Removing columns if values are not in an ascending order python - python

Given a data like so:
Symbol
One
Two
1
28.75
25.10
2
29.00
25.15
3
29.10
25.00
I want to drop the column which does not have its values in an ascending order (though I want to allow for gaps) across all rows. In this case, I want to drop column 'Two'.I tried to following code with no luck:
df.drop(df.columns[df.all(x <= y for x,y in zip(df, df[1:]))])
Thanks

Dropping those columns that give at least one (any) negative value (lt(0)) when their values are differenced by 1 lag (diff(1)) after NaNs are neglected (dropna):
columns_to_drop = [col for col in df.columns if df[col].diff(1).dropna().lt(0).any()]
df.drop(columns=columns_to_drop)
Symbol One
0 1 28.75
1 2 29.00
2 3 29.10

An expression that works with gaps (NaN)
A.loc[:, ~(A.iloc[1:, :].reset_index() > A.iloc[:-1, :].reset_index()).any()]
Without gaps it would be equivalent to
A.loc[:, (A.iloc[1:, :].reset_index() <= A.iloc[:-1, :].reset_index()).all()]
Without loops to take better advantage of the framework for bigger dataframes.
A.iloc[1:, :] returns a dataframe without the first line
A.iloc[:-1, :] returns a dataframe without the last line
Slices in a dataframe keep the indices for corresponding rows, so the different slices have different indices, reset_index will create another index counting [0,1,...], thus making the two sides of the inequality compatible. You can pass drop=True if you want to remove the previous index.
Any (implicitly with axis=0) check for every column if any value is true, if so, it means that a number was followed by another.
A.loc[:, mask] select the columns where mask is true, drops the columns where mask is false.
The logic is could be read as not any value smaller than its predecessor or all values greater than its predecessor.

Check out code and only logic is:
map(lambda i: list(df[i]) == sorted(list(df[i])), df.columns)]
import pandas as pd
import numpy as np
df = pd.DataFrame(
{
'Symbol': [1, 2, 3],
'One': [28.75, 29.00, 29.10],
'Two': [25.10, 25.15, 25.10],
}
)
print(df.loc[:,map(lambda i: list(df[i]) == sorted(list(df[i])), df.columns)])

Related

Find the first range contains a number (Numpy, Pandas)

I have a numpy series of numbers:
arr = np.array([1147.8, 1067.2, 957.6, 826.4])
And a pandas DF, with two columns, 'right' and 'left', that describe a range, whereas each range is contained in the next one in the DF:
right left
0 1090 1159.5
1 1080 1169.5
2 1057.5 1191.99
For each number in arr, I would like to get the index of the first range containing it. For the first number (1147.8), it's gonna be 0, since it's in the range (1090, 1159.5). For the second one, it's gonna be 2, since 1067.2 in (1057.5, 1191.99) but not in (1080, 1169.5) (and, of course, the other previous ranges)
I could iterate the DF for each number in arr, but I'm looking for a smarter way.
Thanks
Full cross-product between arr and df, then filter, then select first range. That's ok to do for small amounts of data. Ideally, you would do that all at once for all 2000 arrs. With around 2 million rows for the DataFrame after .merge(df_arr, how='cross'), the approach would still work in that case.
df_arr = pd.DataFrame({"arr": arr,
"id_arr": range(len(arr))})
(df.reset_index()
.merge(df_arr, how='cross')
.query("right < arr < left")
.groupby("id_arr")
.first())
Produces:
index right left arr
id_arr
0 0 1090.0 1159.50 1147.8
1 2 1057.5 1191.99 1067.2
Where index is the index of the tightest range.
The id_arr is used for grouping in case you have duplicate values in arr and you expect duplicate values in the results. If that's not relevant, one could also group by arr directly.

