Pandas: sum column until condition met in other column - python

I need to sum the value column until I hit a break.
df = pd.DataFrame({'value': [1,2,3,4,5,6,7,8], 'break': [0,0,1,0,0,1,0,0]})
value break
0 1 0
1 2 0
2 3 1
3 4 0
4 5 0
5 6 1
6 7 0
7 8 0
Expected output
value break
0 6 1
1 15 1
I was thinking a group by but I can't seem to get anywhere with it. I don't even need the break columns at the end.

You're on the right track, try groupby on reverse cumsum:
(df.groupby(df['break'][::-1].cumsum()[::-1],
as_index=False, sort=False)
.sum()
.query('`break` != 0') # remove this for full data
)
Output:
value break
0 6 1
1 15 1

Related

Sort column names using wildcard using pandas

I have a big dataframe with more than 100 columns. I am sharing a miniature version of my real dataframe below
ID rev_Q1 rev_Q5 rev_Q4 rev_Q3 rev_Q2 tx_Q3 tx_Q5 tx_Q2 tx_Q1 tx_Q4
1 1 1 1 1 1 1 1 1 1 1
2 1 1 1 1 1 1 1 1 1 1
I would like to do the below
a) sort the column names based on Quarters (ex:Q1,Q2,Q3,Q4,Q5..Q100..Q1000) for each column pattern
b) By column pattern, I mean the keyword that is before underscore which is rev and tx.
So, I tried the below but it doesn't work and it also shifts the ID column to the back
df = df.reindex(sorted(df.columns), axis=1)
I expect my output to be like as below. In real time, there are more than 100 columns with more than 30 patterns like rev, tx etc. I want my ID column to be in the first position as shown below.
ID rev_Q1 rev_Q2 rev_Q3 rev_Q4 rev_Q5 tx_Q1 tx_Q2 tx_Q3 tx_Q4 tx_Q5
1 1 1 1 1 1 1 1 1 1 1
2 1 1 1 1 1 1 1 1 1 1
For the provided example, df.sort_index(axis=1) should work fine.
If you have Q values higher that 9, use natural sorting with natsort:
from natsort import natsort_key
out = df.sort_index(axis=1, key=natsort_key)
Or using manual sorting with np.lexsort:
idx = df.columns.str.split('_Q', expand=True, n=1)
order = np.lexsort([idx.get_level_values(1).astype(float), idx.get_level_values(0)])
out = df.iloc[:, order]
Something like:
new_order = list(df.columns)
new_order = ['ID'] + sorted(new_order.remove("ID"))
df = df[new_order]
we manually put "ID" in front and then sort what is remaining
The idea is to create a dataframe from the column names. Create two columns: one for Variable and another one for Quarter number. Finally sort this dataframe by values then extract index.
idx = (df.columns.str.extract(r'(?P<V>[^_]+)_Q(?P<Q>\d+)')
.fillna(0).astype({'Q': int})
.sort_values(by=['V', 'Q']).index)
df = df.iloc[:, idx]
Output:
>>> df
ID rev_Q1 rev_Q2 rev_Q3 rev_Q4 rev_Q5 tx_Q1 tx_Q2 tx_Q3 tx_Q4 tx_Q5
0 1 1 1 1 1 1 1 1 1 1 1
1 2 1 1 1 1 1 1 1 1 1 1
>>> (df.columns.str.extract(r'(?P<V>[^_]+)_Q(?P<Q>\d+)')
.fillna(0).astype({'Q': int})
.sort_values(by=['V', 'Q']))
V Q
0 0 0
1 rev 1
5 rev 2
4 rev 3
3 rev 4
2 rev 5
9 tx 1
8 tx 2
6 tx 3
10 tx 4
7 tx 5

Count number of consecutive rows that are greater than current row value but less than the value from other column

