Compressing files from a Python Dataframe - python

I have created a dataframe using panda in Python. The dataframe uses two columns from a .csv file called filepath and filename, joins them and then outputs in full.
I am trying to use this output to zip the filename in question but it isn't working properly and just overwrites the file.
import pandas as pd
import zipfile
import os
from os import path
from os.path import basename
column_names = ["Path", "Filename", r"Path"]
df = pd.read_csv(r"resources.csv", usecols= ["Path","Filename"])
df = df.dropna()
df = ["/".join(i) for i in zip(df["Path"].map(str),df["Filename"].map(str))]
rows = list(df)
for row in rows:
print (row)
I added the zipfile.ZipFile entries in the for row in rows block but replaced with print(row) to produce the list.
Can anybody help point me in the right direction.

import pandas as pd
import zipfile
import os
from os import path
from os.path import basename
column_names = ["Path","Filename" r"Path"]
df = pd.read_csv(r"resources.csv", usecols= ["Path","Filename"])
df["fullpath"] = df[["Path","Filename"]].agg("/".join, axis=1)
df["zipfilename"] = df["Filename"].str.replace(r'.py', '')
rows = list(df.values)
for row in rows:
zip = zipfile.ZipFile(row[3] + '.zip', 'w', zipfile.ZIP_DEFLATED)
zip.write(row[2], basename(row[1]))
zip.close()
print (row)
After some head scratching i managed to get exactly what I needed from the dataframe and zip individual files.

Related

How to convert a log file to a pandas DF

I have managed to read the following log file into python:
import os
import glob
import pandas as pd
folder = r'C:\Users\x\x\x\x\\'
for infile in glob.glob(os.path.join(folder, 'console*')):
file = open(infile, 'r').read()
print( file)
print(file) gives me:
John, 1,7,8, text
Matt, 3,7,10, text2
Natasha, 4,60,3,text3
I am hoping to convert into a pandas df:
df = pd.DataFrame(file)
but getting a ValueError: DataFrame constructor not properly called!
Does anyone know how to construct the Dataframe of 3 rows by 5 columns and then add in my own columns headers? Thanks very much!
import os
import glob
import pandas as pd
folder = 'C:\\'
filename2 = [y for y in glob.glob(f'{folder}\\*.*')]
# In the case of .csv files.
df_cc = pd.DataFrame()
for z in filename2:
df = pd.read_csv(z, header = None)
df_cc = df_cc.append(df)

Python Pandas join a few files

I import a few xlsx files into pandas dataframe. It works fine, but my problem that it copies all the data under each other (so I have 10 excel file with 100 lines = 1000 lines).
I need the Dataframe with 100 lines and 10 columns, so each file will be copied next to each other and not below.
Are there any ideas how to do it?
import os
import pandas as pd
os.chdir('C:/Users/folder/')
path = ('C:/Users/folder/')
files = os.listdir(path)
allNames = pd.DataFrame()
for f in files:
info = pd.read_excel(f,'Sheet1')
allNames = allNames.append(info)
writer = pd.ExcelWriter ('Output.xlsx')
allNames.to_excel(writer, 'Copy')
writer.save()
You can feed your spreadsheets as an array of dataframes directly to pd.concat():
import os
import pandas as pd
os.chdir('C:/Users/folder/')
path = ('C:/Users/folder/')
files = os.listdir(path)
allNames = pd.concat([pd.read_excel(f,'Sheet1') for f in files], axis=1)
writer = pd.ExcelWriter ('Output.xlsx')
allNames.to_excel(writer, 'Copy')
writer.save()
Instead of stacking the tables vertically like this:
allNames = allNames.append(info)
You'll want to concatenate them horizontally like this:
allNames = pd.concat([allNames , info], axis=1)

