Image Warping with a Polynomial Transformation - python

Outline
I'm trying to warp an image (of a spectral peak in a time series, but this is not important) by generating a polynomial based on some 'centroid' data that is associated with the image (the peak at each time step) and augmenting the polynomial. These original and augmented polynomials make up my 'source' and 'destination' points, respectively, that I am trying to warp the image with, using skimage.transform.warp().
The goal of this warping is to produce two warped images (i.e. repeat the process twice). These images would then be positively correlated with one another, or negatively correlated if one of the two warped images were to be horizontally flipped (again, not that important here).
Here is an example output for comparison:
(Note that the polynomial augmentation is performed by adding/subtracting noise at each polynomial peak/trough, proportional to the magnitude (pixel) at each point, then generating a new polynomial of the same order through these augmented points, with additional fixed points in place to prevent the augmented polynomial from inverting).
Code Snippet
I achieve this in code by creating a GeometricTransform and applying this to warp() as an inverse_map, as follows:
from skimage import transform
# Create the transformation object using the source and destination (N, 2) arrays in reverse order
# (as there is no explicit way to do an inverse polynomial transformation).
t = transform.estimate_transform('polynomial', src=destination, dst=source, order=4) # order = num_poly_degrees - 1
# Warp the original image using the transformation object
warped_image = transform.warp(image, t, order=0, mode='constant', cval=float('nan'))
Problems
I have two main problems with the resulting warp:
There are white spaces left behind due to the image warp. I know that this can be solved by changing the mode within transform.warp() from 'constant' to 'reflect', for example. However, that would repeat existing data, which is related to my next problem...
Assuming I have implemented the warp correctly, it seems to have raised the 'zig-zag' feature seen at time step 60 to ~50 (red circles). My goal with the warping is to horizontally warp the images so that each feature remains within its own time step (perhaps give-or-take a very small amount), but their 'pixel' position (x-axis) is augmented. This is also why I am unsure about using 'reflect' or another mode within transform.warp(), as this would artificially add more data, which would cause problems later in my pipeline where I compare pairs of warped images to see how they are correlated (relating back to my second paragraph in Outline).
My Attempts
I have tried using RANSAC, as used in this question which also uses a polynomial transformation: Robustly estimate Polynomial geometric transformation with scikit-image and RANSAC in order to improve the warping. I had hoped that this method would only leave behind smaller white spaces, then I would be satisfied with switching to another mode within transform.warp(), however, this does not fix either of my issues as the performance was about the same.
I have also looked into using a piecewise affine transformation and Delaunay triangulation (using cv2) as a means of both preserving the correct image dimensions (without repeating data), and having minimal y-component warping. The results do solve the two stated problems, however the warping effect is almost imperceptible, and I am not sure if I should continue down this path by adding more triangles and trying more separated source and destination points (though this line of thought may require another post).
Summary
I would like a way to warp my images horizontally using a polynomial transformation (any other suggestions for a transformation method are also welcome!), which does its best to preserve the image's features within their original time steps.
Thank you for your time.
Edit
Here is a link to a shared google drive directory contain a .py file and data necessary to run an example of this process.

Related

Radon Transform: optimize distance between source/detector and center of rotation

My question is whether I can optimally determine the distance between the source and the center of rotation and the distance between the center of rotation and the detector array for a given image and projection geometry.
By optimal I mean that the number of zero entries of the measurement vector is minimized.
In the following code snippet I used the Astra toolbox with which we simulate our 2D tomography.
from skimage.io import imread
from astra import creators, optomo
import numpy as np
# load some 400x400 pixel image
image = imread("/path/to/image.png, as_gray=True)"
# create geometries and projector
# proj_geom = astra_create_proj_geom('fanflat', det_width, det_count, angles, source_origin, origin_det)
proj_geom = creators.create_proj_geom('fanflat', 1.0, 400, np.linspace(0,np.pi,180), 1500.0, 500.0);
vol_geom = creators.create_vol_geom(400,400)
proj_id = creators.create_projector('line_fanflat', proj_geom, vol_geom)
# create forward projection
# fp is our measurement vector
W = optomo.OpTomo(proj_id)
fp = W*image
In my example if I use np.linspace(0,np.pi,180) the number of zero-entries of fp are 1108, if I use np.linspace(0,np.pi/180,180) instead the number increases to 5133 which makes me believe that the values 1500.0 and 500.0 are not well chosen.
Generally speaking, those numbers are chosen due to experimental constrains and not algorithmic ones. In many settings these values are fixed, but lets ignore those, as you seem to have the flexibility.
In an experimental scan, what do you want?
If you are looking for high resolution you want the "magnification" DSD/DSO to be the highest, thus putting the detector far, and the object close to the source. This comes with problems though. A far detector requires higher scanning times for the same SNR (due to scatter and other phenomena that will make your X-rays not go straight). And not only that, the bigger the mag, the more likely you are to have huge parts of the object completely outside your detector range, as detectors are not that big (in mm).
So the common scanning strategy to set these up is 1) put the detector as far as you can allow with your strict scanning time. 2) put the object as close to the source as you can, but always making sure its entire width fits in the detector.
Often compromises can be done, particularly if you know what is the smallest feature you want to see (allow 3 or 4 pixels to properly see it).
However, algorithmically speaking? its irrelevant. I can't speak for ASTRA, but likely not even the computational time will be affected, as pixels that have zeroes are because they are out of the field of view and therefore simply not computed, at all.
Now, for your simple toy example, if you completely ignore all physics, there is a way:
1.- use simple trigonometry to compute what ratios of distances you need to make sure all the object is in the detector.
2.- create a fully white image and go changing the sizes iteratively until the first couple of pixels in the outside part of the detector become zero.

