Pandas Transform - python

let's say I have the following dataframe:
metric value last_1_day last_7_day
points 10 3 9
assists 15 2 12
rebounds 12 1 5
I want to transpose this and concatenate thre values within metric with the other columns. So the result would have 1 row and 9 columns. For example:
points_value points_last_1_day points_last_7_day assists_value assists_last_1_day assists_last_7_day rebounds_value rebounds_last_1_day rebounds_last_7_day
10 3 9 15 2 12 12 1 5
What is the best way to do this in pandas?

Try with:
df = df.set_index('metric').stack().to_frame().T
df.columns = ['_'.join(a) for a in df.columns]
Output:
points_value points_last_1_day points_last_7_day assists_value assists_last_1_day assists_last_7_day rebounds_value rebounds_last_1_day rebounds_last_7_day
0 10 3 9 15 2 12 12 1 5

Related

Column-wise subtraction calculations in python 3

It seems simple but I can’t seem to find an efficient way to solve this in Python 3: Is there is a loop I can use in my dataframe that takes every column after the current column (starting with the 1st column), and subtracts it from the current column, so that I can add that resulting column to a new dataframe?
This is what my data looks like:
This is what I have so far, but when running run_analysis my "result" equation is bringing up an error, and I do not know how to store the results in a new dataframe. I'm a beginner at all of this so any help would be much appreciated.
storage = [] #container that will store the results of the subtracted columns
def subtract (a,b): #function to call to do the column-wise subtractions
return a-b
def run_analysis (frame, store):
for first_col_index in range(len(frame)): #finding the first column to use
temp=[] #temporary place to store the column-wise values from the analysis
for sec_col_index in range(len(frame)): #finding the second column to subtract from the first column
if (sec_col_index <= first_col_index): #if the column is below the current column or is equal to
#the current column, then skip to next column
continue
else:
result = [r for r in map(subtract, frame[sec_col_index], frame[first_col_index])]
#if column above our current column, the subtract values in the column and keep the result in temp
temp.append(result)
store.append(temp) #save the complete analysis in the store
Something like this?
#dummy ddataframe
df = pd.DataFrame({'a':list(range(10)), 'b':list(range(10,20)), 'c':list(range(10))})
print(df)
output:
a b c
0 0 10 0
1 1 11 1
2 2 12 2
3 3 13 3
4 4 14 4
5 5 15 5
6 6 16 6
7 7 17 7
8 8 18 8
9 9 19 9
Now iterate over pairs of columns and subtract them while assigning another column to the dataframe
for c1, c2 in zip(df.columns[:-1], df.columns[1:]):
df[f'{c2}-{c1}'] = df[c2]-df[c1]
print(df)
output:
a b c b-a c-b
0 0 10 0 10 -10
1 1 11 1 10 -10
2 2 12 2 10 -10
3 3 13 3 10 -10
4 4 14 4 10 -10
5 5 15 5 10 -10
6 6 16 6 10 -10
7 7 17 7 10 -10
8 8 18 8 10 -10
9 9 19 9 10 -10

Python Pandas: Sort an alphanumeric dataframe

I currently have a dataframe as following.
No
ID
Sub_No
Weight
1
a23mcsk
2
30
2
smcd302
3
60
3
a23mcsk
1
24
4
smcd302
2
45
5
a23mcsk
3
18
6
smcd302
1
12
I want to be able to sort this dataframe first by 'ID' and then by the 'Sub_No'. Is there a way I can do this on Python using Pandas?
Expected Result:
No
ID
Sub_No
Weight
3
a23mcsk
1
24
1
a23mcsk
2
30
5
a23mcsk
3
18
6
smcd302
1
12
4
smcd302
2
45
2
smcd302
3
60
Use helper column here for correct sorting by numeric values from ID with Sub_No:
df['new'] = df['ID'].str.extract('(\d+)').astype(int)
df = df.sort_values(by=['new', 'Sub_No'], ascending=False).drop('new', axis=1)
Another idea with natural sorting:
import natsort as ns
df['new'] = pd.Categorical(df['ID'], ordered=True, categories= ns.natsorted(df['a'].unique()))
df = df.sort_values(by=['new', 'Sub_No'], ascending=False).drop('new', axis=1)
Use:
df.sort_values(by=['ID', 'Sub_No'])
You can use
df.sort_values(by=['ID', 'Sub_No'], ascending=True)