Say I have the following sample dataframe (there are about 25k rows in the real dataframe)
df = pd.DataFrame({'A' : [0,3,2,9,1,0,4,7,3,2], 'B': [9,8,3,5,5,5,5,8,0,4]})
df
A B
0 0 9
1 3 8
2 2 3
3 9 5
4 1 5
5 0 5
6 4 5
7 7 8
8 3 0
9 2 4
For the column A I need to know how many next and previous rows are greater than current row value but less than value in column B.
So my expected output is :
A B next count previous count
0 9 2 0
3 8 0 0
2 3 0 1
9 5 0 0
1 5 0 0
0 5 2 1
4 5 1 0
7 8 0 0
3 0 0 2
2 4 0 0
Explanation :
First row is calculated as : since 3 and 2 are greater than 0 but less than corresponding B value 8 and 3
Second row is calculated as : since next value 2 is not greater than 3
Third row is calculated as : since 9 is greater than 2 but not greater than its corresponding B value
Similarly, previous count is calculated
Note : I know how to solve this problem by looping using list comprehension or using the pandas apply method but still I won't mind a clear and concise apply approach. I was looking for a more pandaic approach.
My Solution
Here is the apply solution, which I think is inefficient. Also, as people said that there might be no vector solution for the question. So as mentioned, a more efficient apply solution will be accepted for this question.
This is what I have tried.
This function gets the number of previous/next rows that satisfy the condition.
def get_prev_next_count(row):
next_nrow = df.loc[row['index']+1:,['A', 'B']]
prev_nrow = df.loc[:row['index']-1,['A', 'B']][::-1]
if (next_nrow.size == 0):
return 0, ((prev_nrow.A > row.A) & (prev_nrow.A < prev_nrow.B)).argmin()
if (prev_nrow.size == 0):
return ((next_nrow.A > row.A) & (next_nrow.A < next_nrow.B)).argmin(), 0
return (((next_nrow.A > row.A) & (next_nrow.A < next_nrow.B)).argmin(), ((prev_nrow.A > row.A) & (prev_nrow.A < prev_nrow.B)).argmin())
Generating output :
df[['next count', 'previous count']] = df.reset_index().apply(get_prev_next_count, axis=1, result_type="expand")
Output :
This gives us the expected output
df
A B next count previous count
0 0 9 2 0
1 3 8 0 0
2 2 3 0 1
3 9 5 0 0
4 1 5 0 0
5 0 5 2 1
6 4 5 1 0
7 7 8 0 0
8 3 0 0 2
9 2 4 0 0
I made some optimizations:
You don't need to reset_index() you can access the index with .name
If you only pass df[['A']] instead of the whole frame, that may help.
prev_nrow.empty is the same as (prev_nrow.size == 0)
Applied different logic to get the desired value via first_false, this speeds things up significantly.
def first_false(val1, val2, A):
i = 0
for x, y in zip(val1, val2):
if A < x < y:
i += 1
else:
break
return i
def get_prev_next_count(row):
A = row['A']
next_nrow = df.loc[row.name+1:,['A', 'B']]
prev_nrow = df2.loc[row.name-1:,['A', 'B']]
if next_nrow.empty:
return 0, first_false(prev_nrow.A, prev_nrow.B, A)
if prev_nrow.empty:
return first_false(next_nrow.A, next_nrow.B, A), 0
return (first_false(next_nrow.A, next_nrow.B, A),
first_false(prev_nrow.A, prev_nrow.B, A))
df2 = df[::-1].copy() # Shave a tiny bit of time by only reversing it once~
df[['next count', 'previous count']] = df[['A']].apply(get_prev_next_count, axis=1, result_type='expand')
print(df)
Output:
A B next count previous count
0 0 9 2 0
1 3 8 0 0
2 2 3 0 1
3 9 5 0 0
4 1 5 0 0
5 0 5 2 1
6 4 5 1 0
7 7 8 0 0
8 3 0 0 2
9 2 4 0 0
Timing
Expanding the data:
df = pd.concat([df]*(10000//4), ignore_index=True)
# df.shape == (25000, 2)
Original Method:
Gave up at 15 minutes.
New Method:
1m 20sec
Throw pandarallel at it:
from pandarallel import pandarallel
pandarallel.initialize()
df[['A']].parallel_apply(get_prev_next_count, axis=1, result_type='expand')
26sec

