Issue retrieiving value error `decode_predictions` expects a batch of predictions - python

I have the following code trying to perform predictions on part of resnet model. However, I am retrieving error.
def layer_input_shape(Model, layer_index):
input_shape = np.array(Model.layers[layer_index - 1].output_shape)
input_shape = np.ndarray.tolist(np.delete(input_shape, 0))
return input_shape
def resnet50_Model(Model, trainable=True):
input_shape = layer_input_shape(Model, 1)
input = tf.keras.layers.Input(shape=input_shape)
first_layer = Model.layers[0]
first_layer.trainable = trainable
out = first_layer(input)
for i in range(1, 12):
layer_i = Model.layers[i]
layer_i.trainable = trainable
out = layer_i(out)
out = Conv2D(filters=2, kernel_size=2, strides=(2,2), activation='relu')(out)
out = Flatten()(out)
out = Dense(units=2,activation='softmax')(out)
result_model = tf.keras.models.Model(inputs=[input], outputs=out)
return result_model
from tensorflow.keras.applications.resnet50 import preprocess_input, decode_predictions
img='/content/elephant.jpg'
img = image.load_img(img, target_size=(224, 224))
x = image.img_to_array(img)
x = np.expand_dims(x, axis=0)
x = preprocess_input(x)
preds = resnet_skip_model.predict(x)
print('Predicted:', decode_predictions(preds, top=3)[0])
Retrieving below error:
ValueError: `decode_predictions` expects a batch of predictions (i.e. a 2D array of shape (samples,
1000)). Found array with shape: (1, 3)

I added two output dense layer so I can only predict two classes and when I call decode it expects 1000 output last dense layer, therefore changed units from two to 1000
out = Dense(units=1000,activation='softmax')(out)

Related

Masking input for ConvLSTM1D

I am doing a binary regression problem using keras.
The input shape is: (None, 2, 94, 3) (channels is the last dimension)
I have the following architecture:
input1 = Input(shape=(time, n_rows, n_channels))
masking = Masking(mask_value=-999)(input1)
convlstm = ConvLSTM1D(filters=16, kernel_size=15,
data_format='channels_last',
activation="tanh")(masking)
dropout = Dropout(0.2)(convlstm)
flatten1 = Flatten()(dropout)
outputs = Dense(n_outputs, activation='sigmoid')(flatten1)
model = Model(inputs=input1, outputs=outputs)
model.compile(loss=keras.losses.BinaryCrossentropy(),
optimizer=tf.keras.optimizers.Adam(learning_rate=0.01))
However when training I get this error: Dimensions must be equal, but are 94 and 80 for '{{node conv_lstm1d/while/SelectV2}} = SelectV2[T=DT_FLOAT](conv_lstm1d/while/Tile, conv_lstm1d/while/mul_5, conv_lstm1d/while/Placeholder_2)' with input shapes: [?,94,16], [?,80,16], [?,80,16].
If I remove the masking layer this error disappears, what is the masking doing that triggers this error? Also the only way I was able to run the above architecture was with a kernel_size of 1.
Seems like the ConvLSTM1D layer needs a mask with the shape (samples, timesteps) according to the docs. The mask you are calculating has the shape (samples, time, rows). Here is one solution to fix your problem but I am not sure if it is the 'correct' way to go:
import tensorflow as tf
input1 = tf.keras.layers.Input(shape=(2, 94, 3))
masking = tf.keras.layers.Masking(mask_value=-999)(input1)
convlstm = tf.keras.layers.ConvLSTM1D(filters=16, kernel_size=15,
data_format='channels_last',
activation="tanh")(inputs = masking, mask = tf.reduce_all(masking._keras_mask, axis=-1))
dropout = tf.keras.layers.Dropout(0.2)(convlstm)
flatten1 = tf.keras.layers.Flatten()(dropout)
outputs = tf.keras.layers.Dense(1, activation='sigmoid')(flatten1)
model = tf.keras.Model(inputs=input1, outputs=outputs)
model.compile(loss=tf.keras.losses.BinaryCrossentropy(),
optimizer=tf.keras.optimizers.Adam(learning_rate=0.01))
This line mask = tf.reduce_all(masking._keras_mask, axis=-1) essentially reduces your mask to (samples, timesteps) by applying an AND operation to the last dimension of the mask. Alternatively, you could just create your own custom mask layer:
import tensorflow as tf
class Reduce(tf.keras.layers.Layer):
def __init__(self):
super(Reduce, self).__init__()
def call(self, inputs):
return tf.reduce_all(tf.reduce_any(tf.not_equal(inputs, -999), axis=-1, keepdims=False), axis=1)
input1 = tf.keras.layers.Input(shape=(2, 94, 3))
reduce_layer = Reduce()
boolean_mask = reduce_layer(input1)
convlstm = tf.keras.layers.ConvLSTM1D(filters=16, kernel_size=15,
data_format='channels_last',
activation="tanh")(inputs = input1, mask = boolean_mask)
dropout = tf.keras.layers.Dropout(0.2)(convlstm)
flatten1 = tf.keras.layers.Flatten()(dropout)
outputs = tf.keras.layers.Dense(1, activation='sigmoid')(flatten1)
model = tf.keras.Model(inputs=input1, outputs=outputs)
model.compile(loss=tf.keras.losses.BinaryCrossentropy(),
optimizer=tf.keras.optimizers.Adam(learning_rate=0.01))
print(model.summary(expand_nested=True))
x = tf.random.normal((50, 2, 94, 3))
y = tf.random.uniform((50, ), maxval=3, dtype=tf.int32)
model.fit(x, y)

