Let's say that you have two lists created with manager.list(), and two locks created with manager.Lock(). How do you assign each lock to each list?
I was doing like
lock1 = manager.Lock()
lock2 = manager.Lock()
list1 = manager.list()
list2 = manager.list()
and when I wanted to write/read from the list
lock1.acquire()
list1.pop(0)
lock1.release()
lock2.acquire()
list2.pop(0)
lock2.released()
Today I realized that there's nothing that associates lock1 to list1.
Am I misunderstanding these functions?
TL;DR yes, and this might be an XY problem!
If you create a multiprocessing.Manager() and use its methods to create container primitives (.list and .dict), they will already be synchronized and you don't need to deal with the synchronization primitives yourself
from multiprocessing import Manager, Process, freeze_support
def my_function(d, lst):
lst.append([x**2 for x in d.values()])
def main():
with Manager() as manager: # context-managed SyncManager
normal_dict = {'a': 1, 'b': 2}
managed_synchronized_dict = manager.dict(normal_dict)
managed_synchronized_list = manager.list() # used to store results
p = Process(
target=my_function,
args=(managed_synchronized_dict, managed_synchronized_list)
)
p.start()
p.join()
print(managed_synchronized_list)
if __name__ == '__main__':
freeze_support()
main()
% python3 ./test_so_66603485.py
[[1, 4]]
multiprocessing.Array, is also synchronized
BEWARE: proxy objects are not directly comparable to their Python collection equivalents
Note: The proxy types in multiprocessing do nothing to support comparisons by value. So, for instance, we have:
>>> manager.list([1,2,3]) == [1,2,3]
False
One should just use a copy of the referent instead when making comparisons.
Some confusion might come from the section of the multiprocessing docs on Synchronization Primitives, which implies that one should use a Manager to create synchronization primitives, when really the Manager can already do the synchronization for you
Synchronization primitives
Generally synchronization primitives are not as necessary in a multiprocess program as they are in a multithreaded program. See the documentation for threading module.
Note that one can also create synchronization primitives by using a manager object – see Managers.
If you use simply multiprocessing.Manager(), per the docs, it
Returns a started SyncManager object which can be used for sharing objects between processes. The returned manager object corresponds to a spawned child process and has methods which will create shared objects and return corresponding proxies.
From the SyncManager section
Its methods create and return Proxy Objects for a number of commonly used data types to be synchronized across processes. This notably includes shared lists and dictionaries.
This means that you probably have most of what you want already
manager object with methods for building managed types
synchronization via Proxy Objects
Finally, to sum up the thread from comments specifically about instances of Lock objects
there's no inherent way to tell that some named lock is for anything in particular other than meta-information such as its name, comment(s), documentation ..conversely, they're free to be used for whatever synchronization needs you may have
some useful class/container can be made to manage both the lock and whatever it should be synchronizing -- a normal multiprocessing.Manager (SyncManager)'s .list and .dict do this, and a variety of other useful constructs exist, such as Pipe and Queue
one lock can be used to synchronize any number of actions, but having more locks can be a valuable trade-off as they are potentially unnecessarily blocking access to resources
a variety of synchronization primitives also exist for different purposes
value = my_queue.get() # already synchronized
if not my_lock1.acquire(timeout=5): # False if cannot acquire
raise CustomException("failed to acquire my_lock1 after 5 seconds")
try:
with my_lock2(): # blocks until acquired
some_shared_mutable = some_container_of_mutables[-1]
some_shared_mutable = some_object_with_mutables.get()
if foo(value, some_shared_mutable):
action1(value, some_shared_mutable)
action2(value, some_other_shared_mutable)
finally:
lock2.release()
Related
Using Python's multiprocessing on Windows will require many arguments to be "picklable" while passing them to child processes.
import multiprocessing
class Foobar:
def __getstate__(self):
print("I'm being pickled!")
def worker(foobar):
print(foobar)
if __name__ == "__main__":
# Uncomment this on Linux
# multiprocessing.set_start_method("spawn")
foobar = Foobar()
process = multiprocessing.Process(target=worker, args=(foobar, ))
process.start()
process.join()
The documentation mentions this explicitly several times:
Picklability
Ensure that the arguments to the methods of proxies are picklable.
[...]