Read multiple csv files zipped in one file

I have several csv files in several zip files in on folder, so for example:
A.zip (contains csv1,csv2,csv3)
B.zip (contains csv4, csv5, csv6)
which are in the folder path C:/Folder/, when I load normal csv files in a folder I use the following code:
import glob
import pandas as pd
files = glob.glob("C/folder/*.csv")
dfs = [pd.read_csv(f, header=None, sep=";") for f in files]
df = pd.concat(dfs,ignore_index=True)
followed by this post: Reading csv zipped files in python
One csv in zip works like this:
import pandas as pd
import zipfile
zf = zipfile.ZipFile('C:/Users/Desktop/THEZIPFILE.zip')
df = pd.read_csv(zf.open('intfile.csv'))
Any idea how to optimize this loop for me?
Use zip.namelist() to get list of files inside the zip
Ex:
import glob
import zipfile
import pandas as pd
for zip_file in glob.glob("C/folder/*.zip"):
zf = zipfile.ZipFile(zip_file)
dfs = [pd.read_csv(zf.open(f), header=None, sep=";") for f in zf.namelist()]
df = pd.concat(dfs,ignore_index=True)
print(df)
I would try to tackle it in two passes. First pass, extract the contents of the zipfile onto the filesystem. Second Pass, read all those extracted CSVs using the method you already have above:
import glob
import pandas as pd
import zipfile
def extract_files(file_path):
archive = zipfile.ZipFile(file_path, 'r')
unzipped_path = archive.extractall()
return unzipped_path
zipped_files = glob.glob("C/folder/*.zip")]
file_paths = [extract_files(zf) for zf in zipped_files]
dfs = [pd.read_csv(f, header=None, sep=";") for f in file_paths]
df = pd.concat(dfs,ignore_index=True)

Not full Import multiple csv files into pandas and concatenate into one DataFrame

Please help me to find solution for the problem with importing data from multiple csv files to one DataFrame in python.
Code is:
import pandas as pd
import os
import glob
path = r'my_full_path'
os.chdir(path)
results = pd.DataFrame()
for counter, current_file in enumerate(glob.glob("*.csv")):
namedf = pd.read_csv(current_file, header=None, sep=",", delim_whitespace=True)
results = pd.concat([results, namedf], join='outer')
results.to_csv('Result.csv', index=None, header=None, sep=",")
The problem is that some part of data are moving to the rows instead of new columns as required.
What is wrong in my code?
P.S.: I found questions about importing multiple csv-files to DataFrame, for example here: Import multiple csv files into pandas and concatenate into one DataFrame, but solution doesn't solve my issue:-(
it was solved by using join inside of pd.read_csv.read_csv() -> append(dataFrames) -> concat:
def get_merged_files(files_list, **kwargs):
dataframes = []
for file in files_list:
df = pd.read_csv(os.path.join(file), **kwargs)
dataframes.append(df)
return pd.concat(dataframes, axis=1)
You can try using this:
import pandas as pd
import os
files = [file for file in os.listdir('./Your_Folder')] # Here is where all the files are located.
all_csv_files = pd.DataFrame()
for file in files:
df = pd.read_csv("./Your_Folder/"+file)
all_csv_files = pd.concat([all_csv_files, df])
all_csv_files.to_csv("All_CSV_Files_Concat.csv", index=False)