Weird Discrepencies in Layer Shapes when Calling Model

I am trying to use the output of a variational autoencoder to aid in classifying images. I have pre-trainned the autoencoder and am now trying to load the weights in another script to use the weights of the encoder model for prediction. I am having a weird error when calling the encoder that I cannot make sense of. When I try to call the encoder on a sample, I am told that the shapes are incompatible:
ValueError: Input 0 of layer dense is incompatible with the layer: expected axis -1 of input shape to have value 1048576 but received input with shape (256, 8192). This is confusing because I have pre-trained the model fine and have instantiated the model like I did before (I copy/pasted the code). I have based my model on this YouTube tutorial.
I will also paste in my code:
########## Library Imports ##########
import os, sys
import tensorflow as tf
import numpy as np
from tensorflow.keras.layers import Conv2D, Input, Flatten, Dense, Lambda, Reshape, Conv2DTranspose
import keras
import keras.backend as K
from keras.models import Model
from PIL import Image
print(tf.version.VERSION)
img_height = 256 #chosen
img_width = 256
num_channels = 1 #grayscale
input_shape = (img_height, img_width, num_channels)
########## Load VAE Weights ##########
vae_path = os.path.join(os.getcwd(), 'vae_training')
checkpoint_path = os.path.join(vae_path, 'cp.ckpt')
print('vae_path listdir\n', os.listdir(vae_path))
#load patches
#patch_locs = sys.argv[1] #path to the patch folders
patch_locs = r'C:\Users\Daniel\Documents\GitHub\endo_git_v2\patches\single_wsi_for_local_parent'
patch_folders = os.listdir(patch_locs)
print(patch_folders)
########## INSTANTIATE MODEL AND LOAD WEIGHTS ##########
#REPARAMETERIZATION TRICK
# Define sampling function to sample from the distribution
# Reparameterize sample based on the process defined by Gunderson and Huang
# into the shape of: mu + sigma squared x eps
#This is to allow gradient descent to allow for gradient estimation accurately.
def sample_z(args):
z_mu, z_sigma = args
z_mu = tf.cast(z_mu, dtype=tf.float32)
z_sigma = tf.cast(z_sigma, dtype=tf.float32)
eps = K.random_normal(shape=(K.shape(z_mu)[0], K.int_shape(z_mu)[1]))
out = z_mu + K.exp(z_sigma / 2) * eps
return out
#Define custom loss
#VAE is trained using two loss functions reconstruction loss and KL divergence
#Let us add a class to define a custom layer with loss
class CustomLayer(keras.layers.Layer):
def vae_loss(self, x, z_decoded):
x = K.flatten(x)
z_decoded = K.flatten(z_decoded)
# Reconstruction loss (as we used sigmoid activation we can use binarycrossentropy)
recon_loss = keras.metrics.binary_crossentropy(x, z_decoded)
recon_loss = tf.cast(recon_loss, dtype=tf.float32)
# KL divergence
kl_loss = -5e-4 * K.mean(1 + z_sigma - K.square(z_mu) - K.exp(z_sigma), axis=-1)
kl_loss = tf.cast(kl_loss, dtype=tf.float32)
return K.mean(recon_loss + kl_loss)
# add custom loss to the class
def call(self, inputs):
x = inputs[0]
z_decoded = inputs[1]
loss = self.vae_loss(x, z_decoded)
self.add_loss(loss, inputs=inputs)
return x
# # ================= #############
# # Encoder
#Let us define 4 conv2D, flatten and then dense
# # ================= ############
latent_dim = 256 # Number of latent dim parameters
input_img = Input(shape=input_shape, name='encoder_input')
print(input_img.shape)
x = Conv2D(32, 3, padding='same', activation='relu')(input_img)
print(x.shape)
x = Conv2D(64, 3, padding='same', activation='relu',strides=(2, 2))(x)
print(x.shape)
x = Conv2D(64, 3, padding='same', activation='relu')(x)
print(x.shape)
x = Conv2D(64, 3, padding='same', activation='relu')(x)
print(x.shape)
conv_shape = K.int_shape(x) #Shape of conv to be provided to decoder (taken after all the conv layers)
print(conv_shape)
#Flatten
x = Flatten()(x)
print(x.shape)
x = Dense(32, activation='relu')(x)
print(x.shape)