Better to inherit than pickle/unpickle
When using the spawn or forkserver start methods many types from multiprocessing need to be picklable so that child processes can use them. However, one should generally avoid sending shared objects to other processes using pipes or queues. Instead you should arrange the program so that a process which needs access to a shared resource created elsewhere can inherit it from an ancestor process.
[...]
More picklability
Ensure that all arguments to Process.__init__() are picklable. Also, if you subclass Process then make sure that instances will be picklable when the Process.start method is called.
However, I noticed two main differences between "multiprocessing pickle" and the standard pickle module, and I have trouble making sense of all of this.
multiprocessing.Queue() are not "pickable" yet passable to child processes
import pickle
from multiprocessing import Queue, Process
def worker(queue):
pass
if __name__ == "__main__":
queue = Queue()
# RuntimeError: Queue objects should only be shared between processes through inheritance
pickle.dumps(queue)
# Works fine
process = Process(target=worker, args=(queue, ))
process.start()
process.join()
Not picklable if defined in "main"
import pickle
from multiprocessing import Process
def worker(foo):
pass
if __name__ == "__main__":
class Foo:
pass
foo = Foo()
# Works fine
pickle.dumps(foo)
# AttributeError: Can't get attribute 'Foo' on <module '__mp_main__' from 'C:\\Users\\Delgan\\test.py'>
process = Process(target=worker, args=(foo, ))
process.start()
process.join()
If multiprocessing does not use pickle internally, then what are the inherent differences between these two ways of serializing objects?
Also, what does "inherit" mean in the context of multiprocessing? How am I supposed to prefer it over pickle?
When a multiprocessing.Queue is passed to a child process, what is actually sent is a file descriptor (or handle) obtained from pipe, which must have been created by the parent before creating the child. The error from pickle is to prevent attempts to send a Queue over another Queue (or similar channel), since it’s too late to use it then. (Unix systems do actually support sending a pipe over certain kinds of socket, but multiprocessing doesn’t use such features.) It’s expected to be “obvious” that certain multiprocessing types can be sent to child processes that would otherwise be useless, so no mention is made of the apparent contradiction.
Since the “spawn” start method can’t create the new process with any Python objects already created, it has to re-import the main script to obtain relevant function/class definitions. It doesn’t set __name__ like the original run for obvious reasons, so anything that is dependent on that setting will not be available. (Here, it is unpickling that failed, which is why your manual pickling works.)
The fork methods start the children with the parent’s objects (at the time of the fork only) still existing; this is what is meant by inheritance.
I'm having an issue with instances not retaining changes to attributes, or even keeping new attributes that are created. I think I've narrowed it down to the fact that my script takes advantage of multiprocessing, and I'm thinking that changes occurring to instances in separate process threads are not 'remembered' when the script returns to the main thread.
Basically, I have several sets of data which I need to process in parallel. The data is stored as an attribute, and is altered via several methods in the class. At the conclusion of processing, I'm hoping to return to the main thread and concatenate the data from each of the object instances. However, as described above, when I try to access the instance attribute with the data after the parallel processing bit is done, there's nothing there. It's as if any changes enacted during the multiprocessing bit are 'forgotten'.
Is there an obvious solution to fix this? Or do I need to rebuild my code to instead return the processed data rather than just altering/storing it as an instance attribute? I guess an alternative solution would be to serialize the data, and then re-read it in when necessary, rather than just keeping it in memory.
Something maybe worth noting here is that I am using the pathos module rather than python's multiprocessingmodule. I was getting some errors pertaining to pickling, similar to here: Python multiprocessing PicklingError: Can't pickle <type 'function'>. My code is broken across several modules and as mentioned, the data processing methods are contained within a class.
Sorry for the wall of text.
EDIT
Here's my code:
import importlib
import pandas as pd
from pathos.helpers import mp
from provider import Provider
# list of data providers ... length is arbitrary
operating_providers = ['dataprovider1', 'dataprovider2', 'dataprovider3']
# create provider objects for each operating provider
provider_obj_list = []
for name in operating_providers:
loc = 'providers.%s' % name
module = importlib.import_module(loc)
provider_obj = Provider(module)
provider_obj_list.append(provider_obj)
processes = []
for instance in provider_obj_list:
process = mp.Process(target = instance.data_processing_func)
process.daemon = True
process.start()
processes.append(process)
for process in processes:
process.join()
# now that data_processing_func is complete for each set of data,
# stack all the data
stack = pd.concat((instance.data for instance in provider_obj_list))
I have a number of modules (their names listed in operating_providers) that contain attributes specific to their data source. These modules are iteratively imported and passed to new instances of the Provider class, which I created in a separate module (provider). I append each Provider instance to a list (provider_obj_list), and then iteratively create separate processes which call the instance method instance.data_processing_func. This function does some data processing (with each instance accessing completely different data files), and creates new instance attributes along the way, which I need to access when the parallel processing is complete.
