Remove integer list keys from column headers - python

I have a Python script, which uses a function from a previous Stack Overflow solution.
from pandas import json_normalize
from collections.abc import MutableMapping as mm
def flatten(dictionary, parent_key=False, separator='.'):
items = []
for key, value in dictionary.items():
new_key = str(parent_key) + separator + key if parent_key else key
if isinstance(value, mm):
items.extend(flatten(value, new_key, separator).items())
elif isinstance(value, list):
for k, v in enumerate(value):
items.extend(flatten({str(k): v}, new_key).items())
else:
items.append((new_key, value))
return dict(items)
d = {
"_id" : 1,
"labelId" : [
6422
],
"levels" : [
{
"active" : "true",
"level" : 3,
"actions" : [
{
"isActive" : "true"
}]
}]
}
x = flatten(d)
x = json_normalize(x)
print(x)
Current Output:
_id labelId.0 levels.0.active levels.0.level levels.0.actions.0.isActive
0 1 6422 true 3 true
The issue I am having is the numeric keys which gets included in the column name. Is there a way I can amend my code in order to achieve my desired output?
Desired Output:
_id labelId levels.active levels.level levels.actions.isActive
0 1 6422 true 3 true

First of all using parent_key as bool then assigning it other type value is not the best practice. It works but can become messy. I modified a code a bit, adding separate argument to track parent_key status as bool, and p_key which carry the string you wanted. Here is snippet
from pandas import json_normalize
from collections.abc import MutableMapping as mm
def flatten(dictionary, p_key=None, parent_key=False, separator='.'):
items = []
for key, value in dictionary.items():
if parent_key:
new_key = f"{str(p_key)}{separator}{key}"
else:
new_key = p_key if p_key else key
if isinstance(value, mm):
items.extend(flatten(
dictionary=value,
p_key=new_key,
parent_key=True,
separator=separator).items())
elif isinstance(value, list):
for k, v in enumerate(value):
items.extend(flatten(
dictionary={str(k): v},
p_key=new_key,
parent_key=False,
separator=separator).items())
else:
items.append((new_key, value))
return dict(items)
d = {
"_id" : 1,
"labelId" : [
6422
],
"levels" : [
{
"active" : "true",
"level" : 3,
"actions" : [
{
"isActive" : "true"
}]
}]
}
x = flatten(d)
x = json_normalize(x)
print(x)