Converting an AutoCAD model to a matrix of points/volumes with the mass density specified at each location

I am an experimental physicist (grad student) that is trying to take an AutoCAD model of the experiment I've built and find the gravitational potential from the whole instrument over a specified volume. Before I find the potential, I'm trying to make a map of the mass density at each point in the model.
What's important is that I already have a model and in the end I'll have a something that says "At (x,y,z) the value is d". If that's an crazy csv file, a numpy array, an excel sheet, or... whatever, I'll be happy.
Here's what I've come up with so far:
Step 1: I color code the AutoCAD file so that color associates with material.
Step 2: I send the new drawing/model to a slicer (made for 3D printing). This takes my 3D object and turns it into equally spaced (in z-direction) 2d objects... but then that's all output as g-code. But hey! G-code is a way of telling a motor how to move.
Step 3: This is the 'hard part' and the meat of this question. I'm thinking that I take that g-code, which is in essence just a set of instructions on how to move a nozzle and use it to populate a numpy array. Basically I have 3D array, each level corresponds to one position in z, and the grid left is my x-y plane. It reads what color is being put where, and follows the nozzle and puts that mass into those spots. It knows the mass because of the color. It follows the path by parsing the g-code.
When it is done with that level, it moves to the next grid and repeats.
Does this sound insane? Better yet, does it sound plausible? Or maybe someone has a smarter way of thinking about this.
Even if you just read all that, thank you. Seriously.
Does this sound insane? Better yet, does it sound plausible?
It's very reasonable and plausible. Using the g-code could do that, but it would require a g-code interpreter that could map the instructions to a 2D path. (Not 3D, since you mentioned that you're taking fixed z-slices.) That could be problematic, but, if you found one, it could work, but may require some parser manipulation. There are several of these in a variety of languages, that could be useful.
SUGGESTION
From what you describe, it's akin to doing a MRI scan of the object, and trying to determine its constituent mass profile along a given axis. In this case, and unlike MRI, you have multiple colors, so that can be used to your advantage in region selection / identification.
Even if you used a g-code interpreter, it would reproduce an image whose area you'll still have to calculate, so noting that and given that you seek to determine and classify material composition by path (in that the path defines the boundary of a particular material, which has a unique color), there may be a couple ways to approach this without resorting to g-code:
1) If the colors of your material are easily (or reasonably) distinguishable, you can create a color mask which will quantify the occupied area, from which you can then determine the mass.
That is, if you take a photograph of the slice, load the image into a numpy array, and then search for a specific value (say red), you can identify the area of the region. Then, you apply a mask on your array. Once done, you count the occupied elements within your array, and then you divide it by the array size (i.e. rows by columns), which would give you the relative area occupied. Since you know the mass of the material, and there is a constant z-thickness, this will give you the relative mass. An example of color masking using numpy alone is shown here: http://scikit-image.org/docs/dev/user_guide/numpy_images.html
As such, let's define an example that's analogous to your problem - let's say we have a picture of a red cabbage, and we want to know which how much of the picture contains red / purple-like pixels.
To simplify our life, we'll set any pixel above a certain threshold to white (RGB: 255,255,255), and then count how many non-white pixels there are:
from copy import deepcopy
import numpy as np
import matplotlib.pyplot as plt
def plot_image(fname, color=128, replacement=(255, 255, 255), plot=False):
# 128 is a reasonable guess since most of the pixels in the image that have the
# purplish hue, have RGB's above this value.
data = imread(fname)
image_data = deepcopy(data) # copy the original data (for later use if need be)
mask = image_data[:, :, 0] < color # apply the color mask over the image data
image_data[mask] = np.array(replacement) # replace the match
if plot:
plt.imshow(image_data)
plt.show()
return data, image_data
data, image_data = plot_image('cabbage.jpg') # load the image, and apply the mask
# Find the locations of all the pixels that are non-white (i.e. 255)
# This returns 3 arrays of the same size)
indices = np.where(image_data != 255)
# Now, calculate the area: in this case, ~ 62.04 %
effective_area = indices[0].size / float(data.size)
The selected region in question is shown here below:
Note that image_data contains the pixel information that has been masked, and would provide the coordinates (albeit in pixel space) of where each occupied (i.e. non-white) pixel occurs. The issue with this of course is that these are pixel coordinates and not a physical one. But, since you know the physical dimensions, extrapolating those quantities are easily done.
Furthermore, with the effective area known, and knowledge of the physical dimension, you have a good estimate of the real area occupied. To obtain better results, tweak the value of the color threshold (i.e. color). In your real-life example, since you know the color, search within a pixel range around that value (to offset noise and lighting issues).
The above method is a bit crude - but effective - and, it may be worth exploring using it in tandem with edge-detection, as that could help improve the region identification, and area selection. (Note that isn't always strictly true!) Also, color deconvolution may be useful: http://scikit-image.org/docs/dev/auto_examples/color_exposure/plot_ihc_color_separation.html#sphx-glr-auto-examples-color-exposure-plot-ihc-color-separation-py
The downside to this is that the analysis requires a high quality image, good lighting; and, most importantly, it's likely that you'll lose some of the more finer details of the edges, which would impact your masses.
2) Instead of resorting to camera work, and given that you have the AutoCAD model, you can use that and the software itself in addition to the above prescribed method.
Since you've colored each material in the model differently, you can use AutoCAD's slicing tool, and can do something similar to what the first method suggests doing physically: slicing the model, and taking pictures of the slice to expose the surface. Then, using a similar method described above of color masking / edge detection / region determination through color selection, you should obtain a much better and (arguably) very accurate result.
The downside to this, is that you're also limited by the image quality used. But, as it's software, that shouldn't be much of an issue, and you can get extremely high accuracy - close to its actual result.
The last suggestion to improve these results would be to script numerous random thin slicing of the AutoCAD model along a particular directional vector shared by every subsequent slice, exporting each exposed surface, analyzing each image in the manner described above, and then collecting those results to given you a Monte Carlo-like and statistically quantifiable determination of the mass (to correct for geometry effects due to slicing along one given axis).