I tried using multithreading instead, rather than multiprocessing -- in this case, my instance attributes persisted, which is what I want. However, I am not sure why this happens -- I'll have to study the differences between threading vs. multiprocessing.
Thanks for any help!
Here's some sample code showing how to do what I outlined in comment. I can't test it because I don't have provider or pathos installed, but it should give you a good idea of what I suggested.
import importlib
from pathos.helpers import mp
from provider import Provider
def process_data(loc):
module = importlib.import_module(loc)
provider_obj = Provider(module)
provider_obj.data_processing_func()
if __name__ == '__main__':
# list of data providers ... length is arbitrary
operating_providers = ['dataprovider1', 'dataprovider2', 'dataprovider3']
# create list of provider locations for each operating provider
provider_loc_list = []
for name in operating_providers:
loc = 'providers.%s' % name
provider_loc_list.append(loc)
processes = []
for loc in provider_loc_list:
process = mp.Process(target=process_data, args=(loc,))
process.daemon = True
process.start()
processes.append(process)
for process in processes:
process.join()
I am aware of multiprocessing.Manager() and how it can be used to create shared objects, in particular queues which can be shared between workers. There is this question, this question, this question and even one of my own questions.
However, I need to define a great many queues, each of which is linking a specific pair of processes. Say that each pair of processes and its linking queue is identified by the variable key.
I want to use a dictionary to access my queues when I need to put and get data. I cannot make this work. I've tried a number of things. With multiprocessing imported as mp:
Defining a dict like for key in all_keys: DICT[key] = mp.Queue in a config file which is imported by the multiprocessing module (call it multi.py) does not return errors, but the queue DICT[key] is not shared between the processes, each one seems to have their own copy of the queue and thus no communication happens.
If I try to define the DICT at the beginning of the main multiprocessing function that defines the processes and starts them, like
DICT = mp.Manager().dict()
for key in all_keys:
DICT[key] = mp.Queue()
I get the error
RuntimeError: Queue objects should only be shared between processes through
inheritance
Changing to
DICT = mp.Manager().dict()
for key in all_keys:
DICT[key] = mp.Manager().Queue()
only makes everything worse. Trying similar definitions at the head of multi.py rather than inside the main function returns similar errors.
There must be a way to share many queues between processes without explicitly naming each one in the code. Any ideas?
Edit
Here is a basic schema of the program:
1- load the first module, which defines some variables, imports multi, launches multi.main(), and loads another module which starts a cascade of module loads and code execution. Meanwhile...
2- multi.main looks like this:
def main():
manager = mp.Manager()
pool = mp.Pool()
DICT2 = manager.dict()
for key in all_keys:
DICT2[key] = manager.Queue()
proc_1 = pool.apply_async(targ1,(DICT1[key],) ) #DICT1 is defined in the config file
proc_2 = pool.apply_async(targ2,(DICT2[key], otherargs,)
Rather than use pool and manager, I was also launching processes with the following:
mp.Process(target=targ1, args=(DICT[key],))
3 - The function targ1 takes input data that is coming in (sorted by key) from the main process. It is meant to pass the result to DICT[key] so targ2 can do its work. This is the part that is not working. There are an arbitrary number of targ1s, targ2s, etc. and therefore an arbitrary number of queues.
4 - The results of some of these processes will be sent to a bunch of different arrays / pandas dataframes which are also indexed by key, and which I would like to be accessible from arbitrary processes, even ones launched in a different module. I have yet to write this part and it might be a different question. (I mention it here because the answer to 3 above might also solve 4 nicely.)
It sounds like your issues started when you tried to share a multiprocessing.Queue() by passing it as an argument. You can get around this by creating a managed queue instead:
import multiprocessing
manager = multiprocessing.Manager()
passable_queue = manager.Queue()
When you use a manager to create it, you are storing and passing around a proxy to the queue, rather than the queue itself, so even when the object you pass to your worker processes is a copied, it will still point at the same underlying data structure: your queue. It's very similar (in concept) to pointers in C/C++. If you create your queues this way, you will be able to pass them when you launch a worker process.
