I'm trying to create a radial plot with a logrithmic scale on the r-axis, but the tick labels for the theta are coming up inside the plot.
import numpy as np
from matplotlib import pyplot as plt
np.random.seed(1)
r = 10**(1 + 2*np.random.rand(36))
theta = 2 * np.pi * np.linspace(0, 1, 37)
fig, ax = plt.subplots(subplot_kw={'projection': 'polar'})
ax.plot(theta, r)
# We need to reset the minimum r-limit to avoid log(0)
ax.set_rlim(0.1, None)
ax.set_rscale('log')
plt.show()
The theta ticks are inside the figure, which doesn't look so bad here, but are hidden for e.g. a pcolormesh plot - for comparison, if I comment out the set_rlim and set_rscale lines, we get the following with the desired location for the ticks. (For anyone using dark mode, the image background is transparent so the ticks might not show inline.)
I've tried looking at the ax.get_xticklabels but the y-position (equivalently the r-position) is 0.
[Text(0.0, 0, '0°'),
Text(0.7853981633974483, 0, '45°'),
Text(1.5707963267948966, 0, '90°'),
Text(2.356194490192345, 0, '135°'),
Text(3.141592653589793, 0, '180°'),
Text(3.9269908169872414, 0, '225°'),
Text(4.71238898038469, 0, '270°'),
Text(5.497787143782138, 0, '315°')]
Interestingly, if you increate the upper rlim (e.g. ax.set_rlim([0.1, 1e5])) the ticks move right to the edge of the figure.
You can use Axes.tick_params() to set the pad distance between the ticks and labels:
fig, ax = plt.subplots(subplot_kw={'projection': 'polar'})
ax.plot(theta, r)
ax.set_rmin(0.1)
ax.set_rscale('log')
ax.tick_params(pad=35)
Related
I would like to create sth like the following graph in matplotlib:
I have x = [0, 1, ..., 10], and for each x I have values from range [0, 60]. Lets say that the black line is the quantile of values for a given i from range x. For selected i I want to add horizontally histogram (with parameter density = True) like in the picture with the possibility to control the width of this histogram (in the picture it goes from 2 to 5 but I would like to set fixed width). How can I do that?
Yes, this is relatively straightforward with inset_axes:
import matplotlib.pyplot as plt
import numpy as np
fig, ax = plt.subplots()
x = np.random.randn(100)
ax.plot(x)
ylim = ax.get_ylim()
histax = ax.inset_axes([0.3, 0, 0.2, 1], transform=ax.transAxes)
histax.hist(x, orientation='horizontal', alpha=0.5 )
histax.set_facecolor('none')
histax.set_ylim(ylim)
plt.show()
You will probably want to clean up the axes etc, but that is the general idea.
I was trying to make a Polar heatmap using the following code.
# Plotting the polar plot
from matplotlib.colorbar import ColorbarBase
from matplotlib.colors import LogNorm
import matplotlib.pyplot as plt
cmap = obspy_sequential
# Have defined the variables to be used for pointing to the coordinates
# baz is angular, slow is radial, abs_power is the value at every co-ordinate
# Choose number of fractions in plot (desirably 360 degree/N is an integer!)
N = 72
N2 = 30
abins = np.arange(N + 1) * 360. / N
sbins = np.linspace(0, 3, N2 + 1)
# Sum rel power in bins given by abins and sbins
hist, baz_edges, sl_edges = \
np.histogram2d(baz, slow, bins=[abins, sbins], weights=abs_power)
# Transform to radian
baz_edges = np.radians(baz_edges)
# Add polar and colorbar axes
fig = plt.figure(figsize=(8, 8))
cax = fig.add_axes([0.85, 0.2, 0.05, 0.5])
ax = fig.add_axes([0.10, 0.1, 0.70, 0.7], polar=True)
ax.set_theta_direction(-1)
ax.set_theta_zero_location("N")
dh = abs(sl_edges[1] - sl_edges[0])
dw = abs(baz_edges[1] - baz_edges[0])
# Circle through backazimuth
for i, row in enumerate(hist):
bars = ax.bar((i * dw) * np.ones(N2),
height=dh * np.ones(N2),
width=dw, bottom=dh * np.arange(N2),color=cmap(row / hist.max()))
ax.set_xticks(np.linspace(0, 2 * np.pi, 10, endpoint=False))
ax.set_yticklabels(velocity)
ax.set_ylim(0, 3)
[i.set_color('white') for i in ax.get_yticklabels()]
ColorbarBase(cax, cmap=cmap,
norm=LogNorm(vmin=hist.min(),vmax=hist.max()))
plt.show()
I am creating multiple plots like this and thus I need to extend the range of the colorbar beyond the maximum of the abs_power data range.