Import multiple CSV files into pandas and concatenate into one DataFrame

I would like to read several CSV files from a directory into pandas and concatenate them into one big DataFrame. I have not been able to figure it out though. Here is what I have so far:
import glob
import pandas as pd
# Get data file names
path = r'C:\DRO\DCL_rawdata_files'
filenames = glob.glob(path + "/*.csv")
dfs = []
for filename in filenames:
dfs.append(pd.read_csv(filename))
# Concatenate all data into one DataFrame
big_frame = pd.concat(dfs, ignore_index=True)
I guess I need some help within the for loop?
See pandas: IO tools for all of the available .read_ methods.
Try the following code if all of the CSV files have the same columns.
I have added header=0, so that after reading the CSV file's first row, it can be assigned as the column names.
import pandas as pd
import glob
import os
path = r'C:\DRO\DCL_rawdata_files' # use your path
all_files = glob.glob(os.path.join(path , "/*.csv"))
li = []
for filename in all_files:
df = pd.read_csv(filename, index_col=None, header=0)
li.append(df)
frame = pd.concat(li, axis=0, ignore_index=True)
Or, with attribution to a comment from Sid.
all_files = glob.glob(os.path.join(path, "*.csv"))
df = pd.concat((pd.read_csv(f) for f in all_files), ignore_index=True)
It's often necessary to identify each sample of data, which can be accomplished by adding a new column to the dataframe.
pathlib from the standard library will be used for this example. It treats paths as objects with methods, instead of strings to be sliced.
Imports and Setup
from pathlib import Path
import pandas as pd
import numpy as np
path = r'C:\DRO\DCL_rawdata_files' # or unix / linux / mac path
# Get the files from the path provided in the OP
files = Path(path).glob('*.csv') # .rglob to get subdirectories
Option 1:
Add a new column with the file name
dfs = list()
for f in files:
data = pd.read_csv(f)
# .stem is method for pathlib objects to get the filename w/o the extension
data['file'] = f.stem
dfs.append(data)
df = pd.concat(dfs, ignore_index=True)
Option 2:
Add a new column with a generic name using enumerate
dfs = list()
for i, f in enumerate(files):
data = pd.read_csv(f)
data['file'] = f'File {i}'
dfs.append(data)
df = pd.concat(dfs, ignore_index=True)
Option 3:
Create the dataframes with a list comprehension, and then use np.repeat to add a new column.
[f'S{i}' for i in range(len(dfs))] creates a list of strings to name each dataframe.
[len(df) for df in dfs] creates a list of lengths
Attribution for this option goes to this plotting answer.
# Read the files into dataframes
dfs = [pd.read_csv(f) for f in files]
# Combine the list of dataframes
df = pd.concat(dfs, ignore_index=True)
# Add a new column
df['Source'] = np.repeat([f'S{i}' for i in range(len(dfs))], [len(df) for df in dfs])
Option 4:
One liners using .assign to create the new column, with attribution to a comment from C8H10N4O2
df = pd.concat((pd.read_csv(f).assign(filename=f.stem) for f in files), ignore_index=True)
or
df = pd.concat((pd.read_csv(f).assign(Source=f'S{i}') for i, f in enumerate(files)), ignore_index=True)
An alternative to darindaCoder's answer:
path = r'C:\DRO\DCL_rawdata_files' # use your path
all_files = glob.glob(os.path.join(path, "*.csv")) # advisable to use os.path.join as this makes concatenation OS independent
df_from_each_file = (pd.read_csv(f) for f in all_files)
concatenated_df = pd.concat(df_from_each_file, ignore_index=True)
# doesn't create a list, nor does it append to one
import glob
import os
import pandas as pd
df = pd.concat(map(pd.read_csv, glob.glob(os.path.join('', "my_files*.csv"))))
Almost all of the answers here are either unnecessarily complex (glob pattern matching) or rely on additional third-party libraries. You can do this in two lines using everything Pandas and Python (all versions) already have built in.
For a few files - one-liner
df = pd.concat(map(pd.read_csv, ['d1.csv', 'd2.csv','d3.csv']))
For many files
import os
filepaths = [f for f in os.listdir(".") if f.endswith('.csv')]
df = pd.concat(map(pd.read_csv, filepaths))
For No Headers
If you have specific things you want to change with pd.read_csv (i.e., no headers) you can make a separate function and call that with your map:
def f(i):
return pd.read_csv(i, header=None)
df = pd.concat(map(f, filepaths))
This pandas line, which sets the df, utilizes three things:
Python's map (function, iterable) sends to the function (the
pd.read_csv()) the iterable (our list) which is every CSV element
in filepaths).
Panda's read_csv() function reads in each CSV file as normal.
