I am seeking to find optimal control (aoa and bank angle) to maximize cross range for a shuttle type reentry vehicle using Gekko. Below is my code currently and I am getting a "Solution not found" with "EXIT: Maximum Number of Iterations Exceeded". The simulation assumes a point mass with a non-rotating earth frame. The EOMS are 6 coupled, non-linear ODEs. I have tried using different solvers, implementing/removing state and control constraints, increasing maximum number of iterations, etc. I am not confident with my setup and implementation of the problem in Gekko and am hoping for some feedback on what I can try next. I have tried to follow the setup and layouts in APMonitor's Example 11. Optimal Control with Integral Objective, Inverted Pendulum Optimal Control, and Example 13. Optimal Control: Minimize Final Time. Solutions I'm seeking are below.
Any help is very much appreciated!
from gekko import GEKKO
import numpy as np
import matplotlib.pyplot as plt
import math
pi = math.pi
########################
######FRONT MATTER######
########################
m = GEKKO() # initialize GEKKO
nt = 2501 #simulation time is 2500 seconds
tfin = 2500
m.time = np.linspace(0,tfin,nt) #time array
#==================#
#PARAMS
#==================#
Re = m.Param(value = 6371203.92) # radius of the earth, m
S = m.Param(value = 249.9091776) # vehicle surface area, m^2
cl0 = m.Param(value = -0.2070) # coeff lift param 1
cl1 = m.Param(value = 1.6756) # coeff lift param 2
cd0 = m.Param(value = 0.0785) # coeff drag param 1
cd1 = m.Param(value = -0.3529) # coeff drag param 2
cd2 = m.Param(value = 2.0400) # coeff drag param 3
H = m.Param(value = 7254.24) # density scale height, m
rho0= m.Param(value = 1.225570827014494) # sea level atmospheric density, kg/m^3
mu = m.Param(value = 3.986031954093051e14) #earth gravitational param, m^3/s^2
mass= m.Param(value = 92079.2525560557) #vehicle mass, kg
#===============================#
#BOUNDARY CONDITIONS
#===============================#
t0 = 0
alt0 = 79248
rad0 = alt0+Re
altf = 24384
radf = altf+Re
lon0 = 0
lat0 = 0
speed0 = +7802.88
speedf = +762
fpa0 = -1*pi/180
fpaf = -5*pi/180
azi0 = +90*pi/180
azif = -90*pi/180
#===============================#
#LIMITS ON VARIABLES
#===============================#
tfMin = 0; tfMax = 3000;
radMin = Re; radMax = rad0;
lonMin = -pi; lonMax = -lonMin;
latMin = -70*pi/180; latMax = -latMin;
speedMin = 10; speedMax = 45000;
fpaMin = -80*pi/180; fpaMax = 80*pi/180;
aziMin = -180*pi/180; aziMax = 180*pi/180;
aoaMin = -90*pi/180; aoaMax = -aoaMin;
bankMin = -90*pi/180; bankMax = 1*pi/180;
#===============================#
#VARIABLES
#===============================#
#state variables and bounds
rad = m.Var(value=rad0, lb=radMin, ub=radMax) # radius, m
lon = m.Var(value=lon0, lb=lonMin, ub=lonMax) # longitude, rad
lat = m.Var(value=lat0, lb=latMin, ub=latMax) # latitude, rad
vel = m.Var(value=speed0, lb=speedMin, ub=speedMax) # velocity, m/sec
fpa = m.Var(value=fpa0, lb=fpaMin, ub=fpaMax) # flight path angle, rad
azi = m.Var(value=azi0, lb=aziMin, ub=aziMax) # azimuth angle, rad
#control variables
aoa = m.MV(value=-20, lb=aoaMin, ub=aoaMax) # angle of attack, rad
aoa.STATUS = 1
aoa.DCOST = 1e-2
bank = m.MV(value=0, lb=bankMin, ub=bankMax) # bank angle, rad
