Fitting a stretch exponential using python scipy.curve_fit() - python
I am trying to fit some data using a stretch exponential function of type : c*(exp(-x/tau)^beta). The value I am interested in is tau.
The data I am trying to fit passes through zero and is also negative sometimes (For example, value goes from -1 to 1).
def st_exp(x,c,tau,beta):
return c*(np.exp(-(x/tau)**beta))
When I try to fit I get a runtime warning :
RuntimeWarning: invalid value encountered in power
return c*(np.exp(-(x/tau)**beta))
I want to fit the data as is, however, this shows a runtime warning and fit does not converge or fits only till zero is encountered.
For fitting I used:
def get_index(x0,x):
return np.argmin(abs(x-x0))
init_vals = [max(y)-min(y),-1*x[get_index(np.mean(y),y)]/np.log(0.5),0.5]
best_vals, covar = curve_fit(st_exp, x,y, p0=init_vals)
The data I am trying to fit :
x = np.arange(0,400000,1000)
y = np.array([-45819., -37322., -34006., -28906., -26565., -13311., -10992.,
-11233., -3313., -2421., -1687., 9665., 11951., 12796.,
22440., 20331., 24732., 26594., 25464., 30668., 37412.,
33261., 34365., 39359., 39105., 40260., 48946., 48351.,
49872., 44422., 49969., 54536., 54248., 57340., 61403.,
61843., 63386., 61182., 64080., 64052., 68232., 68167.,
76288., 71786., 74485., 76070., 76540., 70167., 82014.,
79459., 80499., 80073., 80697., 88209., 80099., 83415.,
93613., 86038., 89498., 86073., 86999., 94242., 91823.,
91162., 93277., 94834., 89088., 92613., 97663., 95948.,
92840., 105920., 98487., 100951., 88721., 95078., 99831.,
94738., 102520., 98576., 99038., 103921., 102951., 103186.,
100755., 103631., 107259., 107376., 105404., 109739., 110135.,
107829., 103196., 110798., 104497., 107074., 111857., 110816.,
111853., 111890., 107932., 111878., 109776., 112154., 112769.,
113155., 114862., 109560., 111112., 111516., 110314., 115911.,
115820., 118418., 113124., 114579., 118102., 115259., 112640.,
121617., 118125., 114923., 115210., 121919., 115841., 111980.,
117730., 112565., 120893., 113758., 121129., 110559., 118674.,
122867., 118574., 118022., 118656., 117656., 116813., 118591.,
119722., 110845., 126545., 119452., 121438., 118271., 125652.,
121025., 119663., 119917., 121405., 124934., 117835., 121760.,
123870., 126825., 120996., 116165., 119473., 120996., 120530.,
122197., 119907., 123786., 116293., 118625., 123068., 123951.,
123443., 120781., 126291., 119316., 119401., 125871., 120863.,
117013., 125037., 124775., 117822., 123755., 121240., 122696.,
117997., 124865., 123457., 124229., 117705., 126550., 121866.,
123070., 123585., 126033., 126355., 124475., 121325., 125392.,
125882., 126755., 128013., 123610., 123611., 123853., 124819.,
125464., 123897., 128276., 120328., 125569., 128821., 128039.,
126223., 123052., 121924., 121932., 122968., 129473., 124053.,
122576., 124538., 127567., 129659., 126090., 130546., 131749.,
118672., 130372., 125783., 126413., 126283., 125898., 124901.,
130037., 123192., 122977., 125806., 125544., 131714., 130757.,
128980., 130233., 129140., 127372., 118302., 126342., 126046.,
127595., 129635., 121161., 123841., 124058., 124156., 131894.,
124745., 129556., 127832., 126236., 130072., 121877., 121383.,
136089., 123984., 127407., 128703., 127597., 126220., 124028.,
122716., 127398., 129724., 128971., 124488., 127229., 130337.,
132997., 126681., 127312., 123270., 123822., 127458., 127653.,
122740., 132875., 124466., 132315., 129569., 128041., 127525.,
124972., 123646., 122957., 130239., 126285., 127734., 131409.,
128138., 133744., 131438., 130377., 130763., 127868., 129223.,
130644., 131814., 132781., 127419., 124382., 127924., 129190.,
127443., 132475., 130202., 128066., 130360., 130282., 125531.,
130259., 123453., 126989., 129615., 132047., 129424., 126729.,
127324., 128756., 121690., 132176., 126250., 127830., 128985.,
133258., 125664., 123530., 130123., 126947., 123108., 125562.,
126388., 131747., 128793., 121865., 121705., 127039., 132701.,
128835., 133300., 125677., 134063., 136207., 128572., 127731.,
130304., 129674., 126436., 132357., 128154., 129400., 126893.,
132012., 129471., 124752., 127925., 123735., 125801., 126371.,
128554., 126691., 126970., 129754., 130953., 125113., 133345.,
127633., 128070., 127592., 125389., 127235., 125677., 131191.,
130972., 124687., 132342., 130269., 133340., 127084., 132171.,
131521., 133572., 124134., 132673., 131440., 122008., 129178.,
133775., 126584., 131278., 133229., 128349., 139349., 127294.,
133538.])