I tried changing the vmax and vmin to the maximum-minimum target numbers I want, but it plots out the exact same plot every single time. The maximum value on the colorbar keeps changing but the plot does not change. Why is this happening?
Here is how it looks,
Here the actual maximum power is way lesser than the maximum specified in the colorbar. Still a bright yellow spot is visible.
PS : I get this same plot for any vmax,vmin values I provide.
Changing the colorbar doesn't have an effect on the main plot. You'd need to change the formula used in color=cmap(row / hist.max()) to change the barplot. The 'norm' is just meant for this task. The norm maps the range of numbers to the interval [0, 1]. Every value that is mapped to a value higher than 1 (i.e. a value higher than hist.max() in the example), gets assigned the highest color.
To have the colorbar reflect the correct information, you'd need the same cmap and same norm for both the plot and the colorbar:
my_norm = LogNorm(vmin=hist.min(),vmax=hist.max())
for i, row in enumerate(hist):
bars = ax.bar((i * dw) * np.ones(N2),
height=dh * np.ones(N2),
width=dw, bottom=dh * np.arange(N2),color=cmap(my_norm(row)))
and
ColorbarBase(cax, cmap=cmap, norm=my_norm)
On the other hand, if you don't want the yellow color to show up, you could try something like my_norm = LogNorm(vmin=hist.min(), vmax=hist.max()*100) in the code above.
Instead of creating the colorbar via ColorbarBase, it can help to use a standard plt.colorbar(), but with a ScalarMappable that indicates the color map and the norm used. In case of a LogNorm this will show the ticks in log format.
from matplotlib.cm import ScalarMappable
plt.colorbar(ScalarMappable(cmap=cmap, norm=my_norm), ax=ax, cax=cax)
I made this picture with matplotlib. I would like to split the background in two slightly colorfull side with two legends in each of them "mu < mu_{0}" for the left and "\mu > \mu_{0}$ for the right.
Do you know how to do that ?
THanks and regards.
You can use plt.fill to specify the area of the graph to shade. You can also used plt.text to annotate the sections. Here's an example of this for a graph not too dissimilar to yours (symmetric around the y-axis and bounded above by 1 and below by 0):
import numpy as np
import matplotlib.pyplot as plt
x = np.linspace(-np.pi, np.pi, num=100)
fig, ax = plt.subplots(1, 1)
ax.plot(x, np.abs(np.sin(x)))
# Get the left and right extent of the area to shade
LHS, RHS = ax.get_xlim()
# Specify the area to shade as the corners of the square we're interested in
ax.fill([0, RHS, RHS, 0], [0, 0, 1, 1], c='C1', alpha=0.3)
ax.fill([0, LHS, LHS, 0], [0, 0, 1, 1], c='C2', alpha=0.3)
ax.text(-np.pi/2, 0.4, '$x < 0$')
ax.text(np.pi/2, 0.4, '$x > 0$')
A good way to show the concentration of the data points in a plot is using a scatter plot with non-unit transparency. As a result, the areas with more concentration would appear darker.
# this is synthetic example
N = 10000 # a very very large number
x = np.random.normal(0, 1, N)
y = np.random.normal(0, 1, N)
plt.scatter(x, y, marker='.', alpha=0.1) # an area full of dots, darker wherever the number of dots is more
which gives something like this:
Imagine the case we want to emphasize on the outliers. So the situation is almost reversed: A plot in which the less-concentrated areas are bolder. (There might be a trick to apply for my simple example, but imagine a general case where a distribution of points are not known prior, or it's difficult to define a rule for transparency/weight on color.)