bank.STATUS = 1
bank.DCOST = 1e-2
#===============================#
#INTERMEDIATE VARIABLES
#===============================#
altitude = m.Intermediate(rad - Re)
CD = m.Intermediate(cd0+cd1*aoa+cd2*aoa**2)
rho = m.Intermediate(rho0*m.exp(-altitude/H))
CL = m.Intermediate(cl0+cl1*aoa)
q = m.Intermediate(0.5*rho*vel**2)
D = m.Intermediate(q*S*CD/mass)
L = m.Intermediate(q*S*CL/mass)
gravity = m.Intermediate(mu/rad**2)
#===============================#
#EOMS
#===============================#
p = np.zeros(nt) # mark final time point
p[-1] = 1.0
final = m.Param(value=p)
m.Equation(rad.dt() == vel*m.sin(fpa))
m.Equation((rad*m.cos(lat))*lon.dt() == vel*m.cos(fpa)*m.sin(azi))
m.Equation(rad*lat.dt() == vel*m.cos(fpa)*m.cos(azi))
m.Equation(vel.dt() == -D-gravity*m.sin(fpa))
m.Equation(vel*fpa.dt() == (L*m.cos(bank)-m.cos(fpa)*(gravity-vel**2/rad)))
m.Equation(vel*azi.dt() == (L*m.sin(bank)/m.cos(fpa)+vel**2*m.cos(fpa)*m.sin(azi)*m.tan(lat)/rad))
#===============================#
#OPTIMIZATION SOLVER
#===============================#
m.Obj(-lat*final)
# m.options.SOLVER = 3
# m.options.IMODE = 6
# m.solve(disp=True)
m.options.MAX_ITER = 500
m.options.IMODE = 6
# m.options.NODES = 3
# m.options.MV_TYPE = 1
m.options.SOLVER = 3
# m.open_folder()
m.solve()
The solution should look something like this for altitude, velocity, AOA and bank angle: Altitude Velocity AngleofAttack Bank
I got a successful solution by decreasing the final time (max=0.04 for successful solution) and rearranging the equations to avoid a possible divide-by-zero:
m.Equation(rad.dt() == vel*m.sin(fpa))
m.Equation((rad*m.cos(lat))*lon.dt() == vel*m.cos(fpa)*m.sin(azi))
m.Equation(rad*lat.dt() == vel*m.cos(fpa)*m.cos(azi))
m.Equation(vel.dt() == -D-gravity*m.sin(fpa))
m.Equation(vel*fpa.dt() == (L*m.cos(bank)-m.cos(fpa)*(gravity-vel**2/rad)))
m.Equation(m.cos(fpa)*rad*vel*azi.dt() == \
(L*m.sin(bank)*rad+vel**2*(m.cos(fpa))**2*m.sin(azi)*m.tan(lat)))
Starting with a small time period and observing the states can help to troubleshoot the model.
from gekko import GEKKO
import numpy as np
import matplotlib.pyplot as plt
import math
pi = math.pi
########################
######FRONT MATTER######
########################
m = GEKKO() # initialize GEKKO
nt = 101 # 2501 #simulation time is 2500 seconds
tfin = 0.04
m.time = np.linspace(0,tfin,nt) #time array
#==================#
#PARAMS
#==================#
Re = m.Param(value = 6371203.92) # radius of the earth, m
S = m.Param(value = 249.9091776) # vehicle surface area, m^2
cl0 = m.Param(value = -0.2070) # coeff lift param 1
cl1 = m.Param(value = 1.6756) # coeff lift param 2
cd0 = m.Param(value = 0.0785) # coeff drag param 1
cd1 = m.Param(value = -0.3529) # coeff drag param 2
cd2 = m.Param(value = 2.0400) # coeff drag param 3
H = m.Param(value = 7254.24) # density scale height, m
rho0= m.Param(value = 1.225570827014494) # sea level atmospheric density, kg/m^3
mu = m.Param(value = 3.986031954093051e14) #earth gravitational param, m^3/s^2
mass= m.Param(value = 92079.2525560557) #vehicle mass, kg
#===============================#
#BOUNDARY CONDITIONS
#===============================#
t0 = 0
alt0 = 79248
rad0 = alt0+Re
altf = 24384
radf = altf+Re
lon0 = 0
lat0 = 0
speed0 = +7802.88
speedf = +762