Since you can pass queues around now, you no longer need your dictionary to be managed. Keep a normal dictionary in main that will store all the mappings, and only give your worker processes the queues they need, so they won't need access to any mappings.
I've written an example of this here. It looks like you are passing objects between your workers, so that's what's done here. Imagine we have two stages of processing, and the data both starts and ends in the control of main. Look at how we can create the queues that connect the workers like a pipeline, but by giving them only they queues they need, there's no need for them to know about any mappings:
import multiprocessing as mp
def stage1(q_in, q_out):
q_out.put(q_in.get()+"Stage 1 did some work.\n")
return
def stage2(q_in, q_out):
q_out.put(q_in.get()+"Stage 2 did some work.\n")
return
def main():
pool = mp.Pool()
manager = mp.Manager()
# create managed queues
q_main_to_s1 = manager.Queue()
q_s1_to_s2 = manager.Queue()
q_s2_to_main = manager.Queue()
# launch workers, passing them the queues they need
results_s1 = pool.apply_async(stage1, (q_main_to_s1, q_s1_to_s2))
results_s2 = pool.apply_async(stage2, (q_s1_to_s2, q_s2_to_main))
# Send a message into the pipeline
q_main_to_s1.put("Main started the job.\n")
# Wait for work to complete
print(q_s2_to_main.get()+"Main finished the job.")
pool.close()
pool.join()
return
if __name__ == "__main__":
main()
The code produces this output:
Main started the job.
Stage 1 did some work.
Stage 2 did some work.
Main finished the job.
I didn't include an example of storing the queues or AsyncResults objects in dictionaries, because I still don't quite understand how your program is supposed to work. But now that you can pass your queues freely, you can build your dictionary to store the queue/process mappings as needed.
In fact, if you really do build a pipeline between multiple workers, you don't even need to keep a reference to the "inter-worker" queues in main. Create the queues, pass them to your workers, then only retain references to queues that main will use. I would definitely recommend trying to let old queues be garbage collected as quickly as possible if you really do have "an arbitrary number" of queues.
I would like to know if the Python built-in containers (list, vector, set...) are thread-safe? Or do I need to implement a locking/unlocking environment for my shared variable?
You need to implement your own locking for all shared variables that will be modified in Python. You don't have to worry about reading from the variables that won't be modified (ie, concurrent reads are ok), so immutable types (frozenset, tuple, str) are probably safe, but it wouldn't hurt. For things you're going to be changing - list, set, dict, and most other objects, you should have your own locking mechanism (while in-place operations are ok on most of these, threads can lead to super-nasty bugs - you might as well implement locking, it's pretty easy).
By the way, I don't know if you know this, but locking is very easy in Python - create a threading.lock object, and then you can acquire/release it like this:
import threading
list1Lock = threading.Lock()
with list1Lock:
# change or read from the list here
# continue doing other stuff (the lock is released when you leave the with block)
In Python 2.5, do from __future__ import with_statement; Python 2.4 and before don't have this, so you'll want to put the acquire()/release() calls in try:...finally: blocks:
import threading
list1Lock = threading.Lock()
try:
list1Lock.acquire()
# change or read from the list here
finally:
list1Lock.release()
# continue doing other stuff (the lock is released when you leave the with block)
Some very good information about thread synchronization in Python.
Yes, but you still need to be careful of course
For example:
If two threads are racing to pop() from a list with only one item, One thread will get the item successfully and the other will get an IndexError
Code like this is not thread-safe
if L:
item=L.pop() # L might be empty by the time this line gets executed
You should write it like this
try:
item=L.pop()
except IndexError:
# No items left
They are thread-safe as long as you don't disable the GIL in C code for the thread.
The queue module implements multi-producer, multi-consumer queues. It is especially useful in threaded programming when information must be exchanged safely between multiple threads. The Queue class in this module implements all the required locking semantics.
https://docs.python.org/3/library/queue.html
Do child processes spawned via multiprocessing share objects created earlier in the program?