Retrieving Unknown Column Names from DataFrame.apply

How I can retrieve column names from a call to DataFrame apply without knowing them in advance?
What I'm trying to do is apply a mapping from column names to functions to arbitrary DataFrames. Those functions might return multiple columns. I would like to end up with a DataFrame that contains the original columns as well as the new ones, the amount and names of which I don't know at build-time.
Other solutions here are Series-based. I'd like to do the whole frame at once, if possible.
What am I missing here? Are the columns coming back from apply lost in destructuring unless I know their names? It looks like assign might be useful, but will likely require a lot of boilerplate.
import pandas as pd
def fxn(col):
return pd.Series(col * 2, name=col.name+'2')
df = pd.DataFrame({'A': range(0, 10), 'B': range(10, 0, -1)})
print(df)
# [Edit:]
# A B
# 0 0 10
# 1 1 9
# 2 2 8
# 3 3 7
# 4 4 6
# 5 5 5
# 6 6 4
# 7 7 3
# 8 8 2
# 9 9 1
df = df.apply(fxn)
print(df)
# [Edit:]
# Observed: columns changed in-place.
# A B
# 0 0 20
# 1 2 18
# 2 4 16
# 3 6 14
# 4 8 12
# 5 10 10
# 6 12 8
# 7 14 6
# 8 16 4
# 9 18 2
df[['A2', 'B2']] = df.apply(fxn)
print(df)
# [Edit: I am doubling column values, so missing something, but the question about the column counts stands.]
# Expected: new columns added. How can I do this at runtime without knowing column names?
# A B A2 B2
# 0 0 40 0 80
# 1 4 36 8 72
# 2 8 32 16 64
# 3 12 28 24 56
# 4 16 24 32 48
# 5 20 20 40 40
# 6 24 16 48 32
# 7 28 12 56 24
# 8 32 8 64 16
# 9 36 4 72 8
You need to concat the result of your function with the original df.
Use pd.concat:
In [8]: x = df.apply(fxn) # Apply function on df and store result separately
In [10]: df = pd.concat([df, x], axis=1) # Concat with original df to get all columns
Rename duplicate column names by adding suffixes:
In [82]: from collections import Counter
In [38]: mylist = df.columns.tolist()
In [41]: d = {a:list(range(1, b+1)) if b>1 else '' for a,b in Counter(mylist).items()}
In [62]: df.columns = [i+str(d[i].pop(0)) if len(d[i]) else i for i in mylist]
In [63]: df
Out[63]:
A1 B1 A2 B2
0 0 10 0 20
1 1 9 2 18
2 2 8 4 16
3 3 7 6 14
4 4 6 8 12
5 5 5 10 10
6 6 4 12 8
7 7 3 14 6
8 8 2 16 4
9 9 1 18 2
You can assign directly with:
df[df.columns + '2'] = df.apply(fxn)
Outut:
A B A2 B2
0 0 10 0 20
1 1 9 2 18
2 2 8 4 16
3 3 7 6 14
4 4 6 8 12
5 5 5 10 10
6 6 4 12 8
7 7 3 14 6
8 8 2 16 4
9 9 1 18 2
Alternatively, you can leverage the #MayankPorwal answer by using .add_suffix('2') to the output from your apply function:
pd.concat([df, df.apply(fxn).add_suffix('2')], axis=1)
which will return the same output.
In your function, name=col.name+'2' is doing nothing (it's basically returning just col * 2). That's because apply returns the values back to the original column.
Anyways, it's possible to take the MayankPorwal approach: pd.concat + managing duplicated columns (make them unique). Another possible way to do that:
# Use pd.concat as mentioned in the first answer from Mayank Porwal
df = pd.concat([df, df.apply(fxn)], axis=1)
# Rename duplicated columns
suffix = (pd.Series(df.columns).groupby(df.columns).cumcount()+1).astype(str)
df.columns = df.columns + suffix.rename('1', '')
which returns the same output, and additionally manage further duplicated columns.
Answer on the behalf of OP:
This code does what I wanted:
import pandas as pd
# Simulated business logic: for an input row, return a number of columns
# related to the input, and generate names for them, such that we don't
# know the shape of the output or the names of its columns before the call.
def fxn(row):
length = row[0]
indicies = [row.index[0] + str(i) for i in range(0, length)]
series = pd.Series([i for i in range(0, length)], index=indicies)
return series
# Sample data: 0 to 18, inclusive, counting by 2.
df1 = pd.DataFrame(list(range(0, 20, 2)), columns=['A'])
# Randomize the rows to simulate different input shapes.
df1 = df1.sample(frac=1)
# Apply fxn to rows to get new columns (with expand). Concat to keep inputs.
df1 = pd.concat([df1, df1.apply(fxn, axis=1, result_type='expand')], axis=1)
print(df1)

How do I perform rolling division with several columns in Pandas?