Your initial values are likely preventing you from finding a good fit. Try this:
best_vals, covar = curve_fit(st_exp, x, y, p0=[10000.0, 10000.0, 1.0])
print(best_vals)
# result: array([ 1.36046194e+05, 2.83889616e+04, -1.21296047e+00])
fig, ax = plt.subplots(1, 1)
ax.plot(x, y, label="data")
ax.plot(x, st_exp(x,*best_vals), label="fit")
ax.legend(loc="best")
The error I was making was that I was not proving an offset for the fitting function :
Either correct the offset before fitting.
or
Modify the fitting function as :
def st_exp(x,c,tau,beta,y_offset):
return c*(np.exp(-(x/tau)**beta))+y_offset
Related
Unable to fit a function onto a givin set of data points in Python using the Scipy library
I have been trying to fit a function(the function is given in the code under the name concave_func) onto data points in python but have had very little to no success. I have 7 parameters(C_1, C_2, alpha_one, alpha_two, I_x, nu_t, T_e) in the function that I have to estimate, and only 6 data points. I have tried 2 methods to fit the curve and estimate the parameters, 1). scipy.optimize.minimize 2). scipy.optimize.curve_fit. However, I'm not obtaining the desired results i.e the curve is not fitting the data points. I have attached my code below. frequency = np.array([22,45,150,408,1420,23000]) #x_values b_temp = [2.55080863e+04, 4.90777800e+03, 2.28984753e+02, 2.10842949e+01, 3.58631166e+00, 5.68716056e-04] #y_values #Defining the function that I want to fit def concave_func(x, C_1, C_2, alpha_one, alpha_two, I_x, nu_t, T_e): one = x**(-alpha_one) two = (C_2/C_1)*(x**(-alpha_two)) three = I_x*(x**-2.1) expo = np.exp(-1*((nu_t/x)**2.1)) eqn_one = C_1*(one + two + three)*expo eqn_two = T_e*(1 - expo) return eqn_one + eqn_two #Defining chi_square function def chisq(params, xobs, yobs): ynew = concave_func(xobs, *params) #yerr = np.sum((ynew- yobs)**2) yerr = np.sum(((yobs- ynew)/ynew)**2) print(yerr) return yerr result = minimize(chisq, [1,2,2,2,1,1e6,8000], args = (frequency,b_temp), method = 'Nelder-Mead', options = {'disp' : True, 'maxiter': 10000}) x = np.linspace(-300,24000,1000) plt.yscale("log") plt.xscale("log") plt.plot(x,concave_func(x, *result.x)) print(result.x) print(result) plt.plot(frequency, b_temp, 'r*' ) plt.xlabel("log Frequency[MHz]") plt.ylabel("log Temp[K]") plt.title('log Temparature vs log Frequency') plt.grid() plt.savefig('the_plot_2060.png') I have attached the plot that I obtained below. The plot clearly does not fit the data, and something is definitely wrong. I would also want my parameters alpha_one and alpha_two to be constrained to lie between 2 and 3. I also do not want my parameter T_e to exceed 10,000. Any thoughts?
How to fit a sine curve to a small dataset
I have been struggling for apparently no reason trying to fit a sin function to a small dataset that resembles a sinusoid. I've looked at many other questions and tried different libraries and can't seem to find any glaring mistake in my code. Also in many answers people are fitting a function onto data where y = f(x); but I'm retrieving both of my lists independently from stellar spectra. These are the lists for reference: time = np.array([2454294.5084288 , 2454298.37039515, 2454298.6022165 , 2454299.34790096, 2454299.60750029, 2454300.35176022, 2454300.61361622, 2454301.36130122, 2454301.57111912, 2454301.57540159, 2454301.57978822, 2454301.5842906 , 2454301.58873511, 2454302.38635047, 2454302.59553152, 2454303.41548415, 2454303.56765036, 2454303.61479213, 2454304.38528718, 2454305.54043812, 2454306.36761011, 2454306.58025083, 2454306.60772791, 2454307.36686591, 2454307.49460991, 2454307.58258509, 2454308.3698358 , 2454308.59468672, 2454309.40004997, 2454309.51208756, 2454310.43078368, 2454310.6091061 , 2454311.40121502, 2454311.5702085 , 2454312.39758274, 2454312.54580053, 2454313.52984047, 2454313.61734047, 2454314.37609003, 2454315.56721061, 2454316.39218499, 2454316.5672538 , 2454317.49410168, 2454317.6280825 , 2454318.32944441, 2454318.56913047]) velocities = np.array([-2.08468951, -2.26117398, -2.44703149, -2.10149768, -2.09835213, -2.20540079, -2.4221183 , -2.1394637 , -2.0841663 , -2.2458154 , -2.06177386, -2.47993416, -2.13462117, -2.26602791, -2.47359571, -2.19834895, -2.17976339, -2.37745005, -2.48849617, -2.15875901, -2.27674409, -2.39054554, -2.34029665, -2.09267843, -2.20338104, -2.49483926, -2.08860222, -2.26816951, -2.08516229, -2.34925637, -2.09381667, -2.21849357, -2.43438148, -2.28439031, -2.43506056, -2.16953358, -2.24405359, -2.10093237, -2.33155007, -2.37739938, -2.42468714, -2.19635302, -2.368558 , -2.45959665, -2.13392004, -2.25268181] These are radial velocities of a star observed at different times. When plotted they look like this: Plotted Data This is then the code I'm using to fit a test sine on the data: x = time y = velocities def sin_fit(x, A, w): return A * np.sin(w * x) popt, pcov = curve_fit(sin_fit,x,y) #try to calculate exoplanet parameters with these data xfit = np.arange(min(x),max(x),0.1) fit = sin_fit(xfit,*popt) mod = plt.figure() plt.xlabel("Time (G. Days)") plt.ylabel("Radial Velocity") plt.scatter(x,[i for i in y],color="b",label="Data") plt.plot(x,[i for i in y],color="b",alpha=0.2) plt.plot(xfit,fit,color="r",label="Model Fit") plt.legend() mod.savefig("Data with sin fit.png") plt.show() I thought this was right, and it seems right by looking at other answers, but then this is what I get: Data with model sine What am I doing wrong? Thank you in advanceee
I guess it's due the sin_fit function is not able to fit the data at all. The sin function per default whirls around y=0 while your data whirls somewhere around y=-2.3. I tried your code and extended the sin_fit with an offset, yielding way better results (althought looking not too perfect): def sin_fit(x, A, w, offset): return A * np.sin(w * x) + offset with this the function has at least a chance to fit
.fill_between returns ValueError: 'y1' is not 1-dimensional
I am programming a GPR (Gaussian Process Regression) and would like to visualize it. I imported data from an excel file and now I would like to fill the area under and above the graph in a certain interval. This is the code i wrote: X_ = np.linspace(X.min()-5, X.max() + 15, 1000)[:, np.newaxis] y_pred, y_std = gpr.predict(X_, return_std = True) fig = plt.figure(figsize = (15,10)) plt.scatter(X, y, c = 'k', alpha = 0.55) plt.plot(X_, y_pred) plt.fill_between(X_[:,0], y_pred-y_std, y_pred+y_std, alpha = 0.5, color = 'k') plt.xlim(X_.min(), X_.max()) plt.xlabel('Temperature [°C]') plt.ylabel('fd [-]') plt.title('fd depending on the Temperature') plt.show() Every time I execute the program I get a value error (y1 is not 1-dimensional) for this part of the code: plt.fill_between(X_[:,0], y_pred-y_std, y_pred+y_std, alpha = 0.5, color = 'k') There seems to be a problem with the "y_pred" values. When I substitute "y_pred" for a number, then it works just fine. I would really appreciate any help I can get. Thank you in advance.
I cannot run your code but I had a similar problem when I was passing to fill_between a N,1 array instead of a N, array. I basically solved converting my data to a 1D list and then getting a N, array with fill_between(np.array(myList_x),np.array(myList_y)) It also works if you manage to copy your data in a dataframe column. fill_between(df['col_x'],df['col_y']))
Scipy interpolate.splprep error "Invalid Inputs"
I am trying to interpolate a curve to a set of (x,y) points using SciPy's interpolate.splprep method, using the procedure followed in this StackOverflow answer. My code (with the data) is given below. Please excuse me for using this large dataset, as the code works perfectly fine on a different dataset. Kindly scroll to the bottom to see the implemetation. #!/usr/bin/env python3 import numpy as np import matplotlib.pyplot as plt from scipy import interpolate # ----------------------------------------------------------------------------- # Data xp=np.array([ -1.19824526e-01, -1.19795807e-01, -1.22298912e-01, -1.24784611e-01, -1.27233423e-01, -1.27048456e-01, -1.29424259e-01, -1.31781573e-01, -1.34102825e-01, -1.36386619e-01, -1.41324999e-01, -1.43569618e-01, -1.48471481e-01, -1.53300646e-01, -1.55387133e-01, -1.57436481e-01, -1.53938796e-01, -1.58562951e-01, -1.53139517e-01, -1.50456275e-01, -1.49637920e-01, -1.48774455e-01, -1.47843528e-01, -1.44278335e-01, -1.43299274e-01, -1.39716798e-01, -1.36111285e-01, -1.32534352e-01, -1.28982866e-01, -1.25433151e-01, -1.21912263e-01, -1.16106245e-01, -1.12701128e-01, -1.09303316e-01, -1.05947571e-01, -1.00467194e-01, -9.72083398e-02, -9.39822094e-02, -9.08033710e-02, -8.96420533e-02, -8.65053261e-02, -8.34162875e-02, -8.03788778e-02, -7.73929193e-02, -7.62032638e-02, -7.32655732e-02, -7.03760465e-02, -6.91826390e-02, -6.63378816e-02, -6.35537275e-02, -6.08302060e-02, -5.96426925e-02, -5.69864087e-02, -5.43931715e-02, -5.18641746e-02, -4.93958173e-02, -4.82415854e-02, -4.58486281e-02, -4.35196817e-02, -4.01162919e-02, -3.79466513e-02, -3.48161871e-02, -3.18596693e-02, -2.90650417e-02, -2.64251761e-02, -2.31429101e-02, -1.94312163e-02, -1.73997964e-02, -1.55068323e-02, -1.43163160e-02, -1.31800087e-02, -1.20987991e-02, -1.10708190e-02, -1.05380016e-02, -9.58116017e-03, -9.06399242e-03, -8.54450012e-03, -7.67847396e-03, -7.17608354e-03, -6.67181154e-03, -5.89474349e-03, -5.40878144e-03, -4.92121197e-03, -4.43202070e-03, -3.94148294e-03, -3.44986011e-03, -2.82410814e-03, -2.35269319e-03, -1.88058008e-03, -1.47393691e-03, -9.78376399e-04, -4.82633521e-04, 1.33099164e-05, 5.09212801e-04, 1.05098855e-03, 1.56929991e-03, 2.08706303e-03, 2.72055571e-03, 3.26012954e-03, 3.79870854e-03, 4.33573131e-03, 4.87172652e-03, 5.40640816e-03, 5.93914581e-03, 6.47004490e-03, 6.99921852e-03, 7.52610639e-03, 7.70592714e-03, 8.20559501e-03, 8.70268809e-03, 9.19766855e-03, 9.68963219e-03, 1.01781695e-02, 1.01960805e-02, 1.06577199e-02, 1.11156340e-02, 1.15703286e-02, 1.20215921e-02, 1.24693015e-02, 1.29129042e-02, 1.33526781e-02, 1.37884367e-02, 1.42204360e-02, 1.46473802e-02, 1.50699789e-02, 1.54884533e-02, 1.59020551e-02, 1.63103362e-02, 8.12110387e-02, 7.80794051e-02, 1.67140103e-02, 8.31537241e-02, 7.99472912e-02, 7.99472912e-02, 7.67983984e-02, 1.71128723e-02, 8.50656342e-02, 8.17851028e-02, 7.85638577e-02, 7.53861405e-02, 1.75061328e-02, 8.19411806e-02, 7.38391281e-02, 1.78939640e-02, 8.70866930e-02, 8.36940292e-02, 8.03586974e-02, 7.70534244e-02, 7.70534244e-02, 7.38013540e-02, 7.38013540e-02, 7.06147796e-02, 1.82766038e-02, 8.54279559e-02, 8.20231372e-02, 7.53294330e-02, 7.20765174e-02, 1.86539411e-02, 8.36524496e-02, 7.85095832e-02, 7.51592888e-02, 7.18792721e-02, 1.90250409e-02, 7.82997201e-02, 7.49183992e-02, 7.49183992e-02, 7.16144248e-02, 7.16144248e-02, 6.83771846e-02, 1.93904576e-02, 7.46192919e-02, 7.12865685e-02, 7.12865685e-02, 6.80175748e-02, 1.97501330e-02, 7.42568965e-02, 7.08996495e-02, 7.08996495e-02, 6.75887344e-02, 2.01042729e-02, 7.38173451e-02, 6.70923613e-02, 2.13903228e-02, 7.50479910e-02, 6.82108239e-02, 5.69753762e-02, 5.24303656e-02, 5.24303656e-02, 4.52683211e-02, 4.52683211e-02, 4.25493203e-02, 2.17470907e-02, 7.45062992e-02, 6.76173090e-02, 6.76173090e-02, 6.42925100e-02, 6.42925100e-02, 5.94649095e-02, 5.94649095e-02, 3.92303424e-02, 2.20977481e-02, 7.21341379e-02, 3.72338037e-02, 2.24415025e-02, 7.14448972e-02, 3.40025442e-02, 2.27777176e-02, 7.07064856e-02, 3.57533680e-02, 2.41421550e-02, 6.81719132e-02, 3.62534788e-02, 2.44798556e-02, 6.56110398e-02, 3.80586628e-02, 3.29287629e-02, 2.93070471e-02, 2.48093588e-02, 6.13326924e-02, 3.85518913e-02, 3.46206958e-02, 2.85091877e-02, 2.51312268e-02, 5.38330011e-02, 3.76841669e-02, 3.50540735e-02, 2.77018960e-02, 2.65615352e-02, 5.28838088e-02, 3.81396763e-02, 3.54777506e-02, 2.80364970e-02, 2.68822682e-02, 5.03377702e-02, 3.85814254e-02, 3.58887890e-02, 4.93316503e-02, 4.04098395e-02, 3.62892096e-02, 4.67615526e-02, 4.22828625e-02, 3.80435955e-02, 3.84376145e-02, 4.02332775e-02, 4.06156847e-02, 4.24553741e-02, 4.43352031e-02, 4.47040511e-02, 4.66233682e-02, 4.69790035e-02, 4.89341212e-02, 5.09256192e-02, 5.12584867e-02, 5.32790231e-02, 5.35890744e-02, 5.38831411e-02, 5.41625645e-02, 5.44267004e-02, 5.46700348e-02, 5.48984863e-02, 5.51117932e-02, 5.53082440e-02, 5.54849716e-02, 5.56464539e-02, 5.57928396e-02, 5.59201893e-02, 5.60294455e-02, 5.61233441e-02, 5.62020138e-02, 5.62604489e-02, 5.63017253e-02, 5.63275468e-02, 5.63341408e-02, 5.63226424e-02, 5.62957310e-02, 5.62533699e-02, 5.61937444e-02, 5.61140110e-02, 5.60191106e-02, 5.59087917e-02, 5.57801898e-02, 5.56328560e-02, 5.54704141e-02, 5.70775198e-02, 5.68728844e-02, 5.66515897e-02, 5.64149230e-02, 5.61622287e-02, 5.76630266e-02, 5.73643873e-02, 5.70502787e-02, 5.67190716e-02, 5.63668473e-02, 5.59997391e-02, 5.73489998e-02, 5.69355151e-02, 5.65029189e-02, 5.77751241e-02, 5.72977910e-02, 5.67990710e-02, 5.79863269e-02, 5.74393835e-02, 5.68773454e-02, 