I have the following setup:
do_some_processing(filename):
for line in file(filename):
if line.split(',')[0] in big_lookup_object:
# something here
if __name__ == '__main__':
big_lookup_object = marshal.load('file.bin')
pool = Pool(processes=4)
print pool.map(do_some_processing, glob.glob('*.data'))
I'm loading some big object into memory, then creating a pool of workers that need to make use of that big object. The big object is accessed read-only, I don't need to pass modifications of it between processes.
My question is: is the big object loaded into shared memory, as it would be if I spawned a process in unix/c, or does each process load its own copy of the big object?
Update: to clarify further - big_lookup_object is a shared lookup object. I don't need to split that up and process it separately. I need to keep a single copy of it. The work that I need to split it is reading lots of other large files and looking up the items in those large files against the lookup object.
Further update: database is a fine solution, memcached might be a better solution, and file on disk (shelve or dbm) might be even better. In this question I was particularly interested in an in memory solution. For the final solution I'll be using hadoop, but I wanted to see if I can have a local in-memory version as well.
Do child processes spawned via multiprocessing share objects created earlier in the program?
No for Python < 3.8, yes for Python ≥ 3.8.
Processes have independent memory space.
Solution 1
To make best use of a large structure with lots of workers, do this.
Write each worker as a "filter" – reads intermediate results from stdin, does work, writes intermediate results on stdout.
Connect all the workers as a pipeline:
process1 <source | process2 | process3 | ... | processn >result
Each process reads, does work and writes.
This is remarkably efficient since all processes are running concurrently. The writes and reads pass directly through shared buffers between the processes.
Solution 2
In some cases, you have a more complex structure – often a fan-out structure. In this case you have a parent with multiple children.
Parent opens source data. Parent forks a number of children.
Parent reads source, farms parts of the source out to each concurrently running child.
When parent reaches the end, close the pipe. Child gets end of file and finishes normally.
The child parts are pleasant to write because each child simply reads sys.stdin.
The parent has a little bit of fancy footwork in spawning all the children and retaining the pipes properly, but it's not too bad.
Fan-in is the opposite structure. A number of independently running processes need to interleave their inputs into a common process. The collector is not as easy to write, since it has to read from many sources.
Reading from many named pipes is often done using the select module to see which pipes have pending input.
Solution 3
Shared lookup is the definition of a database.
Solution 3A – load a database. Let the workers process the data in the database.
Solution 3B – create a very simple server using werkzeug (or similar) to provide WSGI applications that respond to HTTP GET so the workers can query the server.
Solution 4
Shared filesystem object. Unix OS offers shared memory objects. These are just files that are mapped to memory so that swapping I/O is done instead of more convention buffered reads.
You can do this from a Python context in several ways
Write a startup program that (1) breaks your original gigantic object into smaller objects, and (2) starts workers, each with a smaller object. The smaller objects could be pickled Python objects to save a tiny bit of file reading time.
Write a startup program that (1) reads your original gigantic object and writes a page-structured, byte-coded file using seek operations to assure that individual sections are easy to find with simple seeks. This is what a database engine does – break the data into pages, make each page easy to locate via a seek.
Spawn workers with access to this large page-structured file. Each worker can seek to the relevant parts and do their work there.
Do child processes spawned via multiprocessing share objects created earlier in the program?
It depends. For global read-only variables it can be often considered so (apart from the memory consumed) else it should not.
multiprocessing's documentation says:
Better to inherit than pickle/unpickle
On Windows many types from
multiprocessing need to be picklable
so that child processes can use them.
However, one should generally avoid
sending shared objects to other
processes using pipes or queues.
Instead you should arrange the program
so that a process which need access to
a shared resource created elsewhere
can inherit it from an ancestor
process.
Explicitly pass resources to child processes
On Unix a child process can make use
of a shared resource created in a
parent process using a global
resource. However, it is better to
pass the object as an argument to the
constructor for the child process.
Apart from making the code
(potentially) compatible with Windows
this also ensures that as long as the
child process is still alive the
object will not be garbage collected
in the parent process. This might be
important if some resource is freed
when the object is garbage collected
in the parent process.
Global variables
Bear in mind that if code run in a
child process tries to access a global
variable, then the value it sees (if
any) may not be the same as the value
in the parent process at the time that
Process.start() was called.
