python masking each day in dataframe - python

I have to make a daily sum on a dataframe but only if at least 70% of the daily data is not NaN. If it is then this day must not be taken into account. Is there a way to create such a mask? My dataframe is more than 17 years of hourly data.
my data is something like this:
clear skies all skies Lab
2015-02-26 13:00:00 597.5259 376.1830 307.62
2015-02-26 14:00:00 461.2014 244.0453 199.94
2015-02-26 15:00:00 283.9003 166.5772 107.84
2015-02-26 16:00:00 93.5099 50.7761 23.27
2015-02-26 17:00:00 1.1559 0.2784 0.91
... ... ...
2015-12-05 07:00:00 95.0285 29.1006 45.23
2015-12-05 08:00:00 241.8822 120.1049 113.41
2015-12-05 09:00:00 363.8040 196.0568 244.78
2015-12-05 10:00:00 438.2264 274.3733 461.28
2015-12-05 11:00:00 456.3396 330.6650 447.15
if I groupby and aggregate than there is no way to know if in any day there was some lack of data and some days will have lower sums and therefore lowering my monthly means

As said in the comments, use groupby to group the data by date and then write an appropriate selection. This is an example that would sum all days (assuming regular data points, 24 per day) with less than 50% of nan entries:
import pandas as pd
import numpy as np
# create a date range
date_rng = pd.date_range(start='1/1/2018', end='1/1/2021', freq='H')
# create random data
df = pd.DataFrame({"data":np.random.randint(0,100,size=(len(date_rng)))}, index = date_rng)
# set some values to nan
df["data"][df["data"] > 50] = np.nan
# looks like this
df.head(20)
# sum everything where less than 50% are nan
df.groupby(df.index.date).sum()[df.isna().groupby(df.index.date).sum() < 12]
Example output:
data
2018-01-01 NaN
2018-01-02 NaN
2018-01-03 487.0
2018-01-04 NaN
2018-01-05 421.0
... ...
2020-12-28 NaN
2020-12-29 NaN
2020-12-30 NaN
2020-12-31 392.0
2021-01-01 0.0

An alternative solution - you may find it useful & flexible:
# pip install convtools
from convtools import conversion as c
total_number = c.ReduceFuncs.Count()
total_not_none = c.ReduceFuncs.Count(where=c.item("amount").is_not(None))
total_sum = c.ReduceFuncs.Sum(c.item("amount"))
input_data = [] # e.g. iterable of dicts
converter = (
c.group_by(
c.item("key1"),
c.item("key2"),
)
.aggregate(
{
"key1": c.item("key1"),
"key2": c.item("key2"),
"sum_if_70": c.if_(
total_not_none / total_number < 0.7,
None,
total_sum,
),
}
)
.gen_converter(
debug=False
) # install black and set to True to see the generated ad-hoc code
)
result = converter(input_data)

Related

Efficient groupby when rows of groups are contiguous?