# Two outputs, for latent mean and log variance (std. dev.)
#Use these to sample random variables in latent space to which inputs are mapped.
z_mu = Dense(latent_dim, name='latent_mu')(x) #Mean values of encoded input
z_sigma = Dense(latent_dim, name='latent_sigma')(x) #Std dev. (variance) of encoded
z_mu = tf.cast(z_mu, dtype=tf.float32)
z_sigma = tf.cast(z_sigma, dtype=tf.float32)
print('z_mu.dtype:', z_mu.dtype)
print('z_sigma.dtype:', z_sigma.dtype)
# sample vector from the latent distribution
# z is the labda custom layer we are adding for gradient descent calculations
# using mu and variance (sigma)
z = Lambda(sample_z, output_shape=(latent_dim, ), name='z')([z_mu, z_sigma])
print('z.dtype:', z.dtype)
#Z (lambda layer) will be the last layer in the encoder.
# Define and summarize encoder model.
encoder = Model(input_img, [z_mu, z_sigma, z], name='encoder')
print(encoder.summary())
# ================= ###########
# Decoder
#
# ================= #################
# decoder takes the latent vector as input
decoder_input = Input(shape=(latent_dim, ), name='decoder_input')
# Need to start with a shape that can be remapped to original image shape as
#we want our final utput to be same shape original input.
#So, add dense layer with dimensions that can be reshaped to desired output shape
x = Dense(conv_shape[1]*conv_shape[2]*conv_shape[3], activation='relu')(decoder_input)
# reshape to the shape of last conv. layer in the encoder, so we can
x = Reshape((conv_shape[1], conv_shape[2], conv_shape[3]))(x)
# upscale (conv2D transpose) back to original shape
# use Conv2DTranspose to reverse the conv layers defined in the encoder
x = Conv2DTranspose(32, 3, padding='same', activation='relu',strides=(2, 2))(x)
#Can add more conv2DTranspose layers, if desired.
#Using sigmoid activation
x = Conv2DTranspose(num_channels, 3, padding='same', activation='sigmoid', name='decoder_output')(x)
# Define and summarize decoder model
decoder = Model(decoder_input, x, name='decoder')
decoder.summary()
# apply the decoder to the latent sample
z_decoded = decoder(z)
# apply the custom loss to the input images and the decoded latent distribution sample
y = CustomLayer()([input_img, z_decoded])
# y is basically the original image after encoding input img to mu, sigma, z
# and decoding sampled z values.
#This will be used as output for vae
vae = Model(input_img, y, name='vae')
# Compile VAE
vae.compile(optimizer='adam', loss=None, experimental_run_tf_function=False)
vae.summary()
model_weights_dir = r'C:\Users\Daniel\Documents\GitHub\endo_git_v2\vae_training'
checkpoint_path = os.path.join(model_weights_dir, 'cp.ckpt')
print(os.listdir(model_weights_dir))
#vae.load_weights(checkpoint_path)
##################################################################
########## Open all WSI, then Open all Patches ##########
#for wsi in patch_folders: #loops through all the wsi folders
wsi = patch_folders[0]
#start of wsi loop
print('wsi:', wsi)
current_wsi_directory = os.path.join(patch_locs, wsi) #take the current wsi
print('current_wsi_directory:', current_wsi_directory)
patches = os.listdir(current_wsi_directory)
latent_shape = (203, 147, 256)
latent_wsi = np.zeros(latent_shape) #initialized placeholders for latent representations
row = 0
col = 0
for i in range(1):#len(patches)): #should be 29841 every time
#load patch as numpy array
patch_path = os.path.join(current_wsi_directory, '{}_{}.jpeg'.format(wsi, i)) #numerical order not alphabetical
print('patch_path:', patch_path)
image = Image.open(patch_path)
data = np.asarray(image)
#emulate rescale of 1/.255
data = data / 255.
data = np.expand_dims(data, axis=-1)
print('data.shape:', data.shape)
encoder(data, training=False)
Any help or tips are very much appreciated
I solved my issue. Long story short that I'm an idiot. I was passing in a numpy array that was (256,256,1) in size (note that the batch dimension was missing). Reshaping to (1, 256, 256, 1) solved my issue (note that the first 1 is the batch dimension)