Using external pose estimates to improve stationary marker contour tracking

Suppose that I have an array of sensors that allows me to come up with an estimate of my pose relative to some fixed rectangular marker. I thus have an estimate as to what the contour of the marker will look like in the image from the camera. How might I use this to better detect contours?
The problem that I'm trying to overcome is that sometimes, the marker is occluded, perhaps by a line cutting across it. As such, I'm left with two contours that if merged, would yield the marker. I've tried opening and closing to try and fix the problem, but it isn't robust to the different types of lighting.
One approach that I'm considering is to use the predicted contour, and perform a local convolution with the gradient of the image, to find my true pose.
Any thoughts or advice?
The obvious advantage of having a pose estimate is that it restricts the image region for searching your target.
Next, if your problem is occlusion, you then need to model that explicitly, rather than just try to paper it over with image processing tricks: add to your detector objective function a term that expresses what your target may look like when partially occluded. This can be either an explicit "occluded appearance" model, or implicit - e.g. using an algorithm that is able to recognize visible portions of the targets independently of the whole of it.

Find edges of images

I have software that generates several images like the following four images:
Does an algorithm exist that detects the (horizontal & vertical) edges and creates a binary output like this?
If possible I'd like to implement this with numpy and scipy. I already tried to implement an algorithm, but I failed because I didn't find a place to start. I also tried to use a neural network to do this, but this seems to be overpowered and does not work perfectly.
The simplest thing to try is to:
Convert your images to binary images (by a simple threshold)
Apply the Hough transform (OpenCV, Matlab have it already implemented)
In the Hough transform results, detect the peaks for angles 0 degree, + and - 90 degrees. (Vertical and horizontal lines)
In OpenCV and Matlab, you have extra options for the Hough transform which allow you to fill the gaps between two disconnected segments belonging to a same straight line. You may need a few extra operations for post-processing your results but the main steps should be these ones.