Related

Flatten nested dictionary to key and joined string value

I need help with a function to flatten a nested dictionary in the following format:
dict_test = {
"id" : "5d4c2c0fd89234260ec81",
"Reference Number" : "JA-L800D-191",
"entities_discovered" : {
"OTHER_ID" : [
"L800DFAG02191"
],
"CODE_ID" : [
"160472708",
"276954773"
]
},
"label_field" : [
"ELECTRONICS",
"HDMI"
],
"numeric_field" : [
491,
492
],
}
The function I was working with, flattens the dictionary to one dimension (key:value) as I want, but doesn´t join the values within the same key iteration.
def flatten(d):
agg = {}
def _flatten(d, prev_key=''):
if isinstance(d, list):
for i, item in enumerate(d):
new_k = '%s.%s' % (prev_key, i) if prev_key else i
_flatten(item, prev_key=new_k)
elif isinstance(d, dict):
for k, v in d.items():
new_k = '%s.%s' % (prev_key, k) if prev_key else k
_flatten(v, prev_key=new_k)
else:
agg[prev_key] = d
_flatten(d)
return agg
My current output is:
{
"id" : "5d4c2c0fd89234260ec81",
"Reference Number" : "JA-L800D-191",
"entities_discovered.OTHER_ID.0" : "L800DFAG02191",
"entities_discovered.CODE_ID.0" : "160472708",
"entities_discovered.CODE_ID.1" : "276954773",
"label_field.0" : "ELECTRONICS",
"label_field.1" : "HDMI",
"numeric_field.0" : 491,
"numeric_field.1" : 492
}
But actually I´m looking for something like (joining the values into the same string and separated by , or |):
{
"id" : "5d4c2c0fd89234260ec81",
"Reference Number" : "JA-L800D-191",
"OTHER_ID" : "L800DFAG02191",
"CODE_ID" : "160472708, 276954773",
"label_field" : "ELECTRONICS, HDMI",
"numeric_field" : ¨491, 492¨
}
You can use join() built-in method to join values together.
def do():
dict_test = {
"id": "5d4c2c0fd89234260ec81",
"Reference Number": "JA-L800D-191",
"entities_discovered": {
"OTHER_ID": [
"L800DFAG02191"
],
"CODE_ID": [
"160472708",
"276954773"
]
},
"label_field": [
"ELECTRONICS",
"HDMI"
],
"numeric_field": [
491,
492
],
}
new_dict = {}
for key, value in dict_test.items():
if isinstance(value, dict):
for _key, _value in value.items():
if isinstance(_value, list):
new_dict.update({_key: ', '.join([str(item) for item in _value])})
elif isinstance(value, list):
new_dict.update({key: ', '.join([str(item) for item in value])})
else:
new_dict.update({key: value})
return new_dict
if __name__ == '__main__':
print(do())
Output:
{
'id': '5d4c2c0fd89234260ec81',
'Reference Number': 'JA-L800D-191',
'OTHER_ID': 'L800DFAG02191',
'CODE_ID': '160472708, 276954773',
'label_field': 'ELECTRONICS, HDMI',
'numeric_field': '491, 492'
}
def recursive_flatten_dict(tmp, dict_test):
for i,v in dict_test.items():
if type(v) == type({}):
recursive_flatten_dict(tmp,v)
else:
tmp[i] = v
return tmp
recursive_flatten_dict({},dict_test)
Simple recursion using a generator:
def flatten(d):
for a, b in d.items():
if isinstance(b, dict):
yield from flatten(b)
else:
yield (a, b if not isinstance(b, list) else ', '.join(map(str, b)))
print(dict(flatten(dict_test)))
Output:
{
'id': '5d4c2c0fd89234260ec81',
'Reference Number': 'JA-L800D-191',
'OTHER_ID': 'L800DFAG02191',
'CODE_ID': '160472708, 276954773',
'label_field': 'ELECTRONICS, HDMI',
'numeric_field': '491, 492'
}
def flatten(dict_test):
for key in ['label_field', 'numeric_field']:
dict_test[key]= ', '.join([str(c) for c in dict_test[key]])
for c in dict_test['entities_discovered'].keys():
dict_test[c]= ', '.join(dict_test['entities_discovered'][c])
return dict_test
The above function does the job. I hope this what you are looking for?