Why my DataGenerator iterates on more data than the size of dataset and give IndexError: list index out of range?

I'm trying to implement a network with keras and tensorflow back-end, I'm using transfer learning model (VGG16), my dataset is a medical images dataset so instead of having only one image, I have a series of slices, so my dataset is organized in a folder and each serie is a np.array() with size (nb_slices,512,512,3).
My dataset is composed by 1130 train samples and 120 valid samples, so I don't think that datas is the problem.
I tried to create a dataGenerator to load my image series in my model without a batch-size problem (I used this Training a Keras model from batches of .npy files using generator? to make my generator class) , (and I reshaped my volumes with size (nb_slices, 224,224,3))
then I tried to use transfer learning, and custom a VGG16 network with 1 more convolution layer, MaxPooling, Flatten, Dense, Dropout and final Dense layer.
When I start training, it seems there is no problem, but at a moment it returns IndexError: list index out of range, and I saw that DataGenerator iterates more than the size of dataset but I don't know why...
Which part could cause it ?
Here is my DataGenerator
INPUT_DIM = 224
MAX_PIXEL_VAL = 255
MEAN = 58.09
STDDEV = 49.73
class DataGenerator(keras.utils.Sequence):
def __init__(self, file_list, labels, data_loc):
self.listIDs = file_list
self.labels = labels
self.data_loc = data_loc
self.on_epoch_end()
def __len__(self):
return int(len(self.listIDs))
def __getitem__(self, index):
indexes = self.indexes[index:(index + 1)]
list_IDS_temp = [self.listIDs[k] for k in indexes]
X, y = self.__data_generation(list_IDS_temp)
return X, y
def on_epoch_end(self):
self.indexes = np.arange(len(self.listIDs))
def __data_generation(self, list_IDS_temp):
for ID in list_IDS_temp:
vol = np.load(self.data_loc + ID + '.npy')
nb_slices = vol.shape[0]
pad = int((vol.shape[2] - INPUT_DIM) / 2)
vol = vol[:, pad:-pad, pad:-pad]
# standardize
vol = (vol - np.min(vol)) / (np.max(vol) - np.min(vol)) * MAX_PIXEL_VAL
# normalize
vol = (vol - MEAN) / STDDEV
# convert to RGB
vol = np.stack((vol,) * 3, axis=3)
y = np.empty(nb_slices, dtype=int)
# y = self.labels[ID]
for i in range(nb_slices):
y[i] = self.labels[int(ID)]
return vol, keras.utils.to_categorical(y, num_classes=2)
and my model:
train_set = DataGenerator(df_train['exams'].tolist(), df_train['labels'].tolist(), all_file_loc_train)
valid_set = DataGenerator(df_val['exams'].tolist(), df_val['labels'].tolist(), all_file_loc_val)
model = VGG16(weights='imagenet', include_top=False, input_shape=(224, 224, 3)) # , input_shape=(224, 224, 3)
layer_dict = dict([(layer.name, layer) for layer in model.layers])
x = layer_dict['block2_pool'].output
x = Conv2D(filters=64, kernel_size=(3, 3), activation='relu')(x)
x = MaxPooling2D(pool_size=(2, 2))(x)
x = Flatten()(x)
x = Dense(256, activation='relu')(x)
x = Dropout(0.4)(x)
x = Dense(2, activation='softmax')(x)
custom_model = Model(inputs=model.input, outputs=x)
for layer in custom_model.layers[:7]:
layer.trainable = False
custom_model.compile(loss='categorical_crossentropy', optimizer=optimizers.SGD(lr=0.0001, momentum=0.9),
metrics=["accuracy"])
results = custom_model.fit_generator(generator=train_set, validation_data=valid_set, epochs=50, verbose=2)
I expected accuracy around 80-90% of accuracy but it seems that something goes wrong in my DataGenerator and I don't know what. Please I need help...