fpa0 = -1*pi/180
fpaf = -5*pi/180
azi0 = +90*pi/180
azif = -90*pi/180
#===============================#
#LIMITS ON VARIABLES
#===============================#
tfMin = 0; tfMax = 3000;
radMin = Re; radMax = rad0;
lonMin = -pi; lonMax = -lonMin;
latMin = -70*pi/180; latMax = -latMin;
speedMin = 10; speedMax = 45000;
fpaMin = -80*pi/180; fpaMax = 80*pi/180;
aziMin = -180*pi/180; aziMax = 180*pi/180;
aoaMin = -90*pi/180; aoaMax = -aoaMin;
bankMin = -90*pi/180; bankMax = 1*pi/180;
#===============================#
#VARIABLES
#===============================#
#state variables and bounds
rad = m.Var(value=rad0, lb=radMin, ub=radMax) # radius, m
lon = m.Var(value=lon0, lb=lonMin, ub=lonMax) # longitude, rad
lat = m.Var(value=lat0, lb=latMin, ub=latMax) # latitude, rad
vel = m.Var(value=speed0, lb=speedMin, ub=speedMax) # velocity, m/sec
fpa = m.Var(value=fpa0, lb=fpaMin, ub=fpaMax) # flight path angle, rad
azi = m.Var(value=azi0, lb=aziMin, ub=aziMax) # azimuth angle, rad
#control variables
aoa = m.MV(value=-20, lb=aoaMin, ub=aoaMax) # angle of attack, rad
aoa.STATUS = 1
bank = m.MV(value=0, lb=bankMin, ub=bankMax) # bank angle, rad
bank.STATUS = 1
#===============================#
#INTERMEDIATE VARIABLES
#===============================#
altitude = rad - Re
CD = cd0+cd1*aoa+cd2*aoa**2
rho = rho0*m.exp(-altitude/H)
CL = cl0+cl1*aoa
q = 0.5*rho*vel**2
D = q*S*CD/mass
L = q*S*CL/mass
gravity = mu/rad**2
#===============================#
#EOMS
#===============================#
p = np.zeros(nt) # mark final time point
p[-1] = 1.0
final = m.Param(value=p)
m.Equation(rad.dt() == vel*m.sin(fpa))
m.Equation((rad*m.cos(lat))*lon.dt() == vel*m.cos(fpa)*m.sin(azi))
m.Equation(rad*lat.dt() == vel*m.cos(fpa)*m.cos(azi))
m.Equation(vel.dt() == -D-gravity*m.sin(fpa))
m.Equation(vel*fpa.dt() == (L*m.cos(bank)-m.cos(fpa)*(gravity-vel**2/rad)))
m.Equation(m.cos(fpa)*rad*vel*azi.dt() == \
(L*m.sin(bank)*rad+vel**2*(m.cos(fpa))**2*m.sin(azi)*m.tan(lat)))
#===============================#
#OPTIMIZATION SOLVER
#===============================#
m.Maximize(lat*final)
m.options.SOLVER = 3
m.options.IMODE = 6
m.solve(disp=True)
plt.subplot(4,2,1)
plt.plot(m.time,rad.value,label='rad')
plt.legend()
plt.subplot(4,2,2)
plt.plot(m.time,lon.value,label='lon')
plt.legend()
plt.subplot(4,2,3)
plt.plot(m.time,lat.value,label='lat')
plt.legend()
plt.subplot(4,2,4)
plt.plot(m.time,vel.value,label='vel')
plt.legend()
plt.subplot(4,2,5)
plt.plot(m.time,fpa.value,label='fpa')
plt.legend()
plt.subplot(4,2,6)
plt.plot(m.time,azi.value,label='azi')
plt.legend()
plt.subplot(4,2,7)
plt.plot(m.time,aoa.value,label='aoa')
plt.xlabel('Time')
plt.legend()
plt.subplot(4,2,8)
plt.plot(m.time,bank.value,label='bank')
plt.xlabel('Time')
plt.legend()
plt.show()
A suggestion is to turn off the degrees of freedom to verify the solution (STATUS=0) with smaller time horizons. Additional constraints may also be needed to keep the trigonometric functions in the -2pi to 2pi region. There is additional information on initializing challenging problems:
Safdarnejad, S.M., Hedengren, J.D., Lewis, N.R., Haseltine, E., Initialization Strategies for Optimization of Dynamic Systems, Computers and Chemical Engineering, 2015, Vol. 78, pp. 39-50, DOI: 10.1016/j.compchemeng.2015.04.016.
