How to group subplots by adjusting spaces in between - python

I have a subplots that look as follows:
import matplotlib.pyplot as plt
x = [1, 2, 3]
y = [4, 5, 6]
fig_shape, axs_shape = plt.subplots(2, 6, figsize=(6, 6))
for i in range(2):
for j in range(6):
axs_shape[i, j].xaxis.set_major_locator(plt.NullLocator())
axs_shape[i, j].yaxis.set_major_locator(plt.NullLocator())
for i in range(6):
axs_shape[int(i / 3), 2 * (i % 3)].plot(x, y)
axs_shape[int(i / 3), 2 * (i % 3) + 1].plot(x, y)
What I want is, that the subplots are grouped in pairs of two. That means, in each row, I want plot 0 and 1 to be right next to each other (no space in between). Then a small space and followed by plot 2 and 3 right next to each other. Then a space and plot 4 and 5 right next to each other. I read, that you can adjust sizes with .tight_layout() and subplots_adjust, but I couldn't figure out a solution for this particular behavior. Thanks a lot for your help!

You can use nested gridspecs:
import matplotlib.pyplot as plt
import matplotlib.gridspec as gridspec
x = [1, 2, 3]
y = [4, 5, 6]
fig = plt.figure(figsize=(12, 5))
outer = gridspec.GridSpec(nrows=2, ncols=3)
axs = []
for row in range(2):
for col in range(3):
inner = gridspec.GridSpecFromSubplotSpec(nrows=1, ncols=2, subplot_spec=outer[row, col], wspace=0)
axs += [plt.subplot(cell) for cell in inner]
for ax in axs:
ax.plot(x, y)
ax.set_yticks([])
ax.set_xticks([])
plt.tight_layout()
plt.show()
PS: As mentioned in the other answer, matplotlib has implemented subfigures as a new feature. If I understand correctly, the above example would be more or less as follows:
import matplotlib.pyplot as plt
x = [1, 2, 3]
y = [4, 5, 6]
fig = plt.figure(figsize=(12, 5), constrained_layout=True)
subfigs = fig.subfigures(nrows=2, ncols=3, wspace=0.07)
axs = [subfig.subplots(nrows=1, ncols=2, gridspec_kw={'wspace': 0}) for subfig in subfigs.ravel()]
for subax in axs:
for ax in subax:
ax.plot(x, y)
ax.set_yticks([])
ax.set_xticks([])
plt.show()
With the current matplotlib 3.4.1, I don't seem to be able to have the inner plots without a gap. Setting constrained_layout=False even makes that the 4 rightmost subplots disappear. Now it looks like:

This is the goal of the new subfigure functionality: https://matplotlib.org/stable/gallery/subplots_axes_and_figures/subfigures.html?highlight=subfigure

Related

Specify the height of a subplot in a multiple subplot matplotlib in Jupyter [duplicate]