get list of all nested keys in a json

I have a huge json in the format something like :
{
"Name1": {
"NNum": "11",
"Node1": {
"SubNodeA": "Thomas",
"SubNodeB": "27"
},
"Node2": {
"SubNodeA": "ZZZ",
"SubNodeD": "XXX",
"SubNodeE": "yy"
},
"Node3": {
"child1": 11,
"child2": {
"grandchild": {
"greatgrandchild1": "Rita",
"greatgrandchild2": "US"
}
}
}
}
}
The format or keys are not defined and can go to any depth
I would like to get the list of keys like
keyList= ["Name1.NNum","Name1.Node1.SubNodeA",""Name1.Node1.SubNodeB","Name1.Node2.SubNodeA","Name1.Node2.SubNodeD","Name1.Node2.SubNodeE","Name1.Node3.child1","Name1.Node3.child2.grandchild.greatgrandchild1","Name1.Node3.child2.grandchild.greatgrandchild2"]
A snapshot of the code
def extract_values(obj):
"""Pull all values of specified key from nested JSON."""
arr = []
key_list = []
parent = ""
def extract(obj, arr,parent):
"""Recursively search for values of key in JSON tree."""
if isinstance(obj, dict):
grandparent = ""
for k, v in obj.items():
print ("k ............",k)
parent = grandparent
temp_parent = k
print ("parent >>>>> ",parent)
if isinstance(v, (dict, list)):
parent = temp_parent
print ("IF VALUE DICT .. parent ", parent)
extract(v, arr,parent)
else:
grandparent = parent
parent = parent + "_" + temp_parent
print ("!!!! NOT DICT :).... **** parent ... ", parent)
arr.append(parent)
elif isinstance(obj, list):
for item in obj:
extract(item, arr)
#print ("arr >>>>>>>>>> ", arr)
time.sleep(5)
return arr
results = extract(obj, arr,parent)
return results
but this does not give the expected output.
Expected Output:
keyList= ["Name1.NNum","Name1.Node1.SubNodeA",""Name1.Node1.SubNodeB","Name1.Node2.SubNodeA","Name1.Node2.SubNodeD","Name1.Node2.SubNodeE","Name1.Node3.child1","Name1.Node3.child2.grandchild.greatgrandchild1","Name1.Node3.child2.grandchild.greatgrandchild2"]
Can anybody help me with this.
Thanks in advance
You can use recursion:
d = {'Name1': {'NNum': '11', 'Node1': {'SubNodeA': 'Thomas', 'SubNodeB': '27'}, 'Node2': {'SubNodeA': 'ZZZ', 'SubNodeD': 'XXX', 'SubNodeE': 'yy'}, 'Node3': {'child1': 11, 'child2': {'grandchild': {'greatgrandchild1': 'Rita', 'greatgrandchild2': 'US'}}}}}
def keys(d, c = []):
return [i for a, b in d.items() for i in ([c+[a]] if not isinstance(b, dict) else keys(b, c+[a]))]
result = list(map('.'.join, keys(d)))
Output:
['Name1.NNum', 'Name1.Node1.SubNodeA', 'Name1.Node1.SubNodeB', 'Name1.Node2.SubNodeA', 'Name1.Node2.SubNodeD', 'Name1.Node2.SubNodeE', 'Name1.Node3.child1', 'Name1.Node3.child2.grandchild.greatgrandchild1', 'Name1.Node3.child2.grandchild.greatgrandchild2']
def getKeys(object, prev_key = None, keys = []):
if type(object) != type({}):
keys.append(prev_key)
return keys
new_keys = []
for k, v in object.items():
if prev_key != None:
new_key = "{}.{}".format(prev_key, k)
else:
new_key = k
new_keys.extend(getKeys(v, new_key, []))
return new_keys
This solution assumes that the inner types that might have children are dictionaries.
You can do simple recursion:
d = {
"Name1": {
"NNum": "11",
"Node1": {
"SubNodeA": "Thomas",
"SubNodeB": "27"
},
"Node2": {
"SubNodeA": "ZZZ",
"SubNodeD": "XXX",
"SubNodeE": "yy"
},
"Node3": {
"child1": 11,
"child2": {
"grandchild": {
"greatgrandchild1": "Rita",
"greatgrandchild2": "US"
}
}
}
}
}
def get_keys(d, curr_key=[]):
for k, v in d.items():
if isinstance(v, dict):
yield from get_keys(v, curr_key + [k])
elif isinstance(v, list):
for i in v:
yield from get_keys(i, curr_key + [k])
else:
yield '.'.join(curr_key + [k])
print([*get_keys(d)])
Prints:
['Name1.NNum', 'Name1.Node1.SubNodeA', 'Name1.Node1.SubNodeB', 'Name1.Node2.SubNodeA', 'Name1.Node2.SubNodeD', 'Name1.Node2.SubNodeE', 'Name1.Node3.child1', 'Name1.Node3.child2.grandchild.greatgrandchild1', 'Name1.Node3.child2.grandchild.greatgrandchild2']
What about this?
from collections import Mapping
def extract_paths(base_path, dd):
new_paths = []
for key, value in dd.items():
new_path = base_path + ('.' if base_path else '') + key
if isinstance(value, Mapping):
new_paths.extend(extract_paths(new_path, value))
else:
new_paths.append(new_path)
return new_paths
extract_paths('', your_dict)
Use isinstance to check the dict or not called by function recursively. If dict append to path recursively else print the path
def print_nested_keys(dic,path=''):
for k,v in dic.items():
if isinstance(v,dict):
path+=k+"."
yield from print_nested_keys(v,path)
else:
path+=k
yield path
Output:
>>> [*print_nested_keys(d)] # Here, d is your nested dictionary
['Name1.NNum',
'Name1.NNumNode1.SubNodeA',
'Name1.NNumNode1.SubNodeASubNodeB',
'Name1.NNumNode1.Node2.SubNodeA',
'Name1.NNumNode1.Node2.SubNodeASubNodeD',
'Name1.NNumNode1.Node2.SubNodeASubNodeDSubNodeE',
'Name1.NNumNode1.Node2.Node3.child1',
'Name1.NNumNode1.Node2.Node3.child1child2.grandchild.greatgrandchild1',
'Name1.NNumNode1.Node2.Node3.child1child2.grandchild.greatgrandchild1greatgrandchild2']