Success!! Thank you for your feedback and pointers #John Hedengren. After incorporating what I learned here and reinstating the bounds on the states I was able successfully use Gekko to produce an answer consistent with previous solutions. Very excited about Gekko and the potential here!
I am optimizing plane flight using optimal control. The plane flies certain distance (path variable) and then the simulation stops. The solver is trying to minimize the fuel consumption m.Maximize(mass*tf*final), by maximizing the mass value.
I have added 2 solver controlled variables:
throttle control, like this:
Tcontr = m.MV(value=0.2,lb=0.2,ub=1)
Tcontr.STATUS = 1
Tcontr.DCOST = 0
and simulation time, like this:
tf = m.FV(value=1,lb=0.0001,ub=1000.0)#
tf.STATUS = 1
And the system worked as intended.
After that, I tried to implement one more controlled variable, bank angle control, that looks like this:
Mu = m.MV(value=0,lb=-1.5,ub=1.5)
Mu.STATUS = 1
Mu.DCOST = 0
But for some reason, the program says that "Mu" is not defined.
How do I define Mu solver controlled variable?
How do I define next solver controlled variables?
My code:
import numpy as np
import matplotlib.pyplot as plt
from gekko import GEKKO
import math
#Gekko model
m = GEKKO(remote=False)
#Time points
nt = 11
tm = np.linspace(0,100,nt)
m.time = tm
# Variables
Ro = m.Var(value=1.1)#air density
g = m.Const(value=9.80665)
pressure = m.Var(value=101325)#
T = m.Var(value=281)#temperature
T0 = m.Const(value=288)#temperature at see level
S = m.Const(value=122.6)
Cd = m.Const(value=0.1)#drag coef
Cl = m.Var(value=1)#lift couef
FuelFlow = m.Var()
D = m.Var()#drag
Thrmax = m.Const(value=200000)#maximum throttle
Thr = m.Var()
V = m.Var(value=100,lb=0,ub=240)#velocity
#Vmin = m.Var(value=100)
gamma = m.Var(value=0)# Flight-path angle
gammaa = gamma.value
Xi = m.Var(value=0)# Heading angle
Xii = Xi.value
#Mu = m.Var()# Bank angle (controlled var)
Muu = Mu.value
#AOA = m.Var()#angle of attack (not needed atm)
x = m.Var(value=0,lb=0)#x position
y = m.Var(value=0,lb=0)#y position
h = m.Var(value=1000)# height
mass = m.Var(value=60000)
path = m.Const(value=5000) #intended distance length
L = m.Var()#lift
p = np.zeros(nt)
p[-1] = 1.0
final = m.Param(value=p)
m.options.MAX_ITER=10000 # iteration number
#Fixed Variable
tf = m.FV(value=1,lb=0.0001,ub=1000.0)#
tf.STATUS = 1
# Controlled parameters
Tcontr = m.MV(value=0.2,lb=0.2,ub=1)# solver controls throttle pedal
Tcontr.STATUS = 1
Tcontr.DCOST = 0
Mu = m.MV(value=0,lb=-1.5,ub=1.5)# solver controls bank angle - does not work
Mu.STATUS = 1
Mu.DCOST = 0
# Equations
m.Equation(x.dt()==tf*(V*(math.cos(gammaa.value))*(math.cos(Xii.value))))#
m.Equation(Thr==Tcontr*Thrmax)
m.Equation(V.dt()==tf*((Thr-D)/mass))#
m.Equation(mass.dt()==tf*(-Thr*(FuelFlow/60000)))#
m.Equation(D==0.5*Ro*(V**2)*Cd*S)
m.Equation(FuelFlow==0.75882*(1+(V/2938.5)))
m.Equation(x*final<=path)
#pressure and density part(density isnt working)
m.Equation(T==T0-(0.0065*h))
m.Equation(pressure==101325*(1-(0.0065*h)/T0)**((g*0.0289652)/(8.31446*0.0065)))# equation works