The context
I am looking to apply a ufuncs (cumsum in this case) to blocks of contiguous rows in a time serie, which is stored in a panda DataFrame.
This time serie is sorted according its DatetimeIndex.
Blocks are defined by a custom DatetimeIndex.
To do so, I came up with this (ok) code.
# input dataset
length = 10
ts = pd.date_range(start='2021/01/01 00:00', periods=length, freq='1h')
random.seed(1)
val = random.sample(range(1, 10+length), length)
df = pd.DataFrame({'val' : val}, index=ts)
# groupby custom datetimeindex
key_ts = [ts[i] for i in [1,3,7]]
df.loc[key_ts, 'id'] = range(len(key_ts))
df['id'] = df['id'].ffill()
# cumsum
df['cumsum'] = df.groupby('id')['val'].cumsum()
# initial dataset
In [13]: df
Out[13]:
val
2021-01-01 00:00:00 5
2021-01-01 01:00:00 3
2021-01-01 02:00:00 9
2021-01-01 03:00:00 4
2021-01-01 04:00:00 8
2021-01-01 05:00:00 13
2021-01-01 06:00:00 15
2021-01-01 07:00:00 14
2021-01-01 08:00:00 11
2021-01-01 09:00:00 7
# DatetimeIndex defining custom time intervals for 'resampling'.
In [14]: key_ts
Out[14]:
[Timestamp('2021-01-01 01:00:00', freq='H'),
Timestamp('2021-01-01 03:00:00', freq='H'),
Timestamp('2021-01-01 07:00:00', freq='H')]
# result
In [16]: df
Out[16]:
val id cumsum
2021-01-01 00:00:00 5 NaN -1
2021-01-01 01:00:00 3 0.0 3
2021-01-01 02:00:00 9 0.0 12
2021-01-01 03:00:00 4 1.0 4
2021-01-01 04:00:00 8 1.0 12
2021-01-01 05:00:00 13 1.0 25
2021-01-01 06:00:00 15 1.0 40
2021-01-01 07:00:00 14 2.0 14
2021-01-01 08:00:00 11 2.0 25
2021-01-01 09:00:00 7 2.0 32
The question
Is groupby the most efficient in terms of CPU and memory in this case where blocks are made with contiguous rows?
I would think that with groupby, a 1st read of the full the dataset is made to identify all rows to group together.
Knowing rows are contiguous in my case, I don't need to read the full dataset to know I have gathered all the rows of current group.
As soon as I hit the row of the next group, I know calculations are done with previous group.
In case rows are contiguous, the sorting step is lighter.
Hence the question, is there a way to mention this to pandas to save some CPU?
Thanks in advance for your feedbacks,
Bests
group_by is clearly not the fastest solution here because it should either use a slow sort or slow hashing operations to group the values.
What you want to implement is called a segmented cumulative sum. You can implement this quite efficiently using Numpy, but this is a bit tricky to implement (especially due to the NaN values) and not the fastest solution because multiple one need multiple steps iterating over all the id/valcolumns. The fastest solution is to use something like Numba to do this very quickly in one step.
Here is an implementation:
import numpy as np
import numba as nb
# To avoid the compilation cost at runtime, use:
# #nb.njit('int64[:](float64[:],int64[:])')
#nb.njit
def segmentedCumSum(ids, values):
size = len(ids)
res = np.empty(size, dtype=values.dtype)
if size == 0:
return res
zero = values.dtype.type(0)
curValue = zero
for i in range(size):
if not np.isnan(ids[i]):
if i > 0 and ids[i-1] != ids[i]:
curValue = zero
curValue += values[i]
res[i] = curValue
else:
res[i] = -1
curValue = zero
return res
df['cumsum'] = segmentedCumSum(df['id'].to_numpy(), df['val'].to_numpy())
Note that ids[i-1] != ids[i] might fail with big floats because of their imprecision. The best solution is to use integers and -1 to replace the NaN value. If you do want to keep the float values, you can use the expression np.abs(ids[i-1]-ids[i]) > epsilon with a very small epsilon. See this for more information.