I need to add two subplots to a figure. One subplot needs to be about three times as wide as the second (same height). I accomplished this using GridSpec and the colspan argument but I would like to do this using figure so I can save to PDF. I can adjust the first figure using the figsize argument in the constructor, but how do I change the size of the second plot?
As of matplotlib 3.6.0, width_ratios and height_ratios can now be passed directly as keyword arguments to plt.subplots and subplot_mosaic, as per What's new in Matplotlib 3.6.0 (Sep 15, 2022).
f, (a0, a1) = plt.subplots(1, 2, width_ratios=[3, 1])
f, (a0, a1, a2) = plt.subplots(3, 1, height_ratios=[1, 1, 3])
Another way is to use the subplots function and pass the width ratio with gridspec_kw
matplotlib Tutorial: Customizing Figure Layouts Using GridSpec and Other Functions
matplotlib.gridspec.GridSpec has available gridspect_kw options
import numpy as np
import matplotlib.pyplot as plt
# generate some data
x = np.arange(0, 10, 0.2)
y = np.sin(x)
# plot it
f, (a0, a1) = plt.subplots(1, 2, gridspec_kw={'width_ratios': [3, 1]})
a0.plot(x, y)
a1.plot(y, x)
f.tight_layout()
f.savefig('grid_figure.pdf')
Because the question is canonical, here is an example with vertical subplots.
# plot it
f, (a0, a1, a2) = plt.subplots(3, 1, gridspec_kw={'height_ratios': [1, 1, 3]})
a0.plot(x, y)
a1.plot(x, y)
a2.plot(x, y)
f.tight_layout()
You can use gridspec and figure:
import numpy as np
import matplotlib.pyplot as plt
from matplotlib import gridspec
# generate some data
x = np.arange(0, 10, 0.2)
y = np.sin(x)
# plot it
fig = plt.figure(figsize=(8, 6))
gs = gridspec.GridSpec(1, 2, width_ratios=[3, 1])
ax0 = plt.subplot(gs[0])
ax0.plot(x, y)
ax1 = plt.subplot(gs[1])
ax1.plot(y, x)
plt.tight_layout()
plt.savefig('grid_figure.pdf')
I used pyplot's axes object to manually adjust the sizes without using GridSpec:
import matplotlib.pyplot as plt
import numpy as np
x = np.arange(0, 10, 0.2)
y = np.sin(x)
# definitions for the axes
left, width = 0.07, 0.65
bottom, height = 0.1, .8
bottom_h = left_h = left+width+0.02
rect_cones = [left, bottom, width, height]
rect_box = [left_h, bottom, 0.17, height]
fig = plt.figure()
cones = plt.axes(rect_cones)
box = plt.axes(rect_box)
cones.plot(x, y)
box.plot(y, x)
plt.show()
Probably the simplest way is using subplot2grid, described in Customizing Location of Subplot Using GridSpec.
ax = plt.subplot2grid((2, 2), (0, 0))
is equal to
import matplotlib.gridspec as gridspec
gs = gridspec.GridSpec(2, 2)
ax = plt.subplot(gs[0, 0])
so bmu's example becomes:
import numpy as np
import matplotlib.pyplot as plt
# generate some data
x = np.arange(0, 10, 0.2)
y = np.sin(x)
# plot it
fig = plt.figure(figsize=(8, 6))
ax0 = plt.subplot2grid((1, 3), (0, 0), colspan=2)
ax0.plot(x, y)
ax1 = plt.subplot2grid((1, 3), (0, 2))
ax1.plot(y, x)
plt.tight_layout()
plt.savefig('grid_figure.pdf')
In a simple way, different size sub plotting can also be done without gridspec:
plt.figure(figsize=(12, 6))
ax1 = plt.subplot(2,3,1)
ax2 = plt.subplot(2,3,2)
ax3 = plt.subplot(2,3,3)
ax4 = plt.subplot(2,1,2)
axes = [ax1, ax2, ax3, ax4]
A nice way of doing this was added in matplotlib 3.3.0, subplot_mosaic.
You can make a nice layout using an "ASCII art" style.
For example
fig, axes = plt.subplot_mosaic("ABC;DDD")
will give you three axes on the top row and one spanning the full width on the bottom row like below
A nice thing about this method is that the axes returned from the function is a dictionary with the names you define, making it easier to keep track of what is what e.g.
axes["A"].plot([1, 2, 3], [1, 2, 3])
You can also pass a list of lists to subplot_mosaic if you want to use longer names
fig, axes = plt.subplot_mosaic(
[["top left", "top centre", "top right"],
["bottom row", "bottom row", "bottom row"]]
)
axes["top left"].plot([1, 2, 3], [1, 2, 3])
will produce the same figure

