.
I can do the examples in the Pandas.loc documentation at setting values. I can set a row, a column, and rows matching a callable condition. But the call is on a single column or series. I want two.
And I have found a number of stackoverflow answers that answer the question using loc on a single column to set a value in a second column. That's not my issue. I want to search two columns worth of data.
The following allows me to get the row I want:
result = df[(df['shield'] == 5) & (df['max_speed'] == 5) & (df['frcst_stus'] == 'current')]
And I know that just changing the equal signs (== 'current') to (= 'current') gives me an error.
And when I select on two columns I can set the columns (see below), but both columns get set. ('arghh') and when I try to test the value of 'max_speed' I get a false is not in index error.
df.loc[:, ['max_speed', 'frcst_stus']] = 'hello'
I also get an error trying to explain the boolean issues with Python. Frankly, I just don't understand the whole overloading yet.
If need to set different values to both columns by mask m:
m = (df['shield'] == 5) & (df['max_speed'] == 5) & (df['frcst_stus'] == 'current')
df.loc[m, ['max_speed', 'frcst_stus']] = [100, 'hello']
If need to set same values to both columns by mask m:
df.loc[m, ['max_speed', 'frcst_stus']] = 'hello'
If need to set only one column by mask m:
df.loc[m, 'frcst_stus'] = 'hello'

How to determine which object is greatest -> python [duplicate]

How can I find the row for which the value of a specific column is maximal?
df.max() will give me the maximal value for each column, I don't know how to get the corresponding row.
Use the pandas idxmax function. It's straightforward:
>>> import pandas
>>> import numpy as np
>>> df = pandas.DataFrame(np.random.randn(5,3),columns=['A','B','C'])
>>> df
A B C
0 1.232853 -1.979459 -0.573626
1 0.140767 0.394940 1.068890
2 0.742023 1.343977 -0.579745
3 2.125299 -0.649328 -0.211692
4 -0.187253 1.908618 -1.862934
>>> df['A'].idxmax()
3
>>> df['B'].idxmax()
4
>>> df['C'].idxmax()
1
Alternatively you could also use numpy.argmax, such as numpy.argmax(df['A']) -- it provides the same thing, and appears at least as fast as idxmax in cursory observations.
idxmax() returns indices labels, not integers.
Example': if you have string values as your index labels, like rows 'a' through 'e', you might want to know that the max occurs in row 4 (not row 'd').
if you want the integer position of that label within the Index you have to get it manually (which can be tricky now that duplicate row labels are allowed).
HISTORICAL NOTES:
idxmax() used to be called argmax() prior to 0.11
argmax was deprecated prior to 1.0.0 and removed entirely in 1.0.0
back as of Pandas 0.16, argmax used to exist and perform the same function (though appeared to run more slowly than idxmax).
argmax function returned the integer position within the index of the row location of the maximum element.
pandas moved to using row labels instead of integer indices. Positional integer indices used to be very common, more common than labels, especially in applications where duplicate row labels are common.
For example, consider this toy DataFrame with a duplicate row label:
In [19]: dfrm
Out[19]:
A B C
a 0.143693 0.653810 0.586007
b 0.623582 0.312903 0.919076
c 0.165438 0.889809 0.000967
d 0.308245 0.787776 0.571195
e 0.870068 0.935626 0.606911
f 0.037602 0.855193 0.728495
g 0.605366 0.338105 0.696460
h 0.000000 0.090814 0.963927
i 0.688343 0.188468 0.352213
i 0.879000 0.105039 0.900260
In [20]: dfrm['A'].idxmax()
Out[20]: 'i'
In [21]: dfrm.iloc[dfrm['A'].idxmax()] # .ix instead of .iloc in older versions of pandas
Out[21]:
A B C
i 0.688343 0.188468 0.352213
i 0.879000 0.105039 0.900260
So here a naive use of idxmax is not sufficient, whereas the old form of argmax would correctly provide the positional location of the max row (in this case, position 9).
This is exactly one of those nasty kinds of bug-prone behaviors in dynamically typed languages that makes this sort of thing so unfortunate, and worth beating a dead horse over. If you are writing systems code and your system suddenly gets used on some data sets that are not cleaned properly before being joined, it's very easy to end up with duplicate row labels, especially string labels like a CUSIP or SEDOL identifier for financial assets. You can't easily use the type system to help you out, and you may not be able to enforce uniqueness on the index without running into unexpectedly missing data.