Filtering out specific hours each day in pandas

Given a dataset where each row represent a hour sample, that is each day has 24 entries with the following index set
...
2020-10-22T20:00:00
2020-10-22T21:00:00
2020-10-22T22:00:00
...
2020-10-22T20:00:00
2020-10-22T20:00:00
2020-10-22T20:00:00
...
Now I want to filter out so that for each day only the hours between 9am-3pm is left.
The only way I know would be to iterate over the dataset and filter each row given a condition, however knowing pandas there is always some trick for this kind of filtering that does not involve explicit iterating.
You can use the aptly named pd.DataFrame.between_time method. This will only work if your dataframe has a DatetimeIndex.
Data Creation
date_index = pd.date_range("2020-10-22T20:00:00", "2020-11-22T20:00:00", freq="H")
values = np.random.rand(len(dates), 1)
df = pd.DataFrame(values, index=date_index, columns=["value"])
print(df.head())
value
2020-10-22 20:00:00 0.637542
2020-10-22 21:00:00 0.590626
2020-10-22 22:00:00 0.474802
2020-10-22 23:00:00 0.058775
2020-10-23 00:00:00 0.904070
Method
subset = df.between_time("9:00am", "3:00pm")
print(subset.head(10))
value
2020-10-23 09:00:00 0.210816
2020-10-23 10:00:00 0.086677
2020-10-23 11:00:00 0.141275
2020-10-23 12:00:00 0.065100
2020-10-23 13:00:00 0.892314
2020-10-23 14:00:00 0.214991
2020-10-23 15:00:00 0.106937
2020-10-24 09:00:00 0.900106
2020-10-24 10:00:00 0.545249
2020-10-24 11:00:00 0.793243
import pandas as pd
# sample data (strings)
data = [f'2020-10-{d:02d}T{h:02d}:00:00' for h in range(24) for d in range(1, 21)]
# series of DT values
ds = pd.to_datetime(pd.Series(data), format='%Y-%m-%dT%H:%M:%S')
# filter by hours
ds_filter = ds[(ds.dt.hour >= 9) & (ds.dt.hour <= 15)]

How to loop through a pandas grouped time series?