Tensorflow 2.0 Input being creating with first shape element as None

I'm trying to create an Input in the following way:
Tx = 318
n_freq = 101
input_anchor = Input(shape=(n_freq,Tx), name='input_anchor')
When I run:
input_anchor.shape
I get:
TensorShape([None, 101, 318])
Later when I try to use that input in my model I get the following error:
TypeError: Cannot iterate over a tensor with unknown first dimension.
In Tensor flow's opy.py I found this code block which is most likely where my code is failing:
def __iter__(self):
if not context.executing_eagerly():
raise TypeError(
"Tensor objects are only iterable when eager execution is "
"enabled. To iterate over this tensor use tf.map_fn.")
shape = self._shape_tuple()
if shape is None:
raise TypeError("Cannot iterate over a tensor with unknown shape.")
if not shape:
raise TypeError("Cannot iterate over a scalar tensor.")
if shape[0] is None:
raise TypeError(
"Cannot iterate over a tensor with unknown first dimension.")
for i in xrange(shape[0]):
yield self[i]
If you want to see my whole model implementation here it is:
def base_model(input_shape):
X_input = Input(shape = input_shape)
# Step 1: CONV layer (≈4 lines)
X = Conv1D(196,kernel_size = 15, strides = 4)(X_input) # CONV1D
X = BatchNormalization()(X) # Batch normalization
X = Activation('relu')(X) # ReLu activation
X = Dropout(rate = 0.2)(X) # dropout (use 0.8)
# Step 2: First GRU Layer (≈4 lines)
X = LSTM(units = 128, return_sequences = True)(X_input) # GRU (use 128 units and return the sequences)
X = Dropout(rate = 0.2)(X) # dropout (use 0.8)
X = BatchNormalization()(X) # Batch normalization
# Step 3: Second GRU Layer (≈4 lines)
X = LSTM(units = 128, return_sequences = True)(X) # GRU (use 128 units and return the sequences)
X = Dropout(rate = 0.2)(X) # dropout (use 0.8)
X = BatchNormalization()(X) # Batch normalization
X = Dropout(rate = 0.2)(X) # dropout (use 0.8)
# Step 4: Third GRU Layer (≈4 lines)
X = LSTM(units = 128)(X) # GRU (use 128 units and return the sequences)
X = Dropout(rate = 0.2)(X) # dropout (use 0.8)
X = BatchNormalization()(X) # Batch normalization
X = Dropout(rate = 0.2)(X) # dropout (use 0.8)
X = Dense(64)(X)
base_model = Model(inputs = X_input, outputs = X)
return base_model
def speech_model(input_shape, base_model):
#get triplets vectors
input_anchor = Input(shape=input_shape, name='input_anchor')
input_positive = Input(shape=input_shape, name='input_positive')
input_negative = Input(shape=input_shape, name='input_negative')
vec_anchor = base_model(input_anchor)
vec_positive = base_model(input_positive)
vec_negative = base_model(input_negative)
#Concatenate vectors vec_positive, vec_negative
concat_layer = concatenate([vec_anchor,vec_positive,vec_negative], axis = -1, name='concat_layer')
model = Model(inputs = [input_anchor,input_positive,input_negative], outputs = concat_layer, name = 'speech_to_vec')
#model = Model(inputs = [input_anchor,input_positive,input_negative], outputs = [vec_anchor,vec_positive,vec_negative], name = 'speech_to_vec')
#model = Model(inputs = [input_anchor,input_positiv], outputs=vec_anchor)
return model
And the line that breaks it all and generates the error mentioned before
speech_model = speech_model(input_shape = (n_freq, Tx), base_model = base_model)
Thanks a lot for reading, any kind of help towards solving this is much appreciated.
Your base_model(input_shape) function requires you to pass in tuple, but you pass Input Layer to it.
# change
vec_anchor = base_model(input_anchor)
vec_positive = base_model(input_positive)
vec_negative = base_model(input_negative)
# to
vec_anchor = base_model(input_shape)
vec_positive = base_model(input_shape)
vec_negative = base_model(input_shape)
In addition, you need to correct the input and output of the final model since concatenate can't concat multiple model type.
concat_layer = concatenate([vec_anchor.output,vec_positive.output,vec_negative.output], axis = -1, name='concat_layer')
model = Model(inputs = [vec_anchor.input,vec_positive.input,vec_negative.input], outputs = concat_layer, name = 'speech_to_vec')