5.62926261e-02, 5.56922722e-02, 5.50771272e-02, 5.44454686e-02, 5.37935810e-02, 5.31273003e-02, 5.24468411e-02, 5.17483760e-02, 5.10330229e-02, 5.03036776e-02, 4.95607328e-02, 4.87997085e-02, 4.80238054e-02, 4.72347342e-02, 4.64331616e-02, 4.56132865e-02, 4.47805574e-02, 4.39358955e-02, 4.30782240e-02, 4.22044750e-02, 4.01052073e-02, 3.92354976e-02, 3.83523540e-02, 3.74567873e-02, 3.65508593e-02, 3.45751478e-02, 3.36740998e-02, 3.27625023e-02, 3.18417381e-02, 3.09129121e-02, 2.90665673e-02, 2.81454989e-02, 2.72171846e-02, 2.62807950e-02, 2.53342284e-02, 2.43816409e-02, 2.34221736e-02, 2.24541496e-02, 2.08179757e-02, 1.98678098e-02, 1.89113740e-02, 1.79488243e-02, 1.69806146e-02, 1.65158032e-02, 1.55075714e-02, 1.44932106e-02, 1.34746855e-02, 1.24525920e-02, 1.14268067e-02, 1.03968750e-02, 9.36414487e-03, 8.58823755e-03, 7.51804527e-03, 6.44485601e-03, 5.37002690e-03, 4.29398700e-03, 3.31511044e-03, 2.20302298e-03, 1.09069996e-03, -2.27320426e-05, -1.16892664e-03, -2.31490869e-03, -3.46060569e-03, -4.74178052e-03, -5.91852523e-03, -7.09360822e-03, -8.26683115e-03, -9.43736653e-03, -1.06042682e-02, -1.17686419e-02, -1.33107457e-02, -1.45010352e-02, -1.56869180e-02, -1.68693838e-02, -1.80464175e-02, -1.97732638e-02, -2.09722818e-02, -2.21650612e-02, -2.40185758e-02, -2.52303300e-02, -2.71803154e-02, -2.84115598e-02, -3.04489552e-02, -3.16936647e-02, -3.29299358e-02, -3.50861051e-02, -3.63332401e-02, -3.85745058e-02, -3.98348648e-02, -4.21660006e-02, -4.34302610e-02, -4.46836493e-02, -4.59254575e-02, -4.71530952e-02, -4.96209305e-02, -4.95594200e-02, -5.07435074e-02, -5.19101301e-02, -5.16977894e-02, -5.14280802e-02, -5.11057669e-02, -5.07251169e-02, -5.16985297e-02, -5.12126585e-02, -5.06852098e-02, -5.15589749e-02, -5.09397027e-02, -5.17615499e-02, -5.10672514e-02, -5.18313966e-02, -5.25816754e-02, -5.33179227e-02, -5.40360028e-02, -5.47358953e-02, -5.54213064e-02, -5.77400978e-02, -5.84092053e-02, -5.90603644e-02, -6.14284845e-02, -6.38379284e-02, -6.62872262e-02, -6.69166162e-02, -6.93865431e-02, -7.18947674e-02, -7.44284962e-02, -7.69969804e-02, -7.96063191e-02, -8.01834105e-02, -8.28053535e-02, -8.54623715e-02, -8.59961071e-02, -8.86660185e-02, -8.91520913e-02, -9.18335218e-02, -9.45402708e-02, -9.49610563e-02, -9.76401856e-02, -1.00332460e-01, -1.03032191e-01, -1.03358935e-01, -1.06040606e-01, -1.06322470e-01, -1.08984284e-01, -1.09195131e-01, -1.11833426e-01, -1.11994247e-01, -1.14596404e-01, -1.17192554e-01, -1.17248317e-01]) yp = np.array([ -3.90948536e-05, -2.12984775e-03, -4.31095583e-03, -6.58019633e-03, -8.93758156e-03, -1.11568100e-02, -1.36444162e-02, -1.62222092e-02, -1.88895170e-02, -2.16446498e-02, -2.49629308e-02, -2.79508857e-02, -3.16029501e-02, -3.54376380e-02, -3.87881494e-02, -4.22310942e-02, -4.41873802e-02, -4.85246067e-02, -4.68663315e-02, -4.60459599e-02, -4.86676408e-02, -5.12750434e-02, -5.38586293e-02, -5.54310799e-02, -5.79452426e-02, -5.93547929e-02, -6.06497762e-02, -6.18505946e-02, -6.29584706e-02, -6.39609234e-02, -6.48713094e-02, -6.44090476e-02, -6.51181556e-02, -6.57260659e-02, -6.62541381e-02, -6.52943568e-02, -6.56184758e-02, -6.58578685e-02, -6.60229010e-02, -6.76012689e-02, -6.76366183e-02, -6.76004442e-02, -6.74972483e-02, -6.73282385e-02, -6.86657097e-02, -6.83738036e-02, -6.80140059e-02, -6.92366190e-02, -6.87491258e-02, -6.82071471e-02, -6.76134579e-02, -6.86669494e-02, -6.79695621e-02, -6.72259327e-02, -6.64391135e-02, -6.56069234e-02, -6.64563885e-02, -6.55361171e-02, -6.45783892e-02, -6.18312378e-02, -6.07850085e-02, -5.80009440e-02, -5.52383021e-02, -5.24888121e-02, -4.97523554e-02, -4.54714570e-02, -3.98863362e-02, -3.73592876e-02, -3.48720213e-02, -3.37707235e-02, -3.26655171e-02, -3.15625118e-02, -3.04616664e-02, -3.06508019e-02, -2.95344258e-02, -2.96968330e-02, -2.98505905e-02, -2.87101259e-02, -2.88391064e-02, -2.89597166e-02, -2.77967360e-02, -2.78958771e-02, -2.79854740e-02, -2.80670276e-02, -2.81405467e-02, -2.82051366e-02, -2.69913041e-02, -2.70365186e-02, -2.70739448e-02, -2.83768113e-02, -2.83979671e-02, -2.84108899e-02, -2.84155794e-02, -2.84104617e-02, -2.96993141e-02, -2.96767995e-02, -2.96453017e-02, -3.09305120e-02, -3.08782748e-02, -3.08172540e-02, -3.07460634e-02, -3.06652277e-02, -3.05756546e-02, -3.04773301e-02, -3.03684498e-02, -3.02505329e-02, -3.01240628e