#m.Equation(Ro==(pressure*0.0289652)/(8.31446*T))
#2D addition part
m.Equation(y.dt()==tf*(V*(math.cos(gamma.value))*(math.sin(Xii.value))))#
m.Equation(Xi.dt()==tf*((L*math.sin(Muu))/(mass*V)))
m.Equation(L==0.5*Ro*(V**2)*Cl*S)
#3D addition part
# Objective Function
m.Minimize(final*(x-path)**2) #1D part
m.Maximize(mass*tf*final) #objective function
m.options.IMODE = 6
m.options.NODES = 2 # it was 3 before
m.options.MV_TYPE = 1
m.options.SOLVER = 3
#m.open_folder() # to search for infeasibilities
m.solve()
tm = tm * tf.value[0]
fig, axs = plt.subplots(6)
fig.suptitle('Results')
axs[0].plot(tm,Tcontr,'r-',LineWidth=2,label=r'$Tcontr$')
axs[0].legend(loc='best')
axs[1].plot(tm,V.value,'b-',LineWidth=2,label=r'$V$')
axs[1].legend(loc='best')
axs[2].plot(tm,x.value,'r--',LineWidth=2,label=r'$x$')
axs[2].legend(loc='best')
axs[3].plot(tm,D.value,'g-',LineWidth=2,label=r'$D$')
axs[3].legend(loc='best')
axs[4].plot(tm,mass.value,'g:',LineWidth=2,label=r'$mass$')
axs[4].legend(loc='best')
axs[5].plot(tm,T.value,'p-',LineWidth=2,label=r'$T$')
axs[5].legend(loc='best')
#axs[6].plot(tm,Ro.value,'p-',LineWidth=2,label=r'$Ro$')
#axs[6].legend(loc='best')
plt.xlabel('Time')
#plt.ylabel('Value')
plt.show()
So, I found out what was at fault. The variable Muu that references variable Mu must be defined after the variable Mu, like this:
Mu = m.MV(value=0)
Mu.STATUS = 1
Mu.DCOST = 0
Muu = Mu.value
Not like this:
Muu = Mu.value
Mu = m.MV(value=0)
Mu.STATUS = 1
Mu.DCOST = 0
I'm trying to implement a thermostat control using MPC and GEKKO.
The state variable (temperature) should be within a lower and upper pre-specified temp values , temp_low and temp_upper in the code below.
Both bound vary along the day: one value per hour.
The objective function is the cost-to-go of using the heating. The price also changes along the day, TOU below. T_external is the room's exterior temperature that plays a role in the differential equation.
How can implement this so that it optimizes?
This is my attempt:
from gekko import GEKKO
import numpy as np
m = GEKKO(remote=False)
m.time = np.linspace(0,23,24)
#initialize variables
T_external = [50.,50.,50.,50.,45.,45.,45.,60.,60.,63.,64.,45.,45.,50.,52.,53.,53.,54.,54.,53.,52.,51.,50.,45.]
temp_low = [55.,55.,55.,55.,55.,55.,55.,68.,68.,68.,68.,55.,55.,68.,68.,68.,68.,55.,55.,55.,55.,55.,55.,55.]
temp_upper = [75.,75.,75.,75.,75.,75.,75.,70.,70.,70.,70.,75.,75.,70.,70.,70.,70.,75.,75.,75.,75.,75.,75.,75.]
TOU = [0.05,0.05,0.05,0.05,0.05,0.05,0.05,200.,200.,200.,200.,200.,200.,200.,200.,200.,200.,200.,200.,200.,200.,0.05,0.05,0.05]
b = m.Param(value=1.)
k = m.Param(value=0.05)
T_e = m.Param(value=T_external)
u = m.MV(value=[0]*24, lb=[0.0]*24, ub=[1.]*24)
u.STATUS = 1 # allow optimizer to change
# Controlled Variable
T = m.SV(value=[60]*24, lb=temp_low, ub=temp_upper)
m.Equation(T.dt() == k*(T_e-T) + b*u)
m.Obj(np.dot(TOU,u))
m.options.IMODE = 6
m.solve(debug=True)
When I run this I get:
#error: Model Expression
*** Error in syntax of function string: Missing operator
Position: 4
0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0
?