Unable to reverse xticks inside matplotlib subplot

I have designed a subplot using matplotlib. I am trying to reverse the xticks of the plot. Please see the sample code-
import numpy as np
import matplotlib.pyplot as plt
# generate the data
n = 6
y = np.random.randint(low=0, high=10, size=n)
x = np.arange(n)
# generate the ticks and reverse it
xticks = range(n)
xticks.reverse()
# plot the data
plt.figure()
ax = plt.subplot(111)
ax.bar(x, y)
print xticks # prints [5, 4, 3, 2, 1, 0]
ax.set_xticks(xticks)
plt.show()
Please see below the generated plot-
Please pay attention to the xticks. Even though, ax.set_xticks(xticks) is used but the xticks haven't changed. Am I missing some function call to rerender the plot?
Below is the system information-
matplotlib.__version__
'2.1.1'
matplotlib.__version__numpy__
'1.7.1'
python --version
Python 2.7.15rc1
Please note that I just want to reverse the ticks and do not want to invert axis.
With ax.set_xticks, you are currently specifying tick positions which is invariant to the order of the list. Either you pass [0, 1, 2, 3, 4, 5] or you pass [5, 4, 3, 2, 1, 0]. The difference will not be noticed in the ticks. What you instead want is to have reversed ticklabels for which you should do set_xticklabels(xticks[::-1]). There are two ways to do it:
Way 1
Use plt.xticks where the first argument specifies the location of the ticks and the second arguments specifies the respective ticklabels. Specifically, xticks will provide the tick positions and xticks[::-1] will label your plot with reversed ticklabels.
xticks = range(n)
# plot the data
plt.figure()
ax = plt.subplot(111)
ax.bar(x, y)
plt.xticks(xticks, xticks[::-1])
Way 2 using ax where you need set_xticklabels to get what you want
ax.set_xticks(xticks)
ax.set_xticklabels(xticks[::-1])
Use:
# generate the data
n = 6
y = np.random.randint(low=0, high=10, size=n)
x = np.arange(n)
# generate the ticks and reverse it
xticks = range(n)
# xticks.reverse()
# plot the data
plt.figure()
ax = plt.subplot(111)
ax.bar(x, y)
# print xticks # prints [5, 4, 3, 2, 1, 0]
ax.set_xticklabels(xticks[::-1]) # <- Changed
plt.show()
You can also reverse the order of the axis ax.set_xlim([5.5, -0.5])
import numpy as np
import matplotlib.pyplot as plt
n = 6
x = np.arange(n)
y = (x+1) **(1/2)
fig, axs = plt.subplots(1, 3, constrained_layout=True)
axs[0].bar(x, y)
axs[0].set_title('Original data')
axs[1].bar(x[::-1], y)
axs[1].set_xlim(5.5, -0.5)
axs[1].set_title('x index reversed\nand axis reversed')
axs[2].bar(x, y)
axs[2].set_xlim(5.5, -0.5)
axs[2].set_title('just axis reversed')
plt.show()