I'm having problems with pd.rolling() method that returns several outputs even though the function returns a single value.
My objective is to:
Calculate the absolute percentage difference between two DataFrames with 3 columns in each df.
Sum all values
I can do this using pd.iterrows(). But working with larger datasets makes this method ineffective.
This is the test data im working with:
#import libraries
import pandas as pd
import numpy as np
#create two dataframes
values = {'column1': [7,2,3,1,3,2,5,3,2,4,6,8,1,3,7,3,7,2,6,3,8],
'column2': [1,5,2,4,1,5,5,3,1,5,3,5,8,1,6,4,2,3,9,1,4],
"column3" : [3,6,3,9,7,1,2,3,7,5,4,1,4,2,9,6,5,1,4,1,3]
}
df1 = pd.DataFrame(values)
df2 = pd.DataFrame([[2,3,4],[3,4,1],[3,6,1]])
print(df1)
print(df2)
column1 column2 column3
0 7 1 3
1 2 5 6
2 3 2 3
3 1 4 9
4 3 1 7
5 2 5 1
6 5 5 2
7 3 3 3
8 2 1 7
9 4 5 5
10 6 3 4
11 8 5 1
12 1 8 4
13 3 1 2
14 7 6 9
15 3 4 6
16 7 2 5
17 2 3 1
18 6 9 4
19 3 1 1
20 8 4 3
0 1 2
0 2 3 4
1 3 4 1
2 3 6 1
This method produces the output I want by using pd.iterrows()
RunningSum = []
for index, rows in df1.iterrows():
if index > 3:
Div = abs((((df2 / df1.iloc[index-3+1:index+1].reset_index(drop="True").values)-1)*100))
Average = Div.sum(axis=0)
SumOfAverages = np.sum(Average)
RunningSum.append(SumOfAverages)
#printing my desired output values
print(RunningSum)
[991.2698412698413,
636.2698412698412,
456.19047619047626,
616.6666666666667,
935.7142857142858,
627.3809523809524,
592.8571428571429,
350.8333333333333,
449.1666666666667,
1290.0,
658.531746031746,
646.031746031746,
597.4603174603175,
478.80952380952385,
383.0952380952381,
980.5555555555555,
612.5]
Finally, below is my attemt to use pd.rolling() so that I dont need to loop through each row.
def SumOfAverageFunction(vals):
Div = abs((((df2.values / vals.reset_index(drop="True").values)-1)*100))
Average = Div.sum()
SumOfAverages = np.sum(Average)
return SumOfAverages
RunningSums = df1.rolling(window=3,axis=0).apply(SumOfAverageFunction)
Here is my problem because printing RunningSums from above outputs several values and is not close to the results I'm getting using iterrows method. How do I solve this?
print(RunningSums)
column1 column2 column3
0 NaN NaN NaN
1 NaN NaN NaN
2 702.380952 780.000000 283.333333
3 533.333333 640.000000 533.333333
4 1200.000000 475.000000 403.174603
5 833.333333 1280.000000 625.396825
6 563.333333 760.000000 1385.714286
7 346.666667 386.666667 1016.666667
8 473.333333 573.333333 447.619048
9 533.333333 1213.333333 327.619048
10 375.000000 746.666667 415.714286
11 408.333333 453.333333 515.000000
12 604.166667 338.333333 1250.000000
13 1366.666667 577.500000 775.000000
14 847.619048 1400.000000 683.333333
15 314.285714 733.333333 455.555556
16 533.333333 441.666667 474.444444
17 347.619048 616.666667 546.666667
18 735.714286 466.666667 1290.000000
19 350.000000 488.888889 875.000000
20 525.000000 1361.111111 1266.666667
It's just the way rolling behaves, it's going to window around all of the columns and I don't know that there is a way around it. One solution is to apply rolling to a single column, and use the indexes from those windows to slice the dataframe inside your function. Still expensive, but probably not as bad as what you're doing.
Also the output of your first method looks wrong. You're actually starting your calculations a few rows too late.
import numpy as np
def SumOfAverageFunction(vals):
return (abs(np.divide(df2.values, df1.loc[vals.index].values)-1)*100).sum()
vals = df1.column1.rolling(3)
vals.apply(SumOfAverageFunction, raw=False)

Python pandas constructing dataframe by looping over columns

I am trying to develop a new panda dataframe based on data I got from an existing dataframe and then taking into account the previously calculated value in the new dataframe.
As an example, here are two dataframes with the same size.
df1 = pd.DataFrame(np.random.randint(0,10, size = (5, 4)), columns=['1', '2', '3', '4'])
df2 = pd.DataFrame(np.zeros(df1.shape), index=df1.index, columns=df1.columns)
Then I created a list which starts as a starting basis for my second dataframe df2
L = [2,5,6,7]
df2.loc[0] = L
Then for the remaining rows of df2 I want to take the value from the previous time step (df2) and add the value of df1.
for i in df2.loc[1:]:
df2.ix[i] = df2.ix[i-1] + df1
As an example my dataframes should look like this:
>>> df1
1 2 3 4
0 4 6 0 6
1 7 0 7 9
2 9 1 9 9
3 5 2 3 6
4 0 3 2 9
>>> df2
1 2 3 4
0 2 5 6 7
1 9 5 13 16
2 18 6 22 25
3 23 8 25 31
4 23 11 27 40
I know there is something wrong with the indication of indexes in the for loop but I cannot figure out how the argument must be formulated. I would be very thankful for any help on this.
this is a simple cumsum.
df2 = df1.copy()
df2.loc[0] = [2,5,6,7]
desired_df = df2.cumsum()

Categories