So you're left with hoping that your unit tests covered everything (they didn't, or more likely no one wrote any tests) -- otherwise (most likely) you're just left waiting to see if you happen to smack into this error at runtime, in which case you probably have to go drop many hours worth of work from the database you were outputting results to, bang your head against the wall in IPython trying to manually reproduce the problem, finally figuring out that it's because idxmax can only report the label of the max row, and then being disappointed that no standard function automatically gets the positions of the max row for you, writing a buggy implementation yourself, editing the code, and praying you don't run into the problem again.
You might also try idxmax:
In [5]: df = pandas.DataFrame(np.random.randn(10,3),columns=['A','B','C'])
In [6]: df
Out[6]:
A B C
0 2.001289 0.482561 1.579985
1 -0.991646 -0.387835 1.320236
2 0.143826 -1.096889 1.486508
3 -0.193056 -0.499020 1.536540
4 -2.083647 -3.074591 0.175772
5 -0.186138 -1.949731 0.287432
6 -0.480790 -1.771560 -0.930234
7 0.227383 -0.278253 2.102004
8 -0.002592 1.434192 -1.624915
9 0.404911 -2.167599 -0.452900
In [7]: df.idxmax()
Out[7]:
A 0
B 8
C 7
e.g.
In [8]: df.loc[df['A'].idxmax()]
Out[8]:
A 2.001289
B 0.482561
C 1.579985
Both above answers would only return one index if there are multiple rows that take the maximum value. If you want all the rows, there does not seem to have a function.
But it is not hard to do. Below is an example for Series; the same can be done for DataFrame:
In [1]: from pandas import Series, DataFrame
In [2]: s=Series([2,4,4,3],index=['a','b','c','d'])
In [3]: s.idxmax()
Out[3]: 'b'
In [4]: s[s==s.max()]
Out[4]:
b 4
c 4
dtype: int64
df.iloc[df['columnX'].argmax()]
argmax() would provide the index corresponding to the max value for the columnX. iloc can be used to get the row of the DataFrame df for this index.
A more compact and readable solution using query() is like this:
import pandas as pd
df = pandas.DataFrame(np.random.randn(5,3),columns=['A','B','C'])
print(df)
# find row with maximum A
df.query('A == A.max()')
It also returns a DataFrame instead of Series, which would be handy for some use cases.
Very simple: we have df as below and we want to print a row with max value in C:
A B C
x 1 4
y 2 10
z 5 9
In:
df.loc[df['C'] == df['C'].max()] # condition check
Out:
A B C
y 2 10
If you want the entire row instead of just the id, you can use df.nlargest and pass in how many 'top' rows you want and you can also pass in for which column/columns you want it for.
df.nlargest(2,['A'])
will give you the rows corresponding to the top 2 values of A.
use df.nsmallest for min values.
The direct ".argmax()" solution does not work for me.
The previous example provided by #ely
>>> import pandas
>>> import numpy as np
>>> df = pandas.DataFrame(np.random.randn(5,3),columns=['A','B','C'])
>>> df
A B C
0 1.232853 -1.979459 -0.573626
1 0.140767 0.394940 1.068890
2 0.742023 1.343977 -0.579745
3 2.125299 -0.649328 -0.211692
4 -0.187253 1.908618 -1.862934
>>> df['A'].argmax()
3
>>> df['B'].argmax()
4
>>> df['C'].argmax()
1
returns the following message :
FutureWarning: 'argmax' is deprecated, use 'idxmax' instead. The behavior of 'argmax'
will be corrected to return the positional maximum in the future.
Use 'series.values.argmax' to get the position of the maximum now.
So that my solution is :
df['A'].values.argmax()
mx.iloc[0].idxmax()
This one line of code will give you how to find the maximum value from a row in dataframe, here mx is the dataframe and iloc[0] indicates the 0th index.
Considering this dataframe
[In]: df = pd.DataFrame(np.random.randn(4,3),columns=['A','B','C'])
[Out]:
A B C
0 -0.253233 0.226313 1.223688
1 0.472606 1.017674 1.520032
2 1.454875 1.066637 0.381890
3 -0.054181 0.234305 -0.557915
Assuming one want to know the rows where column "C" is max, the following will do the work
[In]: df[df['C']==df['C'].max()])
[Out]:
A B C
1 0.472606 1.017674 1.520032
The idmax of the DataFrame returns the label index of the row with the maximum value and the behavior of argmax depends on version of pandas (right now it returns a warning). If you want to use the positional index, you can do the following:
max_row = df['A'].values.argmax()
or
import numpy as np
max_row = np.argmax(df['A'].values)
Note that if you use np.argmax(df['A']) behaves the same as df['A'].argmax().