Image registration using python and cross-correlation

I got two images showing exaktly the same content: 2D-gaussian-shaped spots. I call these two 16-bit png-files "left.png" and "right.png". But as they are obtained thru an slightly different optical setup, the corresponding spots (physically the same) appear at slightly different positions. Meaning the right is slightly stretched, distorted, or so, in a non-linear way. Therefore I would like to get the transformation from left to right.
So for every pixel on the left side with its x- and y-coordinate I want a function giving me the components of the displacement-vector that points to the corresponding pixel on the right side.
In a former approach I tried to get the positions of the corresponding spots to obtain the relative distances deltaX and deltaY. These distances then I fitted to the taylor-expansion up to second order of T(x,y) giving me the x- and y-component of the displacement vector for every pixel (x,y) on the left, pointing to corresponding pixel (x',y') on the right.
To get a more general result I would like to use normalized cross-correlation. For this I multiply every pixelvalue from left with a corresponding pixelvalue from right and sum over these products. The transformation I am looking for should connect the pixels that will maximize the sum. So when the sum is maximzied, I know that I multiplied the corresponding pixels.
I really tried a lot with this, but didn't manage. My question is if somebody of you has an idea or has ever done something similar.
import numpy as np
import Image
left = np.array(Image.open('left.png'))
right = np.array(Image.open('right.png'))
# for normalization (http://en.wikipedia.org/wiki/Cross-correlation#Normalized_cross-correlation)
left = (left - left.mean()) / left.std()
right = (right - right.mean()) / right.std()
Please let me know if I can make this question more clear. I still have to check out how to post questions using latex.
Thank you very much for input.
[left.png] http://i.stack.imgur.com/oSTER.png
[right.png] http://i.stack.imgur.com/Njahj.png
I'm afraid, in most cases 16-bit images appear just black (at least on systems I use) :( but of course there is data in there.
UPDATE 1
I try to clearify my question. I am looking for a vector-field with displacement-vectors that point from every pixel in left.png to the corresponding pixel in right.png. My problem is, that I am not sure about the constraints I have.
where vector r (components x and y) points to a pixel in left.png and vector r-prime (components x-prime and y-prime) points to the corresponding pixel in right.png. for every r there is a displacement-vector.
What I did earlier was, that I found manually components of vector-field d and fitted them to a polynom second degree:
So I fitted:
and
Does this make sense to you? Is it possible to get all the delta-x(x,y) and delta-y(x,y) with cross-correlation? The cross-correlation should be maximized if the corresponding pixels are linked together thru the displacement-vectors, right?
UPDATE 2
So the algorithm I was thinking of is as follows:
Deform right.png
Get the value of cross-correlation
Deform right.png further
Get the value of cross-correlation and compare to value before
If it's greater, good deformation, if not, redo deformation and do something else
After maximzied the cross-correlation value, know what deformation there is :)
About deformation: could one do first a shift along x- and y-direction to maximize cross-correlation, then in a second step stretch or compress x- and y-dependant and in a third step deform quadratic x- and y-dependent and repeat this procedure iterativ?? I really have a problem to do this with integer-coordinates. Do you think I would have to interpolate the picture to obtain a continuous distribution?? I have to think about this again :( Thanks to everybody for taking part :)
OpenCV (and with it the python Opencv binding) has a StarDetector class which implements this algorithm.
As an alternative you might have a look at the OpenCV SIFT class, which stands for Scale Invariant Feature Transform.
Update
Regarding your comment, I understand that the "right" transformation will maximize the cross-correlation between the images, but I don't understand how you choose the set of transformations over which to maximize. Maybe if you know the coordinates of three matching points (either by some heuristics or by choosing them by hand), and if you expect affinity, you could use something like cv2.getAffineTransform to have a good initial transformation for your maximization process. From there you could use small additional transformations to have a set over which to maximize. But this approach seems to me like re-inventing something which SIFT could take care of.
To actually transform your test image you can use cv2.warpAffine, which also can take care of border values (e.g. pad with 0). To calculate the cross-correlation you could use scipy.signal.correlate2d.
Update
Your latest update did indeed clarify some points for me. But I think that a vector field of displacements is not the most natural thing to look for, and this is also where the misunderstanding came from. I was thinking more along the lines of a global transformation T, which applied to any point (x,y) of the left image gives (x',y')=T(x,y) on the right side, but T has the same analytical form for every pixel. For example, this could be a combination of a displacement, rotation, scaling, maybe some perspective transformation. I cannot say whether it is realistic or not to hope to find such a transformation, this depends on your setup, but if the scene is physically the same on both sides I would say it is reasonable to expect some affine transformation. This is why I suggested cv2.getAffineTransform. It is of course trivial to calculate your displacement Vector field from such a T, as this is just T(x,y)-(x,y).
The big advantage would be that you have only very few degrees of freedom for your transformation, instead of, I would argue, 2N degrees of freedom in the displacement vector field, where N is the number of bright spots.