Shared axis with gridspec subplots

I'm using nested GridSpecFromSubplotSpec to create a nested grid of axes. I have two independent set of axes, a top one and a bottom one. Each set has four axes, arranged in a 2x2 grid.
Here is the code I'm using and the result I obtain:
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.gridspec as gsp
fig = plt.figure()
global_gsp = gsp.GridSpec(2, 1)
for i in range(2):
axes = np.empty(shape=(2, 2), dtype=object)
local_gsp = gsp.GridSpecFromSubplotSpec(2, 2, subplot_spec=global_gsp[i])
for j in range(2):
for k in range(2):
ax = plt.Subplot(fig, local_gsp[j, k],
sharex=axes[0, 0], sharey=axes[0, 0])
fig.add_subplot(ax)
axes[j, k] = ax
for j in range(2):
for k in range(2):
ax = axes[j, k]
x = i + np.r_[0:1:11j]
y = 10*i + np.random.random(11)
ax.plot(x, y, color=f'C{i}')
ax.set_xlabel('x')
ax.set_ylabel('y')
plt.show()
As you can see, the top set has blue lines, the bottom set has orange lines, and the blue lines are well represented with the limits [0, 1]x[0, 1], while the orange lines are represented with the limits [1, 2]x[10, 11]. When I create the subplots with plt.Subplot, I use the sharex and sharey arguments to have exactly the same scale on all four axes in each set (but different scale across different sets).
I would like to aviod the repetition of the label and the ticks of each axis. How can I achieve that?
Subplot axes have functions is_{first,last}_{col,row}() (although I could not find the documentation anywhere) as shown in this matplotlib tutorial. These functions are useful to only print the label(s) and/or ticks in the right spot. To hide the tick labels, shared_axis_demo.py recommends using setp(ax.get_{x,y}ticklabels(), visible=False)
fig = plt.figure()
global_gsp = gs.GridSpec(2, 1)
for i in range(2):
axes = np.empty(shape=(2, 2), dtype=object)
local_gsp = gs.GridSpecFromSubplotSpec(2, 2, subplot_spec=global_gsp[i])
for j in range(2):
for k in range(2):
ax = plt.Subplot(fig, local_gsp[j, k],
sharex=axes[0, 0], sharey=axes[0, 0])
fig.add_subplot(ax)
axes[j, k] = ax
for j in range(2):
for k in range(2):
ax = axes[j, k]
x = i + np.r_[0:1:11j]
y = 10*i + np.random.random(11)
ax.plot(x, y, color=f'C{i}')
#
# adjust axes and tick labels here
#
if ax.is_last_row():
ax.set_xlabel('x')
else:
plt.setp(ax.get_xticklabels(), visible=False)
if ax.is_first_col():
ax.set_ylabel('y')
else:
plt.setp(ax.get_yticklabels(), visible=False)
fig.tight_layout()
plt.show()

Breaking a plot into subplots [duplicate]

I need to add two subplots to a figure. One subplot needs to be about three times as wide as the second (same height). I accomplished this using GridSpec and the colspan argument but I would like to do this using figure so I can save to PDF. I can adjust the first figure using the figsize argument in the constructor, but how do I change the size of the second plot?
As of matplotlib 3.6.0, width_ratios and height_ratios can now be passed directly as keyword arguments to plt.subplots and subplot_mosaic, as per What's new in Matplotlib 3.6.0 (Sep 15, 2022).
f, (a0, a1) = plt.subplots(1, 2, width_ratios=[3, 1])
f, (a0, a1, a2) = plt.subplots(3, 1, height_ratios=[1, 1, 3])
Another way is to use the subplots function and pass the width ratio with gridspec_kw
matplotlib Tutorial: Customizing Figure Layouts Using GridSpec and Other Functions
matplotlib.gridspec.GridSpec has available gridspect_kw options
import numpy as np
import matplotlib.pyplot as plt
# generate some data
x = np.arange(0, 10, 0.2)
y = np.sin(x)
# plot it
f, (a0, a1) = plt.subplots(1, 2, gridspec_kw={'width_ratios': [3, 1]})
a0.plot(x, y)
a1.plot(y, x)
f.tight_layout()
f.savefig('grid_figure.pdf')
Because the question is canonical, here is an example with vertical subplots.
# plot it
f, (a0, a1, a2) = plt.subplots(3, 1, gridspec_kw={'height_ratios': [1, 1, 3]})
a0.plot(x, y)
a1.plot(x, y)
a2.plot(x, y)
f.tight_layout()
You can use gridspec and figure:
import numpy as np
import matplotlib.pyplot as plt
from matplotlib import gridspec
# generate some data
x = np.arange(0, 10, 0.2)
y = np.sin(x)
# plot it
fig = plt.figure(figsize=(8, 6))
gs = gridspec.GridSpec(1, 2, width_ratios=[3, 1])
ax0 = plt.subplot(gs[0])
ax0.plot(x, y)
ax1 = plt.subplot(gs[1])
ax1.plot(y, x)
plt.tight_layout()
plt.savefig('grid_figure.pdf')
I used pyplot's axes object to manually adjust the sizes without using GridSpec:
import matplotlib.pyplot as plt
import numpy as np
x = np.arange(0, 10, 0.2)
y = np.sin(x)
# definitions for the axes
left, width = 0.07, 0.65
bottom, height = 0.1, .8
bottom_h = left_h = left+width+0.02
rect_cones = [left, bottom, width, height]
rect_box = [left_h, bottom, 0.17, height]
fig = plt.figure()
cones = plt.axes(rect_cones)
box = plt.axes(rect_box)
cones.plot(x, y)
box.plot(y, x)
plt.show()
Probably the simplest way is using subplot2grid, described in Customizing Location of Subplot Using GridSpec.
ax = plt.subplot2grid((2, 2), (0, 0))
is equal to
import matplotlib.gridspec as gridspec
gs = gridspec.GridSpec(2, 2)
ax = plt.subplot(gs[0, 0])
so bmu's example becomes:
import numpy as np
import matplotlib.pyplot as plt
# generate some data
x = np.arange(0, 10, 0.2)
y = np.sin(x)
# plot it
fig = plt.figure(figsize=(8, 6))
ax0 = plt.subplot2grid((1, 3), (0, 0), colspan=2)
ax0.plot(x, y)
ax1 = plt.subplot2grid((1, 3), (0, 2))
ax1.plot(y, x)
plt.tight_layout()
plt.savefig('grid_figure.pdf')
In a simple way, different size sub plotting can also be done without gridspec:
plt.figure(figsize=(12, 6))
ax1 = plt.subplot(2,3,1)
ax2 = plt.subplot(2,3,2)
ax3 = plt.subplot(2,3,3)
ax4 = plt.subplot(2,1,2)
axes = [ax1, ax2, ax3, ax4]
A nice way of doing this was added in matplotlib 3.3.0, subplot_mosaic.
You can make a nice layout using an "ASCII art" style.
For example
fig, axes = plt.subplot_mosaic("ABC;DDD")
will give you three axes on the top row and one spanning the full width on the bottom row like below
A nice thing about this method is that the axes returned from the function is a dictionary with the names you define, making it easier to keep track of what is what e.g.
axes["A"].plot([1, 2, 3], [1, 2, 3])
You can also pass a list of lists to subplot_mosaic if you want to use longer names
fig, axes = plt.subplot_mosaic(
[["top left", "top centre", "top right"],
["bottom row", "bottom row", "bottom row"]]
)
axes["top left"].plot([1, 2, 3], [1, 2, 3])
will produce the same figure