ValueError: Error when checking model target: expected dense_4

i have an error:
ValueError: Error when checking model target: expected dense_4 to have shape (None, 2) but got array with shape (12956, 1)
When i run this script.
def image_text_model(image_features, text_features, n_classes):
# fine-tune the last layer
image_features = Input(shape=image_features.shape[1:], dtype='float32')
n_text_features = text_features.shape[1]
text_features = Input(shape=text_features.shape[1:], dtype='float32')
# text model
x_text = Dense(256, activation='elu', kernel_regularizer=l2(1e-5))(text_features)
x_text = Dropout(0.5)(x_text)
# image model
x_img = Dense(256, activation='elu')(image_features)
x_img = Dropout(0.5)(x_img)
x_img = Dense(256, activation='elu')(x_img)
x_img = Dropout(0.5)(x_img)
merged = concatenate([x_img, x_text])
predictions = Dense(n_classes, activation='softmax')(merged)
model = Model(inputs=[image_features, text_features], outputs=[predictions])
model.compile(optimizer='adam',
loss='categorical_crossentropy',
metrics=['accuracy'])
return model
# dev
df = pd.read_csv(os.path.join(data_dir, 'amazon_products_dev.csv'))
dev_image_list = df['image_file'].values
dev_text = df['title'].values.tolist()
dev_categories = df['product_category'].values
# encode labels (binary labels)
encoder = LabelBinarizer()
train_labels = encoder.fit_transform(train_categories)
dev_labels = encoder.transform(dev_categories)
# get features from a pre-trained resnet model
vec = ResNetVectorizer(batch_size=500,
image_dir=image_dir,
use_cache=True,
cache_dir=cache_dir)
train_image_features = vec.transform(train_image_list)
dev_image_features = vec.transform(dev_image_list)
# get text features
tfidf = TfidfVectorizer(ngram_range=(1,1), stop_words='english', max_features=5000)
train_text_features = tfidf.fit_transform(train_text)
dev_text_features = tfidf.transform(dev_text).toarray()
# fine-tune the last layer
n_classes = encoder.classes_.shape[0]
model = image_text_model(train_image_features, train_text_features, n_classes)
data_gen = sparse_batch_generator(train_image_features, train_text_features, train_labels, shuffle=True)
steps_per_epoch = int(np.ceil(train_image_features.shape[0]/32.))
model.fit_generator(data_gen,
steps_per_epoch=steps_per_epoch,
epochs=50,
validation_data=[[dev_image_features, dev_text_features], dev_labels])
I See this topic : ValueError: Error when checking model target: expected dense_4 to have shape (None, 4) but got array with shape (13252, 1)
But i don't know how can use it into my script.
Thank you in advance for your answer.
Currently you must only have two classes as you output is expecting (None, 2). However, when working with two classes, you matrix structure can either be
[[0,1],
[1,0],
[1,0]]
or
[[0],
[1],
[1]]
Sklearns LabelBinarizer converts a matrix with two classes into a column of zeros and one's. 0 for class one and 1 for class two. So your output layer should just be
predictions = Dense(1, activation='sigmoid')(merged)

Categories