Checking multiple condition with numpy array

I have a Dataframe with several lines and columns and I have transformed it into a numpy array to speed-up the calculations.
The first five columns of the Dataframe looked like this:
par1 par2 par3 par4 par5
1.502366 2.425301 0.990374 1.404174 1.929536
1.330468 1.460574 0.917349 1.172675 0.766603
1.212440 1.457865 0.947623 1.235930 0.890041
1.222362 1.348485 0.963692 1.241781 0.892205
...
These columns are now stored in a numpy array a = df.values
I need to check whether at least two of the five columns satisfy a condition (i.e., their value is larger than a certain threshold). Initially I wrote a function that performed the operation directly on the dataframe. However, because I have a very large amount of data and need to repeat the calculations over and over, I switched to numpy to take advantage of the vectorization.
To check the condition I was thinking to use
df['Result'] = np.where(condition_on_parameters > 2, True, False)
However, I cannot figure out how to write the condition_on_parameters such that it returns a True of False when at least 2 out of the 5 parameters are larger than the threshold. I thought to use the sum() function on the condition_on_parameters but I am not sure how to write such condition.
EDIT
It is important to specify that the thresholds are different for each parameter. For example thr1=1.2, thr2=2.0, thr3=1.5, thr4=2.2, thr5=3.0. So I need to check that par1 > thr1, par2 > thr2, ..., par5 > thr5.
Assuming condition_on_parameters returns an array the sames size as a with entries as True or False, you can use np.sum(condition_on_parameters, axis=1) to sum over the true values (True has a numerical values of 1) of each row. This provides a 1D array with entries as the number of columns that meet the condition. This array can then be used with where to get the row numbers you are looking for.
df['result'] = np.where(np.sum(condition_on_parameters, axis=1) > 2)
Can you exploit pandas functionalities? For example, you can efficiently check conditions on multiple rows/columns with .apply and then .sum(axis=1).
Here some sample code:
import pandas as pd
df = pd.DataFrame([[1.50, 2.42, 0.88], [0.98,1.3, 0.56]], columns=['par1', 'par2', 'par3'])
# custom_condition, e.g. value less or equal than threshold
def leq(x, t):
return x<=t
condition = df.apply(lambda x: leq(x, 1)).sum(axis=1)
# filter
df.loc[condition >=2]
I think this should be equivalent to numpy in terms of efficiency as pandas is ultimately build on top of that, however I'm not entirely sure...
It seems you are looking for numpy.any
a = np.array(\
[[1.502366, 2.425301, 0.990374, 1.404174, 1.929536],
[1.330468, 1.460574, 0.917349, 1.172675, 0.766603 ],
[1.212440, 1.457865, 0.947623, 1.235930, 0.890041 ],
[1.222362, 1.348485, 0.963692, 1.241781, 0.892205 ]]);
df = pd.DataFrame(a, columns=[f'par{i}' for i in range(1, 6)])
df['Result'] = np.any(df > 1.46, axis=1) # append the result column
Gives the following dataframe

How do I find the row # of a string index?

I have a dataframe where the indexes are not numbers but strings (specifically, name of countries) and they are all unique. Given the name of a country, how do I find its row number (the 'number' value of the index)?
I tried df[df.index == 'country_name'].index but this doesn't work.
We can use Index.get_indexer:
df.index.get_indexer(['Peru'])
[3]
Or we can build a RangeIndex based on the size of the DataFrame then subset that instead:
pd.RangeIndex(len(df))[df.index == 'Peru']
Int64Index([3], dtype='int64')
Since we're only looking for a single label and the indexes are "all unique" we can also use Index.get_loc:
df.index.get_loc('Peru')
3
Sample DataFrame:
import pandas as pd
df = pd.DataFrame({
'A': [1, 2, 3, 4, 5]
}, index=['Bahamas', 'Cameroon', 'Ecuador', 'Peru', 'Japan'])
df:
A
Bahamas 1
Cameroon 2
Ecuador 3
Peru 4
Japan 5
pd.Index.get_indexer
We can use pd.Index.get_indexer to get integer index.
idx = df.index.get_indexer(list_of_target_labels)
# If you only have single label we can use tuple unpacking here.
[idx] = df.index.get_indexer([country_name])
NB: pd.Index.get_indexer takes a list and returns a list. Integers from 0 to n - 1 indicating that the index at these positions matches the corresponding target values. Missing values in the target are marked by -1.
np.where
You could also use np.where here.
idx = np.where(df.index == country_name)[0]
list.index
We could also use list.index after converting Pd.Index to list using pd.Index.tolist
idx = df.index.tolist().index(country_name)
Why you don make the index to be created with numbers instead of text? Because your df can be sorted in many ways beyond the alphabetical, and you can lose the rows count.
With numbered index this wouldn't be a problem.

Element-by-element division in pandas dataframe with "/"?

Would be great to understand how this actually work. Perhaps there is something in Python/Pandas that I don't quite understand.
I have a dataframe (price data) and would like to calculate the returns. Rows are the stocks while columns are the dates.
For simplicity, I have created the prices with some random numbers.
import pandas as pd
import numpy as np
df_price = pd.DataFrame(np.random.rand(10,10))
df_ret = df_price.iloc[:,1:]/df_price.iloc[:,:-1]-1
There are two things are find it strange here:
My numerator and denominator are both 10 x 9. Why the output is a 10 x 10 with the first column being nans.
Why the results are all 0 besides the first columns being nans. i.e. why the calculation didn't perform?
Thanks.
When we do the div, we need to consider the index and columns for both df_price[:,1:] and df_price.iloc[:,:-1], matched firstly, so we need to add the .values to remove the index and column match first, then the output will perform what we expected.
df_ret = df_price.iloc[:,1:]/df_price.iloc[:,:-1].values-1
Example
s=pd.Series([2,4,6])
s.iloc[1:]/s.iloc[:-1]
Out[54]:
0 NaN # here the index s.iloc[:-1] included
1 1.0
2 NaN # here the index s.iloc[1:] included
dtype: float64
From above we can say , the pandas object , match the index first , and more like a outer match.