I was thinking if there's anything handy same as alpha that is designed for this job specifically. Although other ideas for emphasizing on outliers are also welcomed.
UPDATE: This is what happens when more then one data point is scattered on the same area:
I'm looking for something like the picture below, the more data point, the less transparent the marker.
To answer the question: You can calculate the density of points, normalize it and encode it in the alpha channel of a colormap.
import numpy as np
from scipy import stats
import matplotlib.pyplot as plt
from matplotlib.colors import LinearSegmentedColormap
# this is synthetic example
N = 10000 # a very very large number
x = np.random.normal(0, 1, N)
y = np.random.normal(0, 1, N)
fig, (ax,ax2) = plt.subplots(ncols=2, figsize=(8,5))
ax.scatter(x, y, marker='.', alpha=0.1)
values = np.vstack([x,y])
kernel = stats.gaussian_kde(values)
weights = kernel(values)
weights = weights/weights.max()
cols = plt.cm.Blues([0.8, 0.5])
cols[:,3] = [1., 0.005]
cmap = LinearSegmentedColormap.from_list("", cols)
ax2.scatter(x, y, c=weights, s = 1, marker='.', cmap=cmap)
plt.show()
Left is the original image, right is the image where higher density points have a lower alpha.
Note, however, that this is undesireable, because high density transparent points are undistinguishable from low density. I.e. in the right image it really looks as though you have a hole in the middle of your distribution.
Clearly, a solution with a colormap which does not contain the color of the background is a lot less confusing to the reader.
import numpy as np
from scipy import stats
import matplotlib.pyplot as plt
# this is synthetic example
N = 10000 # a very very large number
x = np.random.normal(0, 1, N)
y = np.random.normal(0, 1, N)
fig, ax = plt.subplots(figsize=(5,5))
values = np.vstack([x,y])
kernel = stats.gaussian_kde(values)
weights = kernel(values)
weights = weights/weights.max()
ax.scatter(x, y, c = weights, s=9, edgecolor="none", marker='.', cmap="magma")
plt.show()
Here, low density points are still emphazised by darker color, but at the same time it's clear to the viewer that the highest density lies in the middle.
As far as I know, there is no "direct" solution to this quite interesting problem. As a workaround, I propose this solution:
N = 10000 # a very very large number
x = np.random.normal(0, 1, N)
y = np.random.normal(0, 1, N)
fig = plt.figure() # create figure directly to be able to extract the bg color
ax = fig.gca()
ax.scatter(x, y, marker='.') # plot all markers without alpha
bgcolor = ax.get_facecolor() # extract current background color
# plot with alpha, "overwriting" dense points
ax.scatter(x, y, marker='.', color=bgcolor, alpha=0.2)
This will plot all points without transparency and then plot all points again with some transparency, "overwriting" those points with the highest density the most. Setting the alpha value to other higher values will put more emphasis to outliers and vice versa.
Of course the color of the second scatter plot needs to be adjusted to your background color. In my example this is done by extracting the background color and setting it as the new scatter plot's color.
This solution is independent of the kind of distribution. It only depends on the density of the points. However it produces twice the amount of points, thus may take slightly longer to render.
Reproducing the edit in the question, my solution is showing exactly the desired behavior. The leftmost point is a single point and is the darkest, the rightmost is consisting of three points and is the lightest color.