-02, -2.87032761e-02, -2.85638294e-02, -2.84161924e-02, -2.82602014e-02, -2.80957411e-02, -2.79220043e-02, -2.65224371e-02, -2.63408455e-02, -2.61506690e-02, -2.59523304e-02, -2.57465736e-02, -2.55333569e-02, -2.53114227e-02, -2.50819674e-02, -2.48453976e-02, -2.46014650e-02, -2.43490672e-02, -2.40896946e-02, -2.38232320e-02, -2.35495727e-02, -2.32681400e-02, -1.11708561e-01, -1.07398522e-01, -2.29799277e-02, -1.10281290e-01, -1.06025945e-01, -1.06025945e-01, -1.01847844e-01, -2.26850806e-02, -1.08812919e-01, -1.04614895e-01, -1.00492396e-01, -9.64256156e-02, -2.23830803e-02, -1.01124594e-01, -9.11212826e-02, -2.20738630e-02, -1.03723227e-01, -9.96804013e-02, -9.57062055e-02, -9.17682599e-02, -9.17682599e-02, -8.78935733e-02, -8.78935733e-02, -8.40962884e-02, -2.17583603e-02, -9.82127298e-02, -9.42965108e-02, -8.65980524e-02, -8.28570139e-02, -2.14365508e-02, -9.28460674e-02, -8.71354106e-02, -8.34157663e-02, -7.97743543e-02, -2.11075333e-02, -8.39100274e-02, -8.02849723e-02, -8.02849723e-02, -7.67428202e-02, -7.67428202e-02, -7.32724167e-02, -2.07721464e-02, -7.72159766e-02, -7.37663681e-02, -7.37663681e-02, -7.03828404e-02, -2.04308432e-02, -7.42042591e-02, -7.08482147e-02, -7.08482147e-02, -6.75385453e-02, -2.00834820e-02, -7.12338454e-02, -6.47417418e-02, -2.06352744e-02, -6.99333169e-02, -6.35600774e-02, -5.30876202e-02, -4.88515872e-02, -4.88515872e-02, -4.21763073e-02, -4.21763073e-02, -3.96425097e-02, -2.02588101e-02, -6.70368116e-02, -6.08364913e-02, -6.08364913e-02, -5.78440553e-02, -5.78440553e-02, -5.34994049e-02, -5.34994049e-02, -3.52908904e-02, -1.98763502e-02, -6.26583213e-02, -3.23368135e-02, -1.94880238e-02, -5.99037138e-02, -2.85040222e-02, -1.90931928e-02, -5.72132575e-02, -2.89247783e-02, -1.95297821e-02, -5.32198482e-02, -2.82971986e-02, -1.91058177e-02, -4.94013681e-02, -2.86515116e-02, -2.47888430e-02, -2.20618305e-02, -1.86758942e-02, -4.45232330e-02, -2.79827472e-02, -2.51286391e-02, -2.06919011e-02, -1.82397645e-02, -3.76607947e-02, -2.63609122e-02, -2.45208701e-02, -1.93767971e-02, -1.85788804e-02, -3.56379420e-02, -2.56998805e-02, -2.39058698e-02, -1.88908564e-02, -1.81130913e-02, -3.26595065e-02, -2.50304222e-02, -2.32829732e-02, -3.07966353e-02, -2.52257065e-02, -2.26527986e-02, -2.80693713e-02, -2.53799880e-02, -2.28350066e-02, -2.21686432e-02, -2.22782703e-02, -2.15723084e-02, -2.16081542e-02, -2.15998200e-02, -2.08220272e-02, -2.07341864e-02, -1.99180705e-02, -1.97463091e-02, -1.95241512e-02, -1.86330762e-02, -1.83210810e-02, -1.73881714e-02, -1.64501676e-02, -1.55073488e-02, -1.45603397e-02, -1.36076891e-02, -1.26514336e-02, -1.16918550e-02, -1.07281971e-02, -9.76103257e-03, -8.79150351e-03, -7.81935696e-03, -6.84417527e-03, -5.86703766e-03, -4.88857954e-03, -3.90851347e-03, -2.92690669e-03, -1.94445885e-03, -9.62077293e-04, 2.10973681e-05, 1.00443470e-03, 1.98670872e-03, 2.96920518e-03, 3.95065293e-03, 4.93054490e-03, 5.90896238e-03, 6.88594418e-03, 7.86095305e-03, 8.83291761e-03, 9.80227952e-03, 1.11168744e-02, 1.21109612e-02, 1.31014370e-02, 1.40884671e-02, 1.50714343e-02, 1.65579859e-02, 1.75619959e-02, 1.85609524e-02, 1.95539892e-02, 2.05406220e-02, 2.15208623e-02, 2.31958067e-02, 2.41936890e-02, 2.51825785e-02, 2.69676402e-02, 2.79735240e-02, 2.89676199e-02, 3.08600313e-02, 3.18685118e-02, 3.28673845e-02, 3.38531747e-02, 3.48305552e-02, 3.57981735e-02, 3.67545357e-02, 3.76978426e-02, 3.86308181e-02, 3.95533112e-02, 4.04626970e-02, 4.13583593e-02, 4.22429533e-02, 4.31163338e-02, 4.39732984e-02, 4.48174616e-02, 4.56497573e-02, 4.64690781e-02, 4.72699006e-02, 4.80584575e-02, 4.88339015e-02, 4.95941309e-02, 5.03364921e-02, 4.95646923e-02, 5.02584615e-02, 5.09357803e-02, 5.15956682e-02, 5.22416815e-02, 5.13017754e-02, 5.18954788e-02, 5.24741267e-02, 5.30389590e-02, 5.35886852e-02, 5.24828002e-02, 5.29815950e-02, 5.34658214e-02, 5.39333680e-02, 5.43819816e-02, 5.48154596e-02, 5.52339801e-02, 5.56342267e-02, 5.42908141e-02, 5.46458325e-02, 5.49864909e-02, 5.53070690e-02, 5.56106186e-02, 5.76746395e-02, 5.79561804e-02, 5.82151857e-02, 5.84584712e-02, 5.86858866e-02, 5.88950787e-02, 5.90831689e-02, 5.92552324e-02, 6.12619766e-02, 6.14026109e-02, 6.15224608e-02, 6.16256880e-02, 6.17123394e-02, 6.36720486e-02, 6.37186812e-02, 6.37481408e-02, 6.56861133e-02, 6.56722393e-02, 6.56407664e-02, 