Pandas Dataframe comparison - python

I have 2 very large dataframes +20k rows. df_input and df_output.
df_input is made of test cases ;
df_output is filled with the results from those test cases.
I need to select all the case numbers which failed from df_output and then fix those cases in the df_input dataframe. The fix is selecting a new unique date for each case_id.
To select a new unique date it has to be within 7*k days of the prior date, before or after. So I need to use Datetime.
Basically, I want to do this:
select fail cases number from the output result
=> output_sheet[output_sheet[output_result =='FAIL']]
=> get the results in some array or vector **(how ? )**
go to input_sheet, do
=> input_df.groupBy(input_carId)
=> replace the failing dates with a new unique date within +-7k days of that old date
but it has to be unique date for that input_carId. So I think I need to use unique().
I cannot use the output_df as input_df; they're 2 very different sheets. I greatly simplified their schema here, they only share 3 columns. And also, they actually are +20000 such rows and ids
In the end I have the old input_df but changed with the new dates.
output_df
case_id output_date output_carId ouput_result
1 01/20/21 001 FAIL
2 02/21/21 001 SUCCESS
3 02/08/20 003 FAIL
4 01/07/20 001 FAIL
5 09/05/20 002 SUCCESS
input_df (old)
case_id input_date input_carId
1 01/20/21 001
2 02/21/21 002
3 02/08/20 003
4 01/07/20 001
5 09/05/20 002
expected result =>
input_df (new)
case_id input_date input_carId
1 01/13/21 001
2 02/21/21 002
3 02/22/20 003
4 01/28/20 001
5 09/05/20 002
Notice the dates for the failed cases rows 1,3,4 have changed by -+ multiple of 7 days

Use custom function for add +- 7 days to rows with FAIL:
output_df['output_date'] = pd.to_datetime(output_df['output_date'])
input_df['input_date'] = pd.to_datetime(input_df['input_date'])
cases = output_df.loc[output_df['ouput_result'] =='FAIL', 'case_id']
print (cases)
0 1
2 3
3 4
Name: case_id, dtype: int64
def func(dates):
#count number of failed rows
count = len(dates)
#generate range by count of failed rows, multiple 7 (omited 0)
arr = np.arange(1, count + 1) * 7
#shuffling for random
np.random.shuffle(arr)
#generated timedeltas for add or subtract
td = pd.to_timedelta(arr, unit='d')
less = dates - td
more = dates + td
#randomly add or subtract
rand = np.random.randint(2, size=count, dtype=bool)
#return +- 7 days
return np.where(rand, less, more)
#filter by cases
mask = input_df['case_id'].isin(cases)
input_df.loc[mask, 'input_date'] = (input_df[mask].groupby('input_carId')['input_date']
.transform(func))
print (input_df)
case_id input_date input_carId
0 1 2021-02-03 1
1 2 2021-02-21 2
2 3 2020-02-15 3
3 4 2020-01-14 1
4 5 2020-09-05 2

Related

How to create N groups based on conditions in columns?

I need to create groups using two columns. For example, I took shop_id and week. Here is the df:
shop_id week
0 1 1
1 1 2
2 1 3
3 2 1
4 2 2
5 3 2
6 1 5
Imagine that each group is some promo which took place in each shop consecutively (week by week). So, my attempt was to use sorting, shifting by 1 to get last_week, use booleans and then iterate over them, incrementing each time whereas condition not met:
test_df = pd.DataFrame({'shop_id':[1,1,1,2,2,3,1], 'week':[1,2,3,1,2,2,5]})
def createGroups(df, shop_id, week, group):
'''Create groups where is the same shop_id and consecutive week
'''
periods = []
period = 0
# sorting to create chronological order
df = df.sort_values(by = [shop_id,week],ignore_index = True)
last_week = df[week].shift(+1)==df[week]-1
last_shop = df[shop_id].shift(+1)==df[shop_id]
# here i iterate over booleans and increment group by 1
# if shop is different or last period is more than 1 week ago
for p,s in zip(last_week,last_shop):
if (p == True) and (s == True):
periods.append(period)
else:
period += 1
periods.append(period)
df[group] = periods
return df
createGroups(test_df, 'shop_id', 'week', 'promo')
And I get the grouping I need:
shop_id week promo
0 1 1 1
1 1 2 1
2 1 3 1
3 1 5 2
4 2 1 3
5 2 2 3
6 3 2 4
However, function seems to be an overkill. Any ideas on how to get the same without a for-loop using native pandas function? I saw .ngroups() in docs but have no idea how to apply it to my case. Even better would be to vectorise it somehow, but I don't know how to achieve this:(
First we want to identify the promotions (continuously in weeks), then use groupby().ngroup() to enumerate the promotion:
df = df.sort_values('shop_id')
s = df['week'].diff().ne(1).groupby(df['shop_id']).cumsum()
df['promo'] = df.groupby(['shop_id',s]).ngroup() + 1
Update: This is based on your solution:
df = df.sort_values(['shop_id','week'])
s = df[['shop_id', 'week']]
df['promo'] = (s['shop_id'].ne(s['shop_id'].shift()) |
s['week'].diff().ne(1) ).cumsum()
Output:
shop_id week promo
0 1 1 1
1 1 2 1
2 1 3 1
6 1 5 2
3 2 1 3
4 2 2 3
5 3 2 4