Use:
data.iloc[data['A'].idxmax()]
data['A'].idxmax() -finds max value location in terms of row
data.iloc() - returns the row
If there are ties in the maximum values, then idxmax returns the index of only the first max value. For example, in the following DataFrame:
A B C
0 1 0 1
1 0 0 1
2 0 0 0
3 0 1 1
4 1 0 0
idxmax returns
A 0
B 3
C 0
dtype: int64
Now, if we want all indices corresponding to max values, then we could use max + eq to create a boolean DataFrame, then use it on df.index to filter out indexes:
out = df.eq(df.max()).apply(lambda x: df.index[x].tolist())
Output:
A [0, 4]
B [3]
C [0, 1, 3]
dtype: object
what worked for me is:
df[df['colX'] == df['colX'].max()
You then get the row in your df with the maximum value of colX.
Then if you just want the index you can add .index at the end of the query.

pandas lookup with long and nested conditions

I want to perform a lookup in a dataframe via pandas. But It will be created by a series of nested if else statement similar as outlined Pandas dataframe add a field based on multiple if statements
But I want to use up to 13 different variables. This seems to pretty soon result in chaos. Is there some notation or other nice feature which allows me to specify such long and nested conditions in pandas?
So far np.where() http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.where.html might be my best option.
Is there a shortcut if I would only match for equality in all conditions?
Am I forced to write out each conditional filter? Ir could I just have a single expression which is choosing a (single) lookup value which is produced.
Edit Ideally I would not want to match
df.loc[df['column_name'] == some_value]
for each value ie. 13* number of categorical levels (lets assume 7) would be a lot of different values; especially, if df.loc[df['fist'] == some_value][df['second'] == otherValue1] combination of conditions occur i.e. they are all chained.
edit
A minimal example
df = pd.DataFrame({'ageGroup': [1, 2, 2, 1],
'first2DigitsOfPostcode': ['12', '23', '12', '12'],
'valueOfProduct': ['low', 'medum', 'high', 'low'],
'lookup_join_value': ['foo', 'bar', 'foo', 'baz']})
defines the lookup table which was generated by a sql query grouping by all the columns and aggregating the values (so due to the Cartesian product all. value combinations should be represented in the lookup table.
A new record could look like
new_values = pd.DataFrame({'ageGroup': [1],
'first2DigitsOfPostcode': ['12'],
'valueOfProduct': ['low']})
How can I sort of automate the lookup of all the conditions assuming all conditions require an match by equality (if this makes it easier.
I found
pd.lookup Vectorized look-up of values in Pandas dataframe which seems to work for a single column / condition
maybe a merge could be a solution? Python Pandas: DataFrame as a Lookup Table, but that not really produce the desired lookup result.
edit 2
The second answer seems to be pretty interesting. But
mask = df.drop('lookup_join_value', axis=1).isin(new_values)
print(mask)
print(df[mask])
print(df[mask]['lookup_join_value'])
will unfortunately just return NaN for the lookup value.
Now that I better know what you're after, a dataframe merge is likely a much better choice:
IN: df.merge(new_values, how='inner')
OUT: ageGroup first2DigitsOfPostcode lookup_join_value valueOfProduct
0 1 12 foo low
1 1 12 baz low
Certainly shorter than the other answer I gave! I'll leave the old one though in case it inspires someone else.
I think df.isin() is along the lines of what you're looking for.
Using your example df, and these two:
exists = pd.DataFrame({'ageGroup': [1],
'first2DigitsOfPostcode': ['12'],
'valueOfProduct' : 'low'})
new = pd.DataFrame({'ageGroup': [1],
'first2DigitsOfPostcode': ['12'],
'valueOfProduct' : 'high'})
Then you can check to see what values match, if all, or just some:
df.isin(exists.values[0])
Out[46]: ageGroup first2DigitsOfPostcode valueOfProduct
0 True True True
1 False False False
2 False True False
3 True True True
df.isin(new.values[0])
Out[46]: ageGroup first2DigitsOfPostcode valueOfProduct
0 True True False
1 False False False
2 False True True
3 True True False
If your "query" wasn't a dataframe but instead a list it wouldn't need the ".values[0]" bit. The problem with a dictionary is it tries to match the index as well.