How to filter values in my generator expression

My function below is calculating the depth of a nested dict.
#!/usr/bin/env python3
def get_dict_depth(d, depth=0):
if not isinstance(d, dict) or not d:
return depth
return max(get_dict_depth(v, depth+1) if k != 'id' else depth for k, v in d.items())
foobar = {
"key1" : "val1",
"key2" : {
"id" : "val2"
},
"new_d" : {
"key" : "val",
"key2" : {
"id" : "blabla",
"key" : {
"id" : "blabla",
}
},
}
}
depth = get_dict_depth(foobar)
print("Depth %d" % depth)
I would like to modify it to not include keys that have the value id in the depth calculation. The program works if I use a ternary in the generator expression:
return max(get_dict_depth(v, depth+1) if k != 'id' else depth for k, v in d.items())
But I can't seem to make it work by filtering:
return max(get_dict_depth(v, depth+1) for k, v in d.items() if k != 'id')
Why isn't my filter working and how do I make it work?
Move the check to your get_dict_depth function:
def get_dict_depth(d, depth=0):
if not isinstance(d, dict) or not d or 'id' in d:
return depth
return max(get_dict_depth(v, depth+1) for v in d.values())
This gives me the result:
Depth 2

python json, replacing values with key and value pairs

in the following example I am trying to replace value of one key by the value of another key; but I tried multiple ways and it doesn't seem to work.
following is my code
d = {
"name" : "ABC",
"type" : "Service",
"clusterRef" : {
"clusterName" : "ABCSTUFF"
},
"serviceState" : "STARTED",
"healthChecks" : [ {
"name" : "STORAGE",
"summary" : "GOOD"
}, {
"name" : "CPU UTILIZATION",
"summary" : "GOOD"
} ],
"maintenanceMode" : "false"
}
########################
## Get Key Value
def get_key_values(d, key):
for k, v in d.items():
if k == "name":
k = (key + "." + v)
else:
k = (key + "." + k)
if isinstance(v, dict):
get_key_values(v, k)
elif isinstance(v, list):
for i in v:
get_key_values(i, k)
else:
print ("{0} : {1}".format(k, v))
get_key_values(d, "TTS")
the result come up like following
TTS.serviceState : STARTED
TTS.type : Service
TTS.ABC : ABC
TTS.clusterRef.clusterName : ABCSTUFF
TTS.healthChecks.summary : GOOD <<< remove this line and replace "Good" with the value for "TTS.healthChecks.STORAGE"
TTS.healthChecks.STORAGE : STORAGE
TTS.healthChecks.summary : GOOD <<< remove this line and replace "Good" with the value for "TTS.healthChecks.CPU UTILIZATION"
TTS.healthChecks.CPU UTILIZATION : CPU UTILIZATION
TTS.maintenanceMode : false
but I want the result to be following
TTS.serviceState : STARTED
TTS.type : Service
TTS.ABC : ABC
TTS.clusterRef.clusterName : ABCSTUFF
TTS.healthChecks.STORAGE : GOOD <<<
TTS.healthChecks.CPU UTILIZATION : GOOD <<<
TTS.maintenanceMode : false
Any help is much appreciated
Here's a non-generic solution which works for your question:
d = {
"name": "ABC",
"type": "Service",
"clusterRef": {
"clusterName": "ABCSTUFF"
},
"serviceState": "STARTED",
"healthChecks": [{
"name": "STORAGE",
"summary": "GOOD"
}, {
"name": "CPU UTILIZATION",
"summary": "GOOD"
}],
"maintenanceMode": "false"
}
########################
# Get Key Value
def get_key_values(d, key):
for k, v in d.items():
if k == "name":
k = (key + "." + v)
else:
k = (key + "." + k)
if isinstance(v, dict):
get_key_values(v, k)
elif isinstance(v, list):
for i in v:
tok1 = k + "." + i.get("name")
tok2 = i.get("summary")
print("{0} : {1}".format(tok1, tok2))
else:
print("{0} : {1}".format(k, v))
get_key_values(d, "TTS")