Panda's concat() brings all these under one df variable.
Easy and Fast
Import two or more CSV files without having to make a list of names.
import glob
import pandas as pd
df = pd.concat(map(pd.read_csv, glob.glob('data/*.csv')))
The Dask library can read a dataframe from multiple files:
>>> import dask.dataframe as dd
>>> df = dd.read_csv('data*.csv')
(Source: https://examples.dask.org/dataframes/01-data-access.html#Read-CSV-files)
The Dask dataframes implement a subset of the Pandas dataframe API. If all the data fits into memory, you can call df.compute() to convert the dataframe into a Pandas dataframe.
I googled my way into Gaurav Singh's answer.
However, as of late, I am finding it faster to do any manipulation using NumPy and then assigning it once to a dataframe rather than manipulating the dataframe itself on an iterative basis and it seems to work in this solution too.
I do sincerely want anyone hitting this page to consider this approach, but I don't want to attach this huge piece of code as a comment and making it less readable.
You can leverage NumPy to really speed up the dataframe concatenation.
import os
import glob
import pandas as pd
import numpy as np
path = "my_dir_full_path"
allFiles = glob.glob(os.path.join(path,"*.csv"))
np_array_list = []
for file_ in allFiles:
df = pd.read_csv(file_,index_col=None, header=0)
np_array_list.append(df.as_matrix())
comb_np_array = np.vstack(np_array_list)
big_frame = pd.DataFrame(comb_np_array)
big_frame.columns = ["col1", "col2"....]
Timing statistics:
total files :192
avg lines per file :8492
--approach 1 without NumPy -- 8.248656988143921 seconds ---
total records old :1630571
--approach 2 with NumPy -- 2.289292573928833 seconds ---
A one-liner using map, but if you'd like to specify additional arguments, you could do:
import pandas as pd
import glob
import functools
df = pd.concat(map(functools.partial(pd.read_csv, sep='|', compression=None),
glob.glob("data/*.csv")))
Note: map by itself does not let you supply additional arguments.
If you want to search recursively (Python 3.5 or above), you can do the following:
from glob import iglob
import pandas as pd
path = r'C:\user\your\path\**\*.csv'
all_rec = iglob(path, recursive=True)
dataframes = (pd.read_csv(f) for f in all_rec)
big_dataframe = pd.concat(dataframes, ignore_index=True)
Note that the three last lines can be expressed in one single line:
df = pd.concat((pd.read_csv(f) for f in iglob(path, recursive=True)), ignore_index=True)
You can find the documentation of ** here. Also, I used iglobinstead of glob, as it returns an iterator instead of a list.
EDIT: Multiplatform recursive function:
You can wrap the above into a multiplatform function (Linux, Windows, Mac), so you can do:
df = read_df_rec('C:\user\your\path', *.csv)
Here is the function:
from glob import iglob
from os.path import join
import pandas as pd
def read_df_rec(path, fn_regex=r'*.csv'):
return pd.concat((pd.read_csv(f) for f in iglob(
join(path, '**', fn_regex), recursive=True)), ignore_index=True)
Inspired from MrFun's answer:
import glob
import pandas as pd
list_of_csv_files = glob.glob(directory_path + '/*.csv')
list_of_csv_files.sort()
df = pd.concat(map(pd.read_csv, list_of_csv_files), ignore_index=True)
Notes:
By default, the list of files generated through glob.glob is not sorted. On the other hand, in many scenarios, it's required to be sorted e.g. one may want to analyze number of sensor-frame-drops v/s timestamp.
In pd.concat command, if ignore_index=True is not specified then it reserves the original indices from each dataframes (i.e. each individual CSV file in the list) and the main dataframe looks like
timestamp id valid_frame
0
1
2
.
.
.
0
1
2
.
.
.
With ignore_index=True, it looks like:
timestamp id valid_frame
0
1
2
.
.
.
108
109
.
.
.
IMO, this is helpful when one may want to manually create a histogram of number of frame drops v/s one minutes (or any other duration) bins and want to base the calculation on very first timestamp e.g.
begin_timestamp = df['timestamp'][0]
Without, ignore_index=True, df['timestamp'][0] generates the series containing very first timestamp from all the individual dataframes, it does not give just a value.
Another one-liner with list comprehension which allows to use arguments with read_csv.
df = pd.concat([pd.read_csv(f'dir/{f}') for f in os.listdir('dir') if f.endswith('.csv')])
Alternative using the pathlib library (often preferred over os.path).
This method avoids iterative use of pandas concat()/apped().
From the pandas documentation:
It is worth noting that concat() (and therefore append()) makes a full copy of the data, and that constantly reusing this function can create a significant performance hit. If you need to use the operation over several datasets, use a list comprehension.
import pandas as pd
from pathlib import Path
dir = Path("../relevant_directory")
df = (pd.read_csv(f) for f in dir.glob("*.csv"))
df = pd.concat(df)
If multiple CSV files are zipped, you may use zipfile to read all and concatenate as below:
import zipfile
import pandas as pd
ziptrain = zipfile.ZipFile('yourpath/yourfile.zip')
train = []
train = [ pd.read_csv(ziptrain.open(f)) for f in ziptrain.namelist() ]
df = pd.concat(train)
Based on Sid's good answer.
To identify issues of missing or unaligned columns
Before concatenating, you can load CSV files into an intermediate dictionary which gives access to each data set based on the file name (in the form dict_of_df['filename.csv']). Such a dictionary can help you identify issues with heterogeneous data formats, when column names are not aligned for example.
Import modules and locate file paths:
import os
import glob
import pandas
from collections import OrderedDict
path =r'C:\DRO\DCL_rawdata_files'
filenames = glob.glob(path + "/*.csv")
Note: OrderedDict is not necessary, but it'll keep the order of files which might be useful for analysis.
Load CSV files into a dictionary. Then concatenate:
dict_of_df = OrderedDict((f, pandas.read_csv(f)) for f in filenames)
pandas.concat(dict_of_df, sort=True)
Keys are file names f and values are the data frame content of CSV files.
Instead of using f as a dictionary key, you can also use os.path.basename(f) or other os.path methods to reduce the size of the key in the dictionary to only the smaller part that is relevant.
import os
os.system("awk '(NR == 1) || (FNR > 1)' file*.csv > merged.csv")
Where NR and FNR represent the number of the line being processed.
FNR is the current line within each file.
NR == 1 includes the first line of the first file (the header), while FNR > 1 skips the first line of each subsequent file.
In case of an unnamed column issue, use this code for merging multiple CSV files along the x-axis.
import glob
import os
import pandas as pd
merged_df = pd.concat([pd.read_csv(csv_file, index_col=0, header=0) for csv_file in glob.glob(
os.path.join("data/", "*.csv"))], axis=0, ignore_index=True)
merged_df.to_csv("merged.csv")
You can do it this way also:
import pandas as pd
import os
new_df = pd.DataFrame()
for r, d, f in os.walk(csv_folder_path):
for file in f:
complete_file_path = csv_folder_path+file
read_file = pd.read_csv(complete_file_path)
new_df = new_df.append(read_file, ignore_index=True)
new_df.shape
Consider using convtools library, which provides lots of data processing primitives and generates simple ad hoc code under the hood.
It is not supposed to be faster than pandas/polars, but sometimes it can be.
e.g. you could concat csv files into one for further reuse - here's the code:
import glob
from convtools import conversion as c
from convtools.contrib.tables import Table
import pandas as pd
def test_pandas():
df = pd.concat(
(
pd.read_csv(filename, index_col=None, header=0)
for filename in glob.glob("tmp/*.csv")
),
axis=0,
ignore_index=True,
)
df.to_csv("out.csv", index=False)
# took 20.9 s
def test_convtools():
table = None
for filename in glob.glob("tmp/*.csv"):
table_ = Table.from_csv(filename, header=False)
if table is None:
table = table_
else:
table = table.chain(table_)
table.into_csv("out_convtools.csv", include_header=False)
# took 15.8 s
Of course if you just want to obtain a dataframe without writing a concatenated file, it will take 4.63 s and 10.9 s correspondingly (pandas is faster here because it doesn't need to zip columns for writing it back).
import pandas as pd
import glob
path = r'C:\DRO\DCL_rawdata_files' # use your path
file_path_list = glob.glob(path + "/*.csv")
file_iter = iter(file_path_list)
list_df_csv = []
list_df_csv.append(pd.read_csv(next(file_iter)))
for file in file_iter:
lsit_df_csv.append(pd.read_csv(file, header=0))
df = pd.concat(lsit_df_csv, ignore_index=True)
This is how you can do it using Colaboratory on Google Drive:
import pandas as pd
import glob
path = r'/content/drive/My Drive/data/actual/comments_only' # Use your path
all_files = glob.glob(path + "/*.csv")
li = []
for filename in all_files:
df = pd.read_csv(filename, index_col=None, header=0)
li.append(df)
frame = pd.concat(li, axis=0, ignore_index=True,sort=True)
frame.to_csv('/content/drive/onefile.csv')

Categories