Find row where values for column is maximal in a pandas DataFrame

How can I find the row for which the value of a specific column is maximal?
df.max() will give me the maximal value for each column, I don't know how to get the corresponding row.
Use the pandas idxmax function. It's straightforward:
>>> import pandas
>>> import numpy as np
>>> df = pandas.DataFrame(np.random.randn(5,3),columns=['A','B','C'])
>>> df
A B C
0 1.232853 -1.979459 -0.573626
1 0.140767 0.394940 1.068890
2 0.742023 1.343977 -0.579745
3 2.125299 -0.649328 -0.211692
4 -0.187253 1.908618 -1.862934
>>> df['A'].idxmax()
3
>>> df['B'].idxmax()
4
>>> df['C'].idxmax()
1
Alternatively you could also use numpy.argmax, such as numpy.argmax(df['A']) -- it provides the same thing, and appears at least as fast as idxmax in cursory observations.
idxmax() returns indices labels, not integers.
Example': if you have string values as your index labels, like rows 'a' through 'e', you might want to know that the max occurs in row 4 (not row 'd').
if you want the integer position of that label within the Index you have to get it manually (which can be tricky now that duplicate row labels are allowed).
HISTORICAL NOTES:
idxmax() used to be called argmax() prior to 0.11
argmax was deprecated prior to 1.0.0 and removed entirely in 1.0.0
back as of Pandas 0.16, argmax used to exist and perform the same function (though appeared to run more slowly than idxmax).
argmax function returned the integer position within the index of the row location of the maximum element.
pandas moved to using row labels instead of integer indices. Positional integer indices used to be very common, more common than labels, especially in applications where duplicate row labels are common.
For example, consider this toy DataFrame with a duplicate row label:
In [19]: dfrm
Out[19]:
A B C
a 0.143693 0.653810 0.586007
b 0.623582 0.312903 0.919076
c 0.165438 0.889809 0.000967
d 0.308245 0.787776 0.571195
e 0.870068 0.935626 0.606911
f 0.037602 0.855193 0.728495
g 0.605366 0.338105 0.696460
h 0.000000 0.090814 0.963927
i 0.688343 0.188468 0.352213
i 0.879000 0.105039 0.900260
In [20]: dfrm['A'].idxmax()
Out[20]: 'i'
In [21]: dfrm.iloc[dfrm['A'].idxmax()] # .ix instead of .iloc in older versions of pandas
Out[21]:
A B C
i 0.688343 0.188468 0.352213
i 0.879000 0.105039 0.900260
So here a naive use of idxmax is not sufficient, whereas the old form of argmax would correctly provide the positional location of the max row (in this case, position 9).
This is exactly one of those nasty kinds of bug-prone behaviors in dynamically typed languages that makes this sort of thing so unfortunate, and worth beating a dead horse over. If you are writing systems code and your system suddenly gets used on some data sets that are not cleaned properly before being joined, it's very easy to end up with duplicate row labels, especially string labels like a CUSIP or SEDOL identifier for financial assets. You can't easily use the type system to help you out, and you may not be able to enforce uniqueness on the index without running into unexpectedly missing data.
So you're left with hoping that your unit tests covered everything (they didn't, or more likely no one wrote any tests) -- otherwise (most likely) you're just left waiting to see if you happen to smack into this error at runtime, in which case you probably have to go drop many hours worth of work from the database you were outputting results to, bang your head against the wall in IPython trying to manually reproduce the problem, finally figuring out that it's because idxmax can only report the label of the max row, and then being disappointed that no standard function automatically gets the positions of the max row for you, writing a buggy implementation yourself, editing the code, and praying you don't run into the problem again.
You might also try idxmax:
In [5]: df = pandas.DataFrame(np.random.randn(10,3),columns=['A','B','C'])
In [6]: df
Out[6]:
A B C
0 2.001289 0.482561 1.579985
1 -0.991646 -0.387835 1.320236
2 0.143826 -1.096889 1.486508
3 -0.193056 -0.499020 1.536540
4 -2.083647 -3.074591 0.175772
5 -0.186138 -1.949731 0.287432