If it is indeed an affine transformation, I would suggest some algorithm like this:
identify three bright and well isolated spots on the left
for each of these three spots, define a bounding box so that you can hope to identify the corresponding spot within it in the right image
find the coordinates of the corresponding spots, e.g. with some correlation method as implemented in cv2.matchTemplate or by also just finding the brightest spot within the bounding box.
once you have three matching pairs of coordinates, calculate the affine transformation which transforms one set into the other with cv2.getAffineTransform.
apply this affine transformation to the left image, as a check if you found the right one you could calculate if the overall normalized cross-correlation is above some threshold or drops significantly if you displace one image with respect to the other.
if you wish and still need it, calculate the displacement vector field trivially from your transformation T.
Update
It seems cv2.getAffineTransform expects an awkward input data type 'float32'. Let's assume the source coordinates are (sxi,syi) and destination (dxi,dyi) with i=0,1,2, then what you need is
src = np.array( ((sx0,sy0),(sx1,sy1),(sx2,sy2)), dtype='float32' )
dst = np.array( ((dx0,dy0),(dx1,dy1),(dx2,dy2)), dtype='float32' )
result = cv2.getAffineTransform(src,dst)
I don't think a cross correlation is going to help here, as it only gives you a single best shift for the whole image. There are three alternatives I would consider:
Do a cross correlation on sub-clusters of dots. Take, for example, the three dots in the top right and find the optimal x-y shift through cross-correlation. This gives you the rough transform for the top left. Repeat for as many clusters as you can to obtain a reasonable map of your transformations. Fit this with your Taylor expansion and you might get reasonably close. However, to have your cross-correlation work in any way, the difference in displacement between spots must be less than the extend of the spot, else you can never get all spots in a cluster to overlap simultaneously with a single displacement. Under these conditions, option 2 might be more suitable.
If the displacements are relatively small (which I think is a condition for option 1), then we might assume that for a given spot in the left image, the closest spot in the right image is the corresponding spot. Thus, for every spot in the left image, we find the nearest spot in the right image and use that as the displacement in that location. From the 40-something well distributed displacement vectors we can obtain a reasonable approximation of the actual displacement by fitting your Taylor expansion.
This is probably the slowest method, but might be the most robust if you have large displacements (and option 2 thus doesn't work): use something like an evolutionary algorithm to find the displacement. Apply a random transformation, compute the remaining error (you might need to define this as sum of the smallest distance between spots in your original and transformed image), and improve your transformation with those results. If your displacements are rather large you might need a very broad search as you'll probably get lots of local minima in your landscape.
I would try option 2 as it seems your displacements might be small enough to easily associate a spot in the left image with a spot in the right image.
Update
I assume your optics induce non linear distortions and having two separate beampaths (different filters in each?) will make the relationship between the two images even more non-linear. The affine transformation PiQuer suggests might give a reasonable approach but can probably never completely cover the actual distortions.
I think your approach of fitting to a low order Taylor polynomial is fine. This works for all my applications with similar conditions. Highest orders probably should be something like xy^2 and x^2y; anything higher than that you won't notice.
Alternatively, you might be able to calibrate the distortions for each image first, and then do your experiments. This way you are not dependent on the distribution of you dots, but can use a high resolution reference image to get the best description of your transformation.
Option 2 above still stands as my suggestion for getting the two images to overlap. This can be fully automated and I'm not sure what you mean when you want a more general result.
Update 2
You comment that you have trouble matching dots in the two images. If this is the case, I think your iterative cross-correlation approach may not be very robust either. You have very small dots, so overlap between them will only occur if the difference between the two images is small.
In principle there is nothing wrong with your proposed solution, but whether it works or not strongly depends on the size of your deformations and the robustness of your optimization algorithm. If you start off with very little overlap, then it may be hard to find a good starting point for your optimization. Yet if you have sufficient overlap to begin with, then you should have been able to find the deformation per dot first, but in a comment you indicate that this doesn't work.
Perhaps you can go for a mixed solution: find the cross correlation of clusters of dots to get a starting point for your optimization, and then tweak the deformation using something like the procedure you describe in your update. Thus:
For a NxN pixel segment find the shift between the left and right images
Repeat for, say, 16 of those segments
Compute an approximation of the deformation using those 16 points
Use this as the starting point of your optimization approach
You might want to have a look at bunwarpj which already does what you're trying to do. It's not python but I use it in exactly this context. You can export a plain text spline transformation and use it if you wish to do so.

Categories