Closed. This question is opinion-based. It is not currently accepting answers.
Want to improve this question? Update the question so it can be answered with facts and citations by editing this post.
Closed 1 year ago.
Improve this question
Dataset has around 150k records with four labels: ['A','B','C','D'] and the distribution is as follows:
A: 60000
B: 50000
C: 36000
D: 4000
I notice using the package classification report to get the precision, recall, and f1-score, the f1-score is causing an UndefinedMetricWarning because class D is not being predicted due to the low number of records.
I know that I need to perform oversample/undersample to fix the imbalanced data.
Question: Would it be a good idea to fix the imbalanced data but randomly sample 4000 records from each class so that it is balanced?
I think you want to oversample from your class D. The technique is called Synthetic Minority Oversampling Technique, or SMOTE.
One way to solve this problem is to oversample the examples in the minority class. This can be achieved by simply duplicating examples from the minority class in the training dataset prior to fitting a model. This can balance the class distribution but does not provide any additional information to the model.
An improvement on duplicating examples from the minority class is to synthesize new examples from the minority class. This is a type of data augmentation for tabular data and can be very effective.
Source: https://machinelearningmastery.com/smote-oversampling-for-imbalanced-classification/
Related
Closed. This question needs to be more focused. It is not currently accepting answers.
Want to improve this question? Update the question so it focuses on one problem only by editing this post.
Closed 1 year ago.
Improve this question
I have a question regarding the model.fit method and overfitting from the scikit learn library in Pandas
Does the generic sklearn method model.fit(x---, y--) returns the score after applying the model to the specified training data?
Also, it is overfitting when performance on the test data degrades as more training data is used to learn the model?
model.fit(X, y) doesn't explicitly give you the score, if you assign a variable to it, it stores all the artifacts, training parameters. You can get the score by using model.score(X, y).
Overfitting in simple words is increasing the variance in your model by which your model fails to generalize. There are ways to reduce overfitting like feature engineering, normalization, regularization, ensemble methods etc.
Closed. This question needs to be more focused. It is not currently accepting answers.
Want to improve this question? Update the question so it focuses on one problem only by editing this post.
Closed 2 years ago.
Improve this question
I'm trying to build a classification model and my target is not binary. The correlations of my features against my target are all weak (mostly 0.1). I have preprocessed my data and applied the all the algorithms i used to it (the algorithms i used are svm, knn, naivebayes,logistic regression, decision tree,gradient boosting, random forest). I evaluated all of the models with sklearn metrics.accuracy_score just to know how good they perform on my data but all of them scored 0.1~0.2 . The target is productline column.
My questions
How could this happen?
How to tackle this issue?
Is there any other algorithm that could make better score?
What's the accuracy if you use a dummy classifier? The accuracy of the models you have tried should be at least equal to that of the dummy classifier.
"How could this happen?" If there's no relationship between the features and the target variable, the model isn't going to return good results.
I'm not sure about the details of your dataset, but you can try to 1) Get more data 2) Get more features 3) Do some feature engineering 4) Clean your dataset if you haven't, there might be outliers or wrong inputs affecting your results
Closed. This question needs to be more focused. It is not currently accepting answers.
Want to improve this question? Update the question so it focuses on one problem only by editing this post.
Closed 3 years ago.
Improve this question
I am working on a text classification problem. I have huge amount of data and when I am trying to fit data into the machine learning model it is causing a memory error. Is there any way through which I can fit data in parts to avoid memory error.
Additional information
I am using linearSVC model.
I have training data of 1.1 million rows.
I have vectorized text data using tfidf.
The shape of vectorized data (1121063, 4235687) which has to be
fitted into the model.
Or is there any other way out of this problem.
Unfortunately, I don't have any reproducible code for the same.
Thanks in advance.
The simple answer is not to use what I assume is the scikit-learn implementation of linearSVC and instead use some algorithm/implementation that allows training in batches. Most common of which are neural networks, but several other algorithms exists. In scikit-learn look for classifiers with the partial_fit method which will allow you to fit your classifier in batches. See e.g. this list
You could also try what's suggested from sklearn.svm import SVC (the second part, the first is using LinearSVC, which you did):
For large datasets consider using :class:'sklearn.svm.LinearSVC' or
:class:'sklearn.linear_model.SGDClassifier' instead, possibily after a :class:'sklearn.kernel_approximation.Nystroem' transformer.
If you check SGDClassifier() you can set the parameter "warm_start=True" so when you iterate trough your dataset it won't lose it's state.:
clf = SGDClassifier(warm_start=True)
for i in 'loop your data':
clf.fit(data[i])
Additionally you could reduce the dimension of your dataset by removing some words from your TFIDF model. Check the "max_df" and "min_df" parameters, they'll remove words with frequency higher than or lower than, can be a % or an unit.
Closed. This question needs to be more focused. It is not currently accepting answers.
Want to improve this question? Update the question so it focuses on one problem only by editing this post.
Closed 3 years ago.
Improve this question
I have written a ML-based Intrusion prediction. In the learning process, I used training and test data both labeled to evaluate the accuracy and generate confusion matrixes. I came up with good accuracy and now I want to test it with new data( Unlabeled data). How do I do that?
Okay so say you do test on unlabeled data and your algorithm predicts some X output. How can you check the accuracy, how can you check if this is correct or not? This is the only thing that matters in predictions, how your program works on data it has not seen before.
The short answer is, you can't. You need to split your data into:
Training 70%
Validation 10%
Test 20%
All of these should be labled and accuracy, confusion matrix, f measure and anything else should be computed on the labled test data that your program has not seen before. Your train on training data and every once in a while you check the performance on the validation data to see if it is doing well or if you need to do adjustments. In the very end you check on test data. This is supervised learning, you always need labeled data.
Closed. This question needs to be more focused. It is not currently accepting answers.
Want to improve this question? Update the question so it focuses on one problem only by editing this post.
Closed 5 years ago.
Improve this question
Could you please explain what the "fit" method in scikit-learn does? Why is it useful?
In a nutshell: fitting is equal to training. Then, after it is trained, the model can be used to make predictions, usually with a .predict() method call.
To elaborate: Fitting your model to (i.e. using the .fit() method on) the training data is essentially the training part of the modeling process. It finds the coefficients for the equation specified via the algorithm being used (take for example umutto's linear regression example, above).
Then, for a classifier, you can classify incoming data points (from a test set, or otherwise) using the predict method. Or, in the case of regression, your model will interpolate/extrapolate when predict is used on incoming data points.
It also should be noted that sometimes the "fit" nomenclature is used for non-machine-learning methods, such as scalers and other preprocessing steps. In this case, you are merely "applying" the specified function to your data, as in the case with a min-max scaler, TF-IDF, or other transformation.
Note: here are a couple of references...
fit method in python sklearn
http://scikit-learn.org/stable/tutorial/basic/tutorial.html