6 -0.480790 -1.771560 -0.930234
7 0.227383 -0.278253 2.102004
8 -0.002592 1.434192 -1.624915
9 0.404911 -2.167599 -0.452900
In [7]: df.idxmax()
Out[7]:
A 0
B 8
C 7
e.g.
In [8]: df.loc[df['A'].idxmax()]
Out[8]:
A 2.001289
B 0.482561
C 1.579985
Both above answers would only return one index if there are multiple rows that take the maximum value. If you want all the rows, there does not seem to have a function.
But it is not hard to do. Below is an example for Series; the same can be done for DataFrame:
In [1]: from pandas import Series, DataFrame
In [2]: s=Series([2,4,4,3],index=['a','b','c','d'])
In [3]: s.idxmax()
Out[3]: 'b'
In [4]: s[s==s.max()]
Out[4]:
b 4
c 4
dtype: int64
df.iloc[df['columnX'].argmax()]
argmax() would provide the index corresponding to the max value for the columnX. iloc can be used to get the row of the DataFrame df for this index.
A more compact and readable solution using query() is like this:
import pandas as pd
df = pandas.DataFrame(np.random.randn(5,3),columns=['A','B','C'])
print(df)
# find row with maximum A
df.query('A == A.max()')
It also returns a DataFrame instead of Series, which would be handy for some use cases.
Very simple: we have df as below and we want to print a row with max value in C:
A B C
x 1 4
y 2 10
z 5 9
In:
df.loc[df['C'] == df['C'].max()] # condition check
Out:
A B C
y 2 10
If you want the entire row instead of just the id, you can use df.nlargest and pass in how many 'top' rows you want and you can also pass in for which column/columns you want it for.
df.nlargest(2,['A'])
will give you the rows corresponding to the top 2 values of A.
use df.nsmallest for min values.
The direct ".argmax()" solution does not work for me.
The previous example provided by #ely
>>> import pandas
>>> import numpy as np
>>> df = pandas.DataFrame(np.random.randn(5,3),columns=['A','B','C'])
>>> df
A B C
0 1.232853 -1.979459 -0.573626
1 0.140767 0.394940 1.068890
2 0.742023 1.343977 -0.579745
3 2.125299 -0.649328 -0.211692
4 -0.187253 1.908618 -1.862934
>>> df['A'].argmax()
3
>>> df['B'].argmax()
4
>>> df['C'].argmax()
1
returns the following message :
FutureWarning: 'argmax' is deprecated, use 'idxmax' instead. The behavior of 'argmax'
will be corrected to return the positional maximum in the future.
Use 'series.values.argmax' to get the position of the maximum now.
So that my solution is :
df['A'].values.argmax()
mx.iloc[0].idxmax()
This one line of code will give you how to find the maximum value from a row in dataframe, here mx is the dataframe and iloc[0] indicates the 0th index.
Considering this dataframe
[In]: df = pd.DataFrame(np.random.randn(4,3),columns=['A','B','C'])
[Out]:
A B C
0 -0.253233 0.226313 1.223688
1 0.472606 1.017674 1.520032
2 1.454875 1.066637 0.381890
3 -0.054181 0.234305 -0.557915
Assuming one want to know the rows where column "C" is max, the following will do the work
[In]: df[df['C']==df['C'].max()])
[Out]:
A B C
1 0.472606 1.017674 1.520032
The idmax of the DataFrame returns the label index of the row with the maximum value and the behavior of argmax depends on version of pandas (right now it returns a warning). If you want to use the positional index, you can do the following:
max_row = df['A'].values.argmax()
or
import numpy as np
max_row = np.argmax(df['A'].values)
Note that if you use np.argmax(df['A']) behaves the same as df['A'].argmax().
Use:
data.iloc[data['A'].idxmax()]
data['A'].idxmax() -finds max value location in terms of row
data.iloc() - returns the row
If there are ties in the maximum values, then idxmax returns the index of only the first max value. For example, in the following DataFrame:
A B C
0 1 0 1
1 0 0 1
2 0 0 0
3 0 1 1
4 1 0 0
idxmax returns
A 0
B 3
C 0
dtype: int64
Now, if we want all indices corresponding to max values, then we could use max + eq to create a boolean DataFrame, then use it on df.index to filter out indexes:
out = df.eq(df.max()).apply(lambda x: df.index[x].tolist())
Output:
A [0, 4]
B [3]
C [0, 1, 3]
dtype: object
what worked for me is:
df[df['colX'] == df['colX'].max()
You then get the row in your df with the maximum value of colX.
Then if you just want the index you can add .index at the end of the query.

Categories