6.55917721e-02, 6.74743714e-02, 6.73786194e-02, 6.72646677e-02, 6.71325153e-02, 6.69773741e-02, 6.68003322e-02, 6.66053297e-02, 6.83473413e-02, 6.81027202e-02, 6.78376164e-02, 6.75542903e-02, 6.72524243e-02, 6.88634515e-02, 6.85066915e-02, 6.81318613e-02, 6.96716731e-02, 6.92387957e-02, 7.07292209e-02, 7.02467261e-02, 7.16584645e-02, 7.11134550e-02, 7.05499862e-02, 7.18681370e-02, 7.12419450e-02, 7.24822144e-02, 7.17989089e-02, 7.29694293e-02, 7.22180480e-02, 7.14476517e-02, 7.06588875e-02, 6.98486903e-02, 7.08078412e-02, 6.81567317e-02, 6.72843393e-02, 6.63881936e-02, 6.37899997e-02, 6.12404950e-02, 5.87433383e-02, 5.62902969e-02, 5.53950962e-02, 5.29895052e-02, 5.06437557e-02, 4.97490264e-02, 4.74631181e-02, 4.65678359e-02, 4.43551128e-02, 4.34554011e-02, 4.25440351e-02, 4.16213883e-02, 4.06842153e-02, 3.97338457e-02, 3.87727819e-02, 3.89122376e-02, 3.78978623e-02, 3.68719281e-02, 3.68766567e-02, 3.68230044e-02, 3.67095055e-02, 3.55465346e-02, 3.53200609e-02, 3.50311849e-02, 3.46717730e-02, 3.42461153e-02, 3.37555022e-02, 3.23610029e-02, 3.17505933e-02, 3.10701527e-02, 2.95754797e-02, 2.87735213e-02, 2.72210019e-02, 2.62970023e-02, 2.52956273e-02, 2.36404433e-02, 2.25053642e-02, 2.12889860e-02, 1.99902757e-02, 1.81872330e-02, 1.67574555e-02, 1.49054892e-02, 1.33429656e-02, 1.14391250e-02, 9.74643800e-03, 7.79267351e-03, 5.96714375e-03, 4.05355227e-03, 2.00672241e-03]) # ----------------------------------------------------------------------------- # Use scipy to interpolate. xp = np.r_[xp, xp[0]] yp = np.r_[yp, yp[0]] tck, u = interpolate.splprep([xp, yp], s=0, k=1, per=True) xi, yi = interpolate.splev(np.linspace(0, 1, 1000), tck) # ----------------------------------------------------------------------------- # Plot result fig = plt.figure() ax = plt.subplot(111) ax.plot(xp, yp, '.', markersize=2) ax.plot(xi, yi, alpha=0.5) plt.show() I get the following error on one machine (MacOS), ---> tck, u = interpolate.splprep([xp, yp], s=0, k=1, per=True) SystemError: <built-in function _parcur> returned NULL without setting an error And this error on another machine (Ubuntu), ----> tck, u = interpolate.splprep([xp, yp], s=0, k=1, per=True) ValueError: Invalid inputs. interpolate.splprep uses the FORTRAN parcur routine from FITPACK (from the documentation). My questions are - Why does the code work for different datasets? e.g. xp = np.array([0.1, 0.2, 0.3, 0.4]) yp = np.array([-0.1, -0.3, -0.4, 0.2]) and not for this particular one? What does the error mean? How can I get this to work? (Using this method or any other method) i.e. either interpolate a curve or filter the outliers ... Out of curiosity, why is the error machine (and OS) dependent? This is how the data looks when plotted, I think you can guess which curve I'd like to interpolate to (and which outliers I'd like to remove, if possible)
Fitpack has a fit if it two consecutive inputs are identical. The error happens deep enough that it depends on how the libraries were compiled and linked, hence the assortment of errors. For example, xp[147:149], yp[147:149] (and several others): (array([ 0.07705342, 0.07705342]), array([-0.09176826, -0.09176826])) These are okay: okay = np.where(np.abs(np.diff(xp)) + np.abs(np.diff(yp)) > 0) xp = np.r_[xp[okay], xp[-1], xp[0]] yp = np.r_[yp[okay], yp[-1], yp[0]] # the rest of your code I add the last point back because the output of diff is always one element shorter, so the last one needs to be included manually. (And then of course, you put the 0th point again for periodicity) Cutting off the weird part This is my attempt to cut off the weird extruding part of the dataset. It uses a Gaussian filter from ndimage. The original points xp, yp are kept this time; the filtered ones are xn, yn. jump = np.sqrt(np.diff(xp)**2 + np.diff(yp)**2) smooth_jump = ndimage.gaussian_filter1d(jump, 5, mode='wrap') # window of size 5 is arbitrary limit = 2*np.median(smooth_jump) # factor 2 is arbitrary xn, yn = xp[:-1], yp[:-1] xn = xn[(jump > 0) & (smooth_jump < limit)] yn = yn[(jump > 0) & (smooth_jump < limit)] So, we remove not only duplicate points but also the points where the values jump around too much. The rest goes as before, interpolation is built out of xn, yn now. I plot original points for comparison with the new (red) curve): ax.plot(xp, yp, 'o', markersize=2) ax.plot(xi, yi, 'r', alpha=0.5)