I have a dataframe like this:
datetime type d13C ... dayofyear week dmy
1 2018-01-05 15:22:30 air -8.88 ... 5 1 5-1-2018
2 2018-01-05 15:23:30 air -9.08 ... 5 1 5-1-2018
3 2018-01-05 15:24:30 air -10.08 ... 5 1 5-1-2018
4 2018-01-05 15:25:30 air -9.51 ... 5 1 5-1-2018
5 2018-01-05 15:26:30 air -9.61 ... 5 1 5-1-2018
... ... ... ... ... ... ...
341543 2018-12-17 12:42:30 air -9.99 ... 351 51 17-12-2018
341544 2018-12-17 12:43:30 air -9.53 ... 351 51 17-12-2018
341545 2018-12-17 12:44:30 air -9.54 ... 351 51 17-12-2018
341546 2018-12-17 12:45:30 air -9.93 ... 351 51 17-12-2018
341547 2018-12-17 12:46:30 air -9.66 ... 351 51 17-12-2018
Full data here: https://drive.google.com/file/d/1KmOwnpvrG2Edz1AlLyD0CKZlBpaFervM/view?usp=sharing
I'm plotting d13C column on the Y-axis and inverse total_co2 on the X and then fitting a regression line for each day in the data. I then filter out and store the dates I want depending on if the r^2 value of the regression line is > 0.8 like this:
import pandas as pd
from numpy.polynomial.polynomial import polyfit
import numpy as np
from scipy import stats
df = pd.read_csv('dataset.txt', usecols = ['datetime', 'type', 'total_co2', 'd13C', 'day','month','year','dayofyear','week','hour'], dtype = {'total_co2':
np.float64, 'd13C':np.float64, 'day':str, 'month':str, 'year':str,'week':str, 'hour': str, 'dayofyear':str})
df['dmy'] = df['day'] +'-'+ df['month'] +'-'+ df['year'] # adding a full date column to make it easir to filter through
# the rows, ie. each day
# window18 = df[((df['year']=='2018'))] # selecting just the data from the year 2018
accepted_dates_list = [] # creating an empty list to store the dates that we're interested in
for d in df['dmy'].unique(): # this will pass through each day, the .unique() ensures that it doesnt go over the same days
acceptable_date = {} # creating a dictionary to store the valid dates
period = df[df.dmy==d] # defining each period from the dmy column
p = (period['total_co2'])**-1
q = period['d13C']
c,m = polyfit(p,q,1) # intercept and gradient calculation of the regression line
slope, intercept, r_value, p_value, std_err = stats.linregress(p, q) # getting some statistical properties of the regression line
if r_value**2 >= 0.8:
acceptable_date['period'] = d # populating the dictionary with the accpeted dates and corresponding other values
acceptable_date['r-squared'] = r_value**2
acceptable_date['intercept'] = intercept
accepted_dates_list.append(acceptable_date) # sending the valid stuff in the dictionary to the list
else:
pass
accepted_dates18 = pd.DataFrame(accepted_dates_list) # converting the list to a df
print(accepted_dates18)
But now I want to do the same thing, just over three day periods which I'm trying to select from the day of year column (unsure if this is the best way or not). For example, I would want to fit the regression line using all the rows with dayofyear=5, dayofyear=6, dayofyear=7, then for the next three days until the end of the data. There are some days missing, but essentially I just need to do this for every 3 days in the data.
The output dataframe I am then trying to get would have the list of the three day intervals with the r^2 >0.8, so anything like this that will show the valid date range:
Accepted dates
0 23-08-2018 - 25-08-2018
1 26-08-2018 - 28-08-2018
2 31-08-2018 - 02-09-2018
3 15-09-2018 - 17-09-2018
4 24-09-2018 - 26-09-2018
I'm not too sure what to do to iterate over every three days. Any help would go a long way, thanks!
Your code loops through a list of unique dates and filters the dataframe on each iteration.
Pandas implemented this with df.groupby(). It can be used to loop and get each group or it can be combined with aggregations, function applications, and transformations. You can read more about it on the user guide. This function can return groups according to any the columns (or set of columns) in df, levels of the index, or any other exogenous list-like with the same length as df (we are grouping rows, but note it can also group columns). It even has implementations for the most common statistical aggregations like mean, stdev, and corr, among many others.
Now to your problem. You not only want the correlation but the equation, so you do need to loop. And to get three-day groups you can use that dayofyear column with a twist.
Take this data
import io
fo = io.StringIO(
'''datetime,d13C
2018-01-05 15:22:30,-8.88
2018-01-05 15:23:30,-9.08
2018-01-06 15:24:30,-10.0
2018-01-06 15:25:30,-9.51
2018-01-07 15:26:30,-9.61
2018-01-07 15:27:30,-9.61
2018-01-08 15:28:30,-9.61
2018-01-08 15:29:30,-9.61
2018-01-09 15:26:30,-9.61
2018-01-09 15:27:30,-9.61
''')
df = pd.read_csv(fo)
df.datetime = pd.to_datetime(df.datetime)
fo.close()
With the code for grouping and looping
first_day = 5
days_to_group = 3
for doy, gdf in df.groupby((df.datetime.dt.dayofyear.sub(first_day) // days_to_group)
* days_to_group + first_day):
print(gdf, '\n')
print(doy, '\n')
Output
datetime d13C
0 2018-01-05 15:22:30 -8.88
1 2018-01-05 15:23:30 -9.08
2 2018-01-06 15:24:30 -10.00
3 2018-01-06 15:25:30 -9.51
4 2018-01-07 15:26:30 -9.61
5 2018-01-07 15:27:30 -9.61
5
datetime d13C
6 2018-01-08 15:28:30 -9.61
7 2018-01-08 15:29:30 -9.61
8 2018-01-09 15:26:30 -9.61
9 2018-01-09 15:27:30 -9.61
8
Now you can plug your code into this loop and get what you need.
PS
You can also use df.datetime.dt.floor('3d') as the grouper but I am not aware of how to control the first_day, so use it with caution.
Here is one approach. As I understand it, the primary goal is to get from current observations (multiple per day) to a 3-day moving average. First, I created a smaller, simpler data set:
import pandas as pd
df = pd.DataFrame({'counter': [*range(100)],
'date': pd.date_range('2020-01-01', periods=100, freq='7H')})
df = df.set_index('date')
print(df.head())
counter
date
2020-01-01 00:00:00 0
2020-01-01 07:00:00 1
2020-01-01 14:00:00 2
2020-01-01 21:00:00 3
2020-01-02 04:00:00 4
Second, I re-sampled on a daily basis:
df2 = df['counter'].resample('1D').mean() # <-- called df2
print(df2.head())
date
2020-01-01 1.5
2020-01-02 5.0
2020-01-03 8.5
2020-01-04 12.0
2020-01-05 15.5
Freq: D, Name: counter, dtype: float64
Third, I computed mean value for a 3-day moving window:
print(df2.rolling(3).mean().head())
date
2020-01-01 NaN
2020-01-02 NaN
2020-01-03 5.0
2020-01-04 8.5
2020-01-05 12.0
Freq: D, Name: counter, dtype: float64
Seems like resample().mean() and rolling().mean() would be useful in this case.