Example
On Windows (single CPU):
#!/usr/bin/env python
import os, sys, time
from multiprocessing import Pool
x = 23000 # replace `23` due to small integers share representation
z = [] # integers are immutable, let's try mutable object
def printx(y):
global x
if y == 3:
x = -x
z.append(y)
print os.getpid(), x, id(x), z, id(z)
print y
if len(sys.argv) == 2 and sys.argv[1] == "sleep":
time.sleep(.1) # should make more apparant the effect
if __name__ == '__main__':
pool = Pool(processes=4)
pool.map(printx, (1,2,3,4))
With sleep:
$ python26 test_share.py sleep
2504 23000 11639492 [1] 10774408
1
2564 23000 11639492 [2] 10774408
2
2504 -23000 11639384 [1, 3] 10774408
3
4084 23000 11639492 [4] 10774408
4
Without sleep:
$ python26 test_share.py
1148 23000 11639492 [1] 10774408
1
1148 23000 11639492 [1, 2] 10774408
2
1148 -23000 11639324 [1, 2, 3] 10774408
3
1148 -23000 11639324 [1, 2, 3, 4] 10774408
4
S.Lott is correct. Python's multiprocessing shortcuts effectively give you a separate, duplicated chunk of memory.
On most *nix systems, using a lower-level call to os.fork() will, in fact, give you copy-on-write memory, which might be what you're thinking. AFAIK, in theory, in the most simplistic of programs possible, you could read from that data without having it duplicated.
However, things aren't quite that simple in the Python interpreter. Object data and meta-data are stored in the same memory segment, so even if the object never changes, something like a reference counter for that object being incremented will cause a memory write, and therefore a copy. Almost any Python program that is doing more than "print 'hello'" will cause reference count increments, so you will likely never realize the benefit of copy-on-write.
Even if someone did manage to hack a shared-memory solution in Python, trying to coordinate garbage collection across processes would probably be pretty painful.
If you're running under Unix, they may share the same object, due to how fork works (i.e., the child processes have separate memory but it's copy-on-write, so it may be shared as long as nobody modifies it). I tried the following:
import multiprocessing
x = 23
def printx(y):
print x, id(x)
print y
if __name__ == '__main__':
pool = multiprocessing.Pool(processes=4)
pool.map(printx, (1,2,3,4))
and got the following output:
$ ./mtest.py
23 22995656
1
23 22995656
2
23 22995656
3
23 22995656
4
Of course this doesn't prove that a copy hasn't been made, but you should be able to verify that in your situation by looking at the output of ps to see how much real memory each subprocess is using.
Different processes have different address space. Like running different instances of the interpreter. That's what IPC (interprocess communication) is for.
You can use either queues or pipes for this purpose. You can also use rpc over tcp if you want to distribute the processes over a network later.
http://docs.python.org/dev/library/multiprocessing.html#exchanging-objects-between-processes
Not directly related to multiprocessing per se, but from your example, it would seem you could just use the shelve module or something like that. Does the "big_lookup_object" really have to be completely in memory?
No, but you can load your data as a child process and allow it to share its data with other children. see below.
import time
import multiprocessing
def load_data( queue_load, n_processes )
... load data here into some_variable
"""
Store multiple copies of the data into
the data queue. There needs to be enough
copies available for each process to access.
"""
for i in range(n_processes):
queue_load.put(some_variable)
def work_with_data( queue_data, queue_load ):
# Wait for load_data() to complete
while queue_load.empty():
time.sleep(1)
some_variable = queue_load.get()
"""
! Tuples can also be used here
if you have multiple data files
you wish to keep seperate.
a,b = queue_load.get()
"""
... do some stuff, resulting in new_data
# store it in the queue
queue_data.put(new_data)
def start_multiprocess():
n_processes = 5
processes = []
stored_data = []
# Create two Queues
queue_load = multiprocessing.Queue()
queue_data = multiprocessing.Queue()
for i in range(n_processes):
if i == 0:
# Your big data file will be loaded here...
p = multiprocessing.Process(target = load_data,
args=(queue_load, n_processes))
processes.append(p)
p.start()
# ... and then it will be used here with each process
p = multiprocessing.Process(target = work_with_data,
args=(queue_data, queue_load))
processes.append(p)
p.start()
for i in range(n_processes)
new_data = queue_data.get()
stored_data.append(new_data)
for p in processes:
p.join()
print(processes)
For Linux/Unix/MacOS platform, forkmap is a quick-and-dirty solution.