power-law curve fitting scipy, numpy not working
I came up with a problem in fitting a power-law curve on my data. I have two data sets: bins1 and bins2 bins1 acting fine in curve-fitting by using numpy.linalg.lstsq (I then use np.exp(coefs[0])*x**coefs[1] to get power-law equation) On the other hand, bins2 is acting weird and shows a bad R-squared Both data have different equations than what excel shows me (and worse R-squared). here is the code (and data): import numpy as np import matplotlib.pyplot as plt bins1 = np.array([[6.769318871738219667e-03, 1.306418618130891773e-02, 1.912138120913448383e-02, 2.545189874466026111e-02, 3.214689891729670401e-02, 4.101898933375244805e-02, 5.129862592803200588e-02, 6.636505322669797313e-02, 8.409809827572585494e-02, 1.058164348650862258e-01, 1.375849753230810046e-01, 1.830664031837437311e-01, 2.682454535427478137e-01, 3.912508246490400410e-01, 5.893271848997768680e-01, 8.480213305038615257e-01, 2.408136266017391058e+00, 3.629192766488219313e+00, 4.639246557509275171e+00, 9.901792214343277720e+00], [8.501658465758301112e-04, 1.562697718429977012e-03, 1.902062808421856087e-04, 4.411817741488644959e-03, 3.409236963162485048e-03, 1.686099657013027898e-03, 3.643231240239608402e-03, 2.544120616413291154e-04, 2.549036204611017029e-02, 3.527340723977697573e-02, 5.038482027310990652e-02, 5.617932487522721979e-02, 1.620407270423956103e-01, 1.906538999080910068e-01, 3.180688368126549093e-01, 2.364903188268162038e-01, 3.267322385964683273e-01, 9.384571074801122403e-01, 4.419747716107813029e-01, 9.254710022316929852e+00]]).T bins2 = np.array([[6.522512685133712192e-03, 1.300415548684437199e-02, 1.888928895701269539e-02, 2.509905819337970856e-02, 3.239654633369139919e-02, 4.130706234846069635e-02, 5.123820846515786398e-02, 6.444380072984744190e-02, 8.235238352205621892e-02, 1.070907072127811749e-01, 1.403438221033725120e-01, 1.863115065963684147e-01, 2.670209758710758163e-01, 4.003337413814173074e-01, 6.549054078382223754e-01, 1.116611087124244062e+00, 2.438604844718367914e+00, 3.480674117919704269e+00, 4.410201659398489404e+00, 6.401903059926267403e+00], [1.793454543936148608e-03, 2.441092334386309615e-03, 2.754373929745804715e-03, 1.182752729942167062e-03, 1.357797177773524414e-03, 6.711673916715021199e-03, 1.392761674092503343e-02, 1.127957613093066511e-02, 7.928803089359596004e-03, 2.524609593305639915e-02, 5.698702885370290905e-02, 8.607729156137132465e-02, 2.453761830112021203e-01, 9.734443815196883176e-02, 1.487480479168299119e-01, 9.918002699934079791e-01, 1.121298151253063535e+00, 1.389239135742518227e+00, 4.254082922056571237e-01, 2.643453492951096440e+00]]).T bins = bins1 #change to bins2 to see results for bins2 def fit(x,a,m): # power-law fit (based on previous studies) return a*(x**m) coefs= np.linalg.lstsq(np.vstack([np.ones(len(bins[:,0])), np.log(bins[:,0]), bins[:,0]]).T, np.log(bins[:,1]))[0] # calculating fitting coefficients (a,m) y_predict = fit(bins[:,0],np.exp(coefs[0]),coefs[1]) # prediction based of fitted model model_plot = plt.loglog(bins[:,0],bins[:,1],'o',label="error") fit_line = plt.plot(bins[:,0],y_predict,'r', label="fit") plt.ylabel('Y (bins[:,1])') plt.xlabel('X (bins[:,0])') plt.title('model') plt.legend(loc='best') plt.show(model_plot,fit_line) def R_sqr (y,y_predict): # calculating R squared value to measure fitting accuracy rsdl = y - y_predict ss_res = np.sum(rsdl**2) ss_tot = np.sum((y-np.mean(y))**2) R2 = 1-(ss_res/ss_tot) R2 = np.around(R2,decimals=4) return R2 R2= R_sqr(bins[:,1],y_predict) print ('(R^2 = %s)' % (R2)) The fit formula for bins1[[x],[y]]: python: y = 0.337*(x)^1.223 (R^2 = 0.7773), excel: y = 0.289*(x)^1.174 (R^2 = 0.8548) The fit formula for bins2[[x],[y]]: python: y = 0.509*(x)^1.332 (R^2 = -1.753), excel: y = 0.311*(x)^1.174 (R^2 = 0.9116) And these are two sample data sets out of 30, I randomly see this fitting problem in my data and some have R-squared around "-150"!! Itried scipy "curve_fit" but I didn't get better results, in fact worse! Anyone knows how to get excel-like fit in python?
You are trying to calculate an R-squared using Y's that have not been converted to log-space. The following change gives reasonable R-squared values: R2 = R_sqr(np.log(bins[:,1]), np.log(y_predict))