How to resample yearly starting from 1st of June to 31st may?

How do I resample a dataframe with a daily time-series index to yearly, but not from 1st Jan to 31th Dec. Instead I want the yearly sum from 1.June to 31.May.
First I did this, which gives me the yearly sum from 1.Jan to 31.Dec:
df.resample(rule='A').sum()
I have tried using the base-parameter, but it does not change the resample sum.
df.resample(rule='A', base=100).sum()
Here is a part of my dataframe:
In []: df
Out[]:
Index ET P R
2010-01-01 00:00:00 -0.013 0.0 0.773
2010-01-02 00:00:00 0.0737 0.21 0.797
2010-01-03 00:00:00 -0.048 0.0 0.926
...
In []: df.resample(rule='A', base = 0, label='left').sum()
Out []:
Index
2009-12-31 00:00:00 424.131138 871.48 541.677405
2010-12-31 00:00:00 405.625780 939.06 575.163096
2011-12-31 00:00:00 461.586365 1064.82 710.507947
...
I would really appreciate if anyone could help me figuring out how to do this.
Thank you
Use 'AS-JUN' as the rule with resample:
# Example data
idx = pd.date_range('2017-01-01', '2018-12-31')
s = pd.Series(1, idx)
# Resample
s = s.resample('AS-JUN').sum()
The resulting output:
2016-06-01 151
2017-06-01 365
2018-06-01 214
Freq: AS-JUN, dtype: int64

pandas transform timeseries into multiple column DataFrame

I have a timeseries of intraday day data looks like below
ts =pd.Series(np.random.randn(60),index=pd.date_range('1/1/2000',periods=60, freq='2h'))
I am hoping to transform the data into a DataFrame, with the columns as each date, and rows as the time in the date.
I have tried these,
key = lambda x:x.date()
grouped = ts.groupby(key)
But how do I transform the groups into date columned DataFrame? or is there any better way?
import pandas as pd
import numpy as np
index = pd.date_range('1/1/2000', periods=60, freq='2h')
ts = pd.Series(np.random.randn(60), index = index)
key = lambda x: x.time()
groups = ts.groupby(key)
print pd.DataFrame({k:g for k,g in groups}).resample('D').T
out:
2000-01-01 2000-01-02 2000-01-03 2000-01-04 2000-01-05 2000-01-06 \
00:00:00 0.109959 -0.124291 -0.137365 0.054729 -1.305821 -1.928468
03:00:00 1.336467 0.874296 0.153490 -2.410259 0.906950 1.860385
06:00:00 -1.172638 -0.410272 -0.800962 0.568965 -0.270307 -2.046119
09:00:00 -0.707423 1.614732 0.779645 -0.571251 0.839890 0.435928
12:00:00 0.865577 -0.076702 -0.966020 0.589074 0.326276 -2.265566
15:00:00 1.845865 -1.421269 -0.141785 0.433011 -0.063286 0.129706
18:00:00 -0.054569 0.277901 0.383375 -0.546495 -0.644141 -0.207479
21:00:00 1.056536 0.031187 -1.667686 -0.270580 -0.678205 0.750386
2000-01-07 2000-01-08
00:00:00 -0.657398 -0.630487
03:00:00 2.205280 -0.371830
06:00:00 -0.073235 0.208831
09:00:00 1.720097 -0.312353
12:00:00 -0.774391 NaN
15:00:00 0.607250 NaN
18:00:00 1.379823 NaN
21:00:00 0.959811 NaN

Categories