It's not clear to me from your question exactly what you want returned, but you could then subset based on whether all (or some) of the rows are the same:
# Returns matching rows
df[df.isin(exists.values[0]).values.all(True)]
# Returns rows where the first two columns match
matches = df.isin(new.values[0]).values
df[[item==[True,True,False] for item in matches.tolist()]]
...There might be a smarter way to write that last one.
df.query is an option if you can write if can the query as and expression using the column names:
so you can do:
query_string = 'some long (but valid) boolean query'
example from pandas:
>>> from numpy.random import randn
>>> from pandas import DataFrame
>>> df = DataFrame(randn(10, 2), columns=list('ab'))
>>> df.query('a > b')
# similar to this
>>> df[df.a > df.b]
http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.query.html

Find row where values for column is maximal in a pandas DataFrame

How can I find the row for which the value of a specific column is maximal?
df.max() will give me the maximal value for each column, I don't know how to get the corresponding row.
Use the pandas idxmax function. It's straightforward:
>>> import pandas
>>> import numpy as np
>>> df = pandas.DataFrame(np.random.randn(5,3),columns=['A','B','C'])
>>> df
A B C
0 1.232853 -1.979459 -0.573626
1 0.140767 0.394940 1.068890
2 0.742023 1.343977 -0.579745
3 2.125299 -0.649328 -0.211692
4 -0.187253 1.908618 -1.862934
>>> df['A'].idxmax()
3
>>> df['B'].idxmax()
4
>>> df['C'].idxmax()
1
Alternatively you could also use numpy.argmax, such as numpy.argmax(df['A']) -- it provides the same thing, and appears at least as fast as idxmax in cursory observations.
idxmax() returns indices labels, not integers.
Example': if you have string values as your index labels, like rows 'a' through 'e', you might want to know that the max occurs in row 4 (not row 'd').
if you want the integer position of that label within the Index you have to get it manually (which can be tricky now that duplicate row labels are allowed).
HISTORICAL NOTES:
idxmax() used to be called argmax() prior to 0.11
argmax was deprecated prior to 1.0.0 and removed entirely in 1.0.0
back as of Pandas 0.16, argmax used to exist and perform the same function (though appeared to run more slowly than idxmax).
argmax function returned the integer position within the index of the row location of the maximum element.
pandas moved to using row labels instead of integer indices. Positional integer indices used to be very common, more common than labels, especially in applications where duplicate row labels are common.
For example, consider this toy DataFrame with a duplicate row label:
In [19]: dfrm
Out[19]:
A B C
a 0.143693 0.653810 0.586007
b 0.623582 0.312903 0.919076
c 0.165438 0.889809 0.000967
d 0.308245 0.787776 0.571195
e 0.870068 0.935626 0.606911
f 0.037602 0.855193 0.728495
g 0.605366 0.338105 0.696460
h 0.000000 0.090814 0.963927
i 0.688343 0.188468 0.352213
i 0.879000 0.105039 0.900260
In [20]: dfrm['A'].idxmax()
Out[20]: 'i'
In [21]: dfrm.iloc[dfrm['A'].idxmax()] # .ix instead of .iloc in older versions of pandas
Out[21]:
A B C
i 0.688343 0.188468 0.352213
i 0.879000 0.105039 0.900260
So here a naive use of idxmax is not sufficient, whereas the old form of argmax would correctly provide the positional location of the max row (in this case, position 9).
This is exactly one of those nasty kinds of bug-prone behaviors in dynamically typed languages that makes this sort of thing so unfortunate, and worth beating a dead horse over. If you are writing systems code and your system suddenly gets used on some data sets that are not cleaned properly before being joined, it's very easy to end up with duplicate row labels, especially string labels like a CUSIP or SEDOL identifier for financial assets. You can't easily use the type system to help you out, and you may not be able to enforce uniqueness on the index without running into unexpectedly missing data.
So you're left with hoping that your unit tests covered everything (they didn't, or more likely no one wrote any tests) -- otherwise (most likely) you're just left waiting to see if you happen to smack into this error at runtime, in which case you probably have to go drop many hours worth of work from the database you were outputting results to, bang your head against the wall in IPython trying to manually reproduce the problem, finally figuring out that it's because idxmax can only report the label of the max row, and then being disappointed that no standard function automatically gets the positions of the max row for you, writing a buggy implementation yourself, editing the code, and praying you don't run into the problem again.
You might also try idxmax:
In [5]: df = pandas.DataFrame(np.random.randn(10,3),columns=['A','B','C'])
In [6]: df
Out[6]:
A B C
0 2.001289 0.482561 1.579985
1 -0.991646 -0.387835 1.320236
2 0.143826 -1.096889 1.486508
3 -0.193056 -0.499020 1.536540
4 -2.083647 -3.074591 0.175772
5 -0.186138 -1.949731 0.287432
6 -0.480790 -1.771560 -0.930234
7 0.227383 -0.278253 2.102004
8 -0.002592 1.434192 -1.624915
9 0.404911 -2.167599 -0.452900
In [7]: df.idxmax()
Out[7]:
A 0
B 8
C 7
e.g.