Gekko needs the constaints as inequality expressions where the variable T is compared to the upper TH or lower TL values. If you have b=1., it leads to an infeasible solution because the heater isn't powerful enough to maintain the temperature within the upper and lower limits. I changed the value to b=10 to get a feasible solution.
from gekko import GEKKO
import numpy as np
m = GEKKO(remote=False)
m.time = np.linspace(0,23,24)
#initialize variables
T_external = [50.,50.,50.,50.,45.,45.,45.,60.,60.,63.,\
64.,45.,45.,50.,52.,53.,53.,54.,54.,\
53.,52.,51.,50.,45.]
temp_low = [55.,55.,55.,55.,55.,55.,55.,68.,68.,68.,68.,\
55.,55.,68.,68.,68.,68.,55.,55.,55.,55.,55.,55.,55.]
temp_upper = [75.,75.,75.,75.,75.,75.,75.,70.,70.,70.,70.,75.,\
75.,70.,70.,70.,70.,75.,75.,75.,75.,75.,75.,75.]
TOU_v = [0.05,0.05,0.05,0.05,0.05,0.05,0.05,200.,200.,200.,200.,\
200.,200.,200.,200.,200.,200.,200.,200.,200.,200.,0.05,\
0.05,0.05]
b = m.Param(value=10.)
k = m.Param(value=0.05)
T_e = m.Param(value=T_external)
TL = m.Param(value=temp_low)
TH = m.Param(value=temp_upper)
TOU = m.Param(value=TOU_v)
u = m.MV(lb=0, ub=1)
u.STATUS = 1 # allow optimizer to change
# Controlled Variable
T = m.SV(value=60)
m.Equations([T>=TL,T<=TH])
m.Equation(T.dt() == k*(T_e-T) + b*u)
m.Minimize(TOU*u)
m.options.IMODE = 6
m.solve(disp=True,debug=True)
A potentially better solution is to set up soft constraints by redefining the limits as an error. You can minimize the error to stay within the limits. Even if it can't stay within the limits, the optimizer will do the best it can to minimize the infeasibility. This also allows you to trade-off multiple objectives simultaneously such as between comfort and cost.
from gekko import GEKKO
import numpy as np
m = GEKKO(remote=False)
m.time = np.linspace(0,23,24)
#initialize variables
T_external = [50.,50.,50.,50.,45.,45.,45.,60.,60.,63.,\
64.,45.,45.,50.,52.,53.,53.,54.,54.,\
53.,52.,51.,50.,45.]
temp_low = [55.,55.,55.,55.,55.,55.,55.,68.,68.,68.,68.,\
55.,55.,68.,68.,68.,68.,55.,55.,55.,55.,55.,55.,55.]
temp_upper = [75.,75.,75.,75.,75.,75.,75.,70.,70.,70.,70.,75.,\
75.,70.,70.,70.,70.,75.,75.,75.,75.,75.,75.,75.]
TOU_v = [0.05,0.05,0.05,0.05,0.05,0.05,0.05,200.,200.,200.,200.,\
200.,200.,200.,200.,200.,200.,200.,200.,200.,200.,0.05,\
0.05,0.05]
b = m.Param(value=10.)
k = m.Param(value=0.05)
T_e = m.Param(value=T_external)
TL = m.Param(value=temp_low)
TH = m.Param(value=temp_upper)
TOU = m.Param(value=TOU_v)
u = m.MV(lb=0, ub=1)
u.STATUS = 1 # allow optimizer to change
# Controlled Variable
T = m.SV(value=60)
# Soft constraints
eH = m.CV(value=0)
eL = m.CV(value=0)
eH.SPHI=0; eH.WSPHI=100; eH.WSPLO=0 ; eH.STATUS = 1
eL.SPLO=0; eL.WSPHI=0 ; eL.WSPLO=100; eL.STATUS = 1
m.Equations([eH==T-TH,eL==T-TL])
m.Equation(T.dt() == k*(T_e-T) + b*u)
m.Minimize(TOU*u)
m.options.IMODE = 6
m.solve(disp=True,debug=True)
import matplotlib.pyplot as plt
plt.subplot(2,1,1)
plt.plot(m.time,temp_low,'k--')
plt.plot(m.time,temp_upper,'k--')
plt.plot(m.time,T.value,'r-')
plt.ylabel('Temperature')
plt.subplot(2,1,2)
plt.step(m.time,u.value,'b:')
plt.ylabel('Heater')
plt.xlabel('Time (hr)')
plt.show()