How can I write a recursive python function that splits a dictionary into an array of dictionaries?

I am looking to write a recursive function:
arguments: d, dictionary
result: list of dictionaries
def expand_dictionary(d):
return []
The function recursively goes through a dictionary and flattens nested objects using an _, in addition it expands out nested lists into the array, and includes the parent label.
Think of creating a relational model from a document.
Here is an example input and output:
original_object = {
"id" : 1,
"name" : {
"first" : "Alice",
"last" : "Sample"
},
"cities" : [
{
"id" : 55,
"name" : "New York"
},
{
"id" : 60,
"name" : "Chicago"
}
],
"teachers" : [
{
"id" : 2
"name" : "Bob",
"classes" : [
{
"id" : 13,
"name" : "math"
},
{
"id" : 16,
"name" : "spanish"
}
]
}
]
}
expected_output = [
{
"id" : 1,
"name_first" : "Alice",
"name_last" : "Sample"
},
{
"_parent_object" : "cities",
"id" : 55,
"name" : "New York"
},
{
"_parent_object" : "cities",
"id" : 60,
"name" : "Chicago"
},
{
"parent_object" :"teachers",
"id" : 2,
"name" : "Bob"
},
{
"parent_object" :"teachers_classes",
"id" : 13,
"name" : "math"
},
{
"parent_object" :"teachers_classes",
"id" : 16,
"name" : "spanish"
}
]
the code currently being used for flattening is:
def flatten_dictionary(d):
def expand(key, value):
if isinstance(value, dict):
return [ (key + '_' + k, v) for k, v in flatten_dictionary(value).items() ]
else:
#If value is null or empty array don't include it
if value is None or value == [] or value == '':
return []
return [ (key, value) ]
items = [ item for k, v in d.items() for item in expand(k, v) ]
return dict(items)
That will do
def expand_dictionary(d,name=None,l=None):
obj = {}
if l == None:
l = [obj]
else:
l.append(obj)
prefix = (name+'_'if name else '')
if prefix: obj['_parent_object'] = name
for i, v in d.iteritems():
if isinstance(v, list):
map(lambda x:expand_dictionary(x,prefix+i,l),v)
elif isinstance(v, dict):
obj.update(flatten_dictionary({i: v}))
else:
obj[i] = v
return l
After working through it a bit here is what I have come up with. Probably can be significantly optimized. Based on #paulo-scardine's comment I added the parent primary key to keep the relational model. Would love to hear optimization thoughts.
def expand_dictionary(original_object, object_name, objects=None):
if objects is None:
objects = []
def flatten_dictionary(dictionary):
def expand(key, value):
if isinstance(value, dict):
return [ (key + '_' + k, v) for k, v in flatten_dictionary(value).items() ]
else:
#If value is null or empty array don't include it
if value is None or value == [] or value == '':
return []
return [ (key, value) ]
items = [ item for k, v in dictionary.items() for item in expand(k, v) ]
return dict(items)
original_object_root = flatten_dictionary(original_object).copy()
original_object_root['_meta_object_name'] = object_name
for key,value in original_object_root.copy().items():
if isinstance(value, dict):
flatten_dictionary(value, objects)
if isinstance(value, list):
original_object_root.pop(key)
for nested_object in value:
nested_object['_meta_parent_foreign_key'] = original_object_root['id']
nested_object['_meta_object_name'] = object_name + "_" + key
expand_dictionary(nested_object, object_name + "_" + key, objects)
objects.append(original_object_root)
return objects

Categories