How to set xlim and ylim for a subplot [duplicate]

This question already has answers here:
How to set the subplot axis range
(5 answers)
Closed 7 years ago.
I would like to limit the X and Y axis in matplotlib for a specific subplot.
The subplot figure itself doesn't have any axis property. I want for example to change only the limits for the second plot:
import matplotlib.pyplot as plt
fig=plt.subplot(131)
plt.scatter([1,2],[3,4])
fig=plt.subplot(132)
plt.scatter([10,20],[30,40])
fig=plt.subplot(133)
plt.scatter([15,23],[35,43])
plt.show()
You should use the OO interface to matplotlib, rather than the state machine interface. Almost all of the plt.* function are thin wrappers that basically do gca().*.
plt.subplot returns an axes object. Once you have a reference to the axes object you can plot directly to it, change its limits, etc.
import matplotlib.pyplot as plt
ax1 = plt.subplot(131)
ax1.scatter([1, 2], [3, 4])
ax1.set_xlim([0, 5])
ax1.set_ylim([0, 5])
ax2 = plt.subplot(132)
ax2.scatter([1, 2],[3, 4])
ax2.set_xlim([0, 5])
ax2.set_ylim([0, 5])
and so on for as many axes as you want.
or better, wrap it all up in a loop:
import matplotlib.pyplot as plt
DATA_x = ([1, 2],
[2, 3],
[3, 4])
DATA_y = DATA_x[::-1]
XLIMS = [[0, 10]] * 3
YLIMS = [[0, 10]] * 3
for j, (x, y, xlim, ylim) in enumerate(zip(DATA_x, DATA_y, XLIMS, YLIMS)):
ax = plt.subplot(1, 3, j + 1)
ax.scatter(x, y)
ax.set_xlim(xlim)
ax.set_ylim(ylim)

Categories