counting consequtive elements in a dataframe and storing them in a new column

so i have this code:
import pandas as pd
id_1=[0,0,0,0,0,0,2,0,4,5,6,7,1,0,5,3]
exp_1=[1,2,3,4,5,6,1,7,1,1,1,1,1,8,2,1]
df = pd.DataFrame(list(zip(id_1,exp_1)), columns =['Patch', 'Exploit'])
df = (
df.groupby((df.Patch != df.Patch.shift(1)).cumsum())
.agg({"Patch": ("first", "count")})
.reset_index(drop=True)
)
print(df)
the output is:
Patch
first count
0 0 6
1 2 1
2 0 1
3 4 1
4 5 1
5 6 1
6 7 1
7 1 1
8 0 1
9 5 1
10 3 1
I wanted to create a data frame with a new column called count where I can store the consecutive appearance of the patch (id_1).
However, the above code creates a dictionary of the patch and I don't know how to individually manipulate only the values stored in the column called count.
suppose I want to remove all the 0 from id_1 and then count the consecutive appearance.
or I have to find the average of the count column only then?
If you want to remove all 0 from column Patch, then you can filter the dataframe just before .groupby. For example:
df = (
df[df.Patch != 0]
.groupby((df.Patch != df.Patch.shift(1)).cumsum())
.agg({"Patch": ("first", "count")})
.reset_index(drop=True)
)
print(df)
Prints:
Patch
first count
0 2 1
1 4 1
2 5 1
3 6 1
4 7 1
5 1 1
6 5 1
7 3 1

Count the number of events in Python

In continuation to my previous Question I need some more help.
The dataframe is like
time eve_id sub_id flag
0 5 2 0
1 5 2 0
2 5 2 1
3 5 2 1
4 5 2 0
5 4 25 0
6 4 30 0
7 5 2 1
I need to count the eve_id in the time flag goes 0 to 1,
and count the eve_id for the time flag is 1 to 1
the output will look like this
time flag count
0 0 2
2 1 2
4 0 3
Can someone help me here ?
First we make a grouper indicator which checks if the difference between two rows is not equal to 0, which indicates a difference.
Then we groupby on this indicator and use agg. Since pandas 0.25.0 we have named aggregations:
s = df['flag'].diff().ne(0).cumsum()
grpd = df.groupby(s).agg(time=('time', 'first'),
flag=('flag', 'first'),
count=('flag', 'size')).reset_index(drop=True)
Output
time flag count
0 0 0 2
1 2 1 2
2 4 0 3
3 7 1 1
If time is your index, use:
grpd = df.assign(time=df.index).groupby(s).agg(time=('time', 'first'),
flag=('flag', 'first'),
count=('flag', 'size')).reset_index(drop=True)
notice: the row extra is because there's a difference between the last row and the row before as well
Change aggregate function sum to GroupBy.size:
df1 = (df.groupby([df['flag'].ne(df['flag'].shift()).cumsum(), 'flag'])
.size()
.reset_index(level=0, drop=True)
.reset_index(name='count'))
print (df1)
flag count
0 0 2
1 1 2
2 0 3
3 1 1

pandas: Grouping or filtering based on values in list, instead of dataframe

I want to get a row count of the frequency of each value, even if that value doesn't exist in the dataframe.
d = {'light' : pd.Series(['b','b','c','a','a','a','a'], index=[1,2,3,4,5,6,9]),'injury' : pd.Series([1,5,5,5,2,2,4], index=[1,2,3,4,5,6,9])}
testdf = pd.DataFrame(d)
injury light
1 1 b
2 5 b
3 5 c
4 5 a
5 2 a
6 2 a
9 4 a
I want to get a count of the number of occurrences of each unique value of 'injury' for each unique value in 'light'.
Normally I would just use groupby(), or (in this case, since I want it to be in a specific format), pivot_table:
testdf.reset_index().pivot_table(index='light',columns='injury',fill_value=0,aggfunc='count')
index
injury 1 2 4 5
light
a 0 2 1 1
b 1 0 0 1
c 0 0 0 1
But in this case I actually want to compare the records in the dataframe to an external list of values-- in this case, ['a','b','c','d']. So if 'd' doesn't exist in this dataframe, then I want it to return a count of zero:
index
injury 1 2 4 5
light
a 0 2 1 1
b 1 0 0 1
c 0 0 0 1
d 0 0 0 0
The closest I've come is filtering the dataframe based on each value, and then getting the size of that dataframe:
for v in sorted(['a','b','c','d']):
idx2 = (df['light'].isin([v]))
df2 = df[idx2]
print(df2.shape[0])
4
2
1
0
But that only returns counts from the 'light' column-- instead of a cross-tabulation of both columns.
Is there a way to make a pivot table, or a groupby() object, that groups things based on values in a list, rather than in a column in a dataframe? Or is there a better way to do this?
Try this:
df = pd.crosstab(df.light, df.injury,margins=True)
df
injury 1 2 4 5 All
light
a 0 2 1 1 4
b 1 0 0 1 2
c 0 0 0 1 1
All 1 2 1 3 7
df["All"]
light
a 4
b 2
c 1
All 7

Categories