x = [0, 1, 1, 2, 2, 2]
y = [0, 0, 0, 0, 0, 0]
fig = plt.figure() # create figure directly to be able to extract the bg color
ax = fig.gca()
ax.scatter(x, y, marker='.', s=10000) # plot all markers without alpha
bgcolor = ax.get_facecolor() # extract current background color
# plot with alpha, "overwriting" dense points
ax.scatter(x, y, marker='.', color=bgcolor, alpha=0.2, s=10000)
Assuming that the distributions are centered around a specific point (e.g. (0,0) in this case), I would use this:
import numpy as np
import matplotlib.pyplot as plt
N = 500
# 0 mean, 0.2 std
x = np.random.normal(0,0.2,N)
y = np.random.normal(0,0.2,N)
# calculate the distance to (0, 0).
color = np.sqrt((x-0)**2 + (y-0)**2)
plt.scatter(x , y, c=color, cmap='plasma', alpha=0.7)
plt.show()
Results:
I don't know if it helps you, because it's not exactly you asked for, but you can simply color points, which values are bigger than some threshold. For example:
import matplotlib.pyplot as plt
num = 100
threshold = 80
x = np.linspace(0, 100, num=num)
y = np.random.normal(size=num)*45
fig = plt.figure()
ax = fig.add_subplot(1, 1, 1)
ax.scatter(x[np.abs(y) < threshold], y[np.abs(y) < threshold], color="#00FFAA")
ax.scatter(x[np.abs(y) >= threshold], y[np.abs(y) >= threshold], color="#AA00FF")
plt.show()
I am trying to make use the polar plot projection to make a radar chart. I would like to know how to put only one grid line in bold (while the others should remain standard).
For my specific case, I would like to highlight the gridline associated to the ytick "0".
from matplotlib import pyplot as plt
import pandas as pd
import numpy as np
#Variables
sespi = pd.read_csv("country_progress.csv")
labels = sespi.country
progress = sespi.progress
angles=np.linspace(0, 2*np.pi, len(labels), endpoint=False)
#Concatenation to close the plots
progress=np.concatenate((progress,[progress[0]]))
angles=np.concatenate((angles,[angles[0]]))
#Polar plot
fig=plt.figure()
ax = fig.add_subplot(111, polar=True)
ax.plot(angles, progress, '.--', linewidth=1, c="g")
#ax.fill(angles, progress, alpha=0.25)
ax.set_thetagrids(angles * 180/np.pi, labels)
ax.set_yticklabels([-200,-150,-100,-50,0,50,100,150,200])
#ax.set_title()
ax.grid(True)
plt.show()
The gridlines of a plot are Line2D objects. Therefore you can't make it bold. What you can do (as shown, in part, in the other answer) is to increase the linewidth and change the colour but rather than plot a new line you can do this to the specified gridline.
You first need to find the index of the y tick labels which you want to change:
y_tick_labels = [-100,-10,0,10]
ind = y_tick_labels.index(0) # find index of value 0
You can then get a list of the gridlines using gridlines = ax.yaxis.get_gridlines(). Then use the index you found previously on this list to change the properties of the correct gridline.
Using the example from the gallery as a basis, a full example is shown below:
r = np.arange(0, 2, 0.01)
theta = 2 * np.pi * r
ax = plt.subplot(111, projection='polar')
ax.set_rmax(2)
ax.set_rticks([0.5, 1, 1.5, 2]) # less radial ticks
ax.set_rlabel_position(-22.5) # get radial labels away from plotted line
ax.grid(True)
y_tick_labels = [-100, -10, 0, 10]
ax.set_yticklabels(y_tick_labels)
ind = y_tick_labels.index(0) # find index of value 0
gridlines = ax.yaxis.get_gridlines()
gridlines[ind].set_color("k")
gridlines[ind].set_linewidth(2.5)
plt.show()
Which gives:
It is just a trick, but I guess you could just plot a circle and change its linewidth and color to whatever could be bold for you.
For example:
import matplotlib.pyplot as plt
import numpy as np
Yline = 0
Npoints = 300
angles = np.linspace(0,360,Npoints)*np.pi/180
line = 0*angles + Yline
ax = plt.subplot(111, projection='polar')
plt.plot(angles, line, color = 'k', linewidth = 3)
plt.ylim([-1,1])
plt.grid(True)
plt.show()
In this piece of code, I plot a line using plt.plot between any point of the two vectors angles and line. The former is actually all the angles between 0 and 2*np.pi. The latter is constant, and equal to the 'height' you want to plot that line Yline.
I suggest you try to decrease and increase Npoints while having a look to the documentaion of np.linspace() in order to understand your problem with the roundness of the circle.