In [8]: df.loc[df['A'].idxmax()]
Out[8]:
A 2.001289
B 0.482561
C 1.579985
Both above answers would only return one index if there are multiple rows that take the maximum value. If you want all the rows, there does not seem to have a function.
But it is not hard to do. Below is an example for Series; the same can be done for DataFrame:
In [1]: from pandas import Series, DataFrame
In [2]: s=Series([2,4,4,3],index=['a','b','c','d'])
In [3]: s.idxmax()
Out[3]: 'b'
In [4]: s[s==s.max()]
Out[4]:
b 4
c 4
dtype: int64
df.iloc[df['columnX'].argmax()]
argmax() would provide the index corresponding to the max value for the columnX. iloc can be used to get the row of the DataFrame df for this index.
A more compact and readable solution using query() is like this:
import pandas as pd
df = pandas.DataFrame(np.random.randn(5,3),columns=['A','B','C'])
print(df)
# find row with maximum A
df.query('A == A.max()')
It also returns a DataFrame instead of Series, which would be handy for some use cases.
Very simple: we have df as below and we want to print a row with max value in C:
A B C
x 1 4
y 2 10
z 5 9
In:
df.loc[df['C'] == df['C'].max()] # condition check
Out:
A B C
y 2 10
If you want the entire row instead of just the id, you can use df.nlargest and pass in how many 'top' rows you want and you can also pass in for which column/columns you want it for.
df.nlargest(2,['A'])
will give you the rows corresponding to the top 2 values of A.
use df.nsmallest for min values.
The direct ".argmax()" solution does not work for me.
The previous example provided by #ely
>>> import pandas
>>> import numpy as np
>>> df = pandas.DataFrame(np.random.randn(5,3),columns=['A','B','C'])
>>> df
A B C
0 1.232853 -1.979459 -0.573626
1 0.140767 0.394940 1.068890
2 0.742023 1.343977 -0.579745
3 2.125299 -0.649328 -0.211692
4 -0.187253 1.908618 -1.862934
>>> df['A'].argmax()
3
>>> df['B'].argmax()
4
>>> df['C'].argmax()
1
returns the following message :
FutureWarning: 'argmax' is deprecated, use 'idxmax' instead. The behavior of 'argmax'
will be corrected to return the positional maximum in the future.
Use 'series.values.argmax' to get the position of the maximum now.
So that my solution is :
df['A'].values.argmax()
mx.iloc[0].idxmax()
This one line of code will give you how to find the maximum value from a row in dataframe, here mx is the dataframe and iloc[0] indicates the 0th index.
Considering this dataframe
[In]: df = pd.DataFrame(np.random.randn(4,3),columns=['A','B','C'])
[Out]:
A B C
0 -0.253233 0.226313 1.223688
1 0.472606 1.017674 1.520032
2 1.454875 1.066637 0.381890
3 -0.054181 0.234305 -0.557915
Assuming one want to know the rows where column "C" is max, the following will do the work
[In]: df[df['C']==df['C'].max()])
[Out]:
A B C
1 0.472606 1.017674 1.520032
The idmax of the DataFrame returns the label index of the row with the maximum value and the behavior of argmax depends on version of pandas (right now it returns a warning). If you want to use the positional index, you can do the following:
max_row = df['A'].values.argmax()
or
import numpy as np
max_row = np.argmax(df['A'].values)
Note that if you use np.argmax(df['A']) behaves the same as df['A'].argmax().
Use:
data.iloc[data['A'].idxmax()]
data['A'].idxmax() -finds max value location in terms of row
data.iloc() - returns the row
If there are ties in the maximum values, then idxmax returns the index of only the first max value. For example, in the following DataFrame:
A B C
0 1 0 1
1 0 0 1
2 0 0 0
3 0 1 1
4 1 0 0
idxmax returns
A 0
B 3
C 0
dtype: int64
Now, if we want all indices corresponding to max values, then we could use max + eq to create a boolean DataFrame, then use it on df.index to filter out indexes:
out = df.eq(df.max()).apply(lambda x: df.index[x].tolist())
Output:
A [0, 4]
B [3]
C [0, 1, 3]
dtype: object
what worked for me is:
df[df['colX'] == df['colX'].max()
You then get the row in your df with the maximum value of colX.
Then if you just want the index you can add .index at the end of the query.

Categories