Set particular value for a month of data based on column in dataframe

I have a dataframe made up of daily data across a number of columns;
A B C D
01/01/2020 12 3 2 1
02/01/2020 8 14 5 1
03/01/2020 45 4 1 3
.
.
.
.
31/12/2021 5 1 5 3
The data is generated automatically but I would to be able to overwrite data by month or by date.
I understand something like this could reset a value but is there anyway to do it in bulk by month or between two certain dates?
df.set_value('C', 'x', 10)
Any help much appreciated!
Create DatetimeIndex first and the set values in DataFrame.loc, also here working partialy string indexing for set values of month:
df.index = pd.to_datetime(df.index, dayfirst=True)
df.loc['2020-01-02','C'] = 100
df.loc['2020-01','B'] = 500
df.loc['2020-01-01':'2020-01-02','A'] = 0
#select multiple columns by list
df.loc['2020-01-03':'2021-12-31', ['C','D']] = 1000
print (df)
A B C D
2020-01-01 0 500 2 1
2020-01-02 0 500 100 1
2020-01-03 45 500 1000 1000
2021-12-31 5 1 1000 1000

Trying to group by, then sort a dataframe based on multiple values [duplicate]

Suppose I have pandas DataFrame like this:
df = pd.DataFrame({'id':[1,1,1,2,2,2,2,3,4], 'value':[1,2,3,1,2,3,4,1,1]})
which looks like:
id value
0 1 1
1 1 2
2 1 3
3 2 1
4 2 2
5 2 3
6 2 4
7 3 1
8 4 1
I want to get a new DataFrame with top 2 records for each id, like this:
id value
0 1 1
1 1 2
3 2 1
4 2 2
7 3 1
8 4 1
I can do it with numbering records within group after groupby:
dfN = df.groupby('id').apply(lambda x:x['value'].reset_index()).reset_index()
which looks like:
id level_1 index value
0 1 0 0 1
1 1 1 1 2
2 1 2 2 3
3 2 0 3 1
4 2 1 4 2
5 2 2 5 3
6 2 3 6 4
7 3 0 7 1
8 4 0 8 1
then for the desired output:
dfN[dfN['level_1'] <= 1][['id', 'value']]
Output:
id value
0 1 1
1 1 2
3 2 1
4 2 2
7 3 1
8 4 1
But is there more effective/elegant approach to do this? And also is there more elegant approach to number records within each group (like SQL window function row_number()).
Did you try
df.groupby('id').head(2)
Output generated:
id value
id
1 0 1 1
1 1 2
2 3 2 1
4 2 2
3 7 3 1
4 8 4 1
(Keep in mind that you might need to order/sort before, depending on your data)
EDIT: As mentioned by the questioner, use
df.groupby('id').head(2).reset_index(drop=True)
to remove the MultiIndex and flatten the results:
id value
0 1 1
1 1 2
2 2 1
3 2 2
4 3 1
5 4 1
Since 0.14.1, you can now do nlargest and nsmallest on a groupby object:
In [23]: df.groupby('id')['value'].nlargest(2)
Out[23]:
id
1 2 3
1 2
2 6 4
5 3
3 7 1
4 8 1
dtype: int64
There's a slight weirdness that you get the original index in there as well, but this might be really useful depending on what your original index was.
If you're not interested in it, you can do .reset_index(level=1, drop=True) to get rid of it altogether.
(Note: From 0.17.1 you'll be able to do this on a DataFrameGroupBy too but for now it only works with Series and SeriesGroupBy.)
Sometimes sorting the whole data ahead is very time consuming.
We can groupby first and doing topk for each group:
g = df.groupby(['id']).apply(lambda x: x.nlargest(topk,['value'])).reset_index(drop=True)
df.groupby('id').apply(lambda x : x.sort_values(by = 'value', ascending = False).head(2).reset_index(drop = True))
Here sort values ascending false gives similar to nlargest and True gives similar to nsmallest.
The value inside the head is the same as the value we give inside nlargest to get the number of values to display for each group.
reset_index is optional and not necessary.
This works for duplicated values
If you have duplicated values in top-n values, and want only unique values, you can do like this:
import pandas as pd
ifile = "https://raw.githubusercontent.com/bhishanpdl/Shared/master/data/twitter_employee.tsv"
df = pd.read_csv(ifile,delimiter='\t')
print(df.query("department == 'Audit'")[['id','first_name','last_name','department','salary']])
id first_name last_name department salary
24 12 Shandler Bing Audit 110000
25 14 Jason Tom Audit 100000
26 16 Celine Anston Audit 100000
27 15 Michale Jackson Audit 70000
If we do not remove duplicates, for the audit department we get top 3 salaries as 110k,100k and 100k.
If we want to have not-duplicated salaries per each department, we can do this:
(df.groupby('department')['salary']
.apply(lambda ser: ser.drop_duplicates().nlargest(3))
.droplevel(level=1)
.sort_index()
.reset_index()
)
This gives
department salary
0 Audit 110000
1 Audit 100000
2 Audit 70000
3 Management 250000
4 Management 200000
5 Management 150000
6 Sales 220000
7 Sales 200000
8 Sales 150000
To get the first N rows of each group, another way is via groupby().nth[:N]. The outcome of this call is the same as groupby().head(N). For example, for the top-2 rows for each id, call:
N = 2
df1 = df.groupby('id', as_index=False).nth[:N]
To get the largest N values of each group, I suggest two approaches.
First sort by "id" and "value" (make sure to sort "id" in ascending order and "value" in descending order by using the ascending parameter appropriately) and then call groupby().nth[].
N = 2
df1 = df.sort_values(by=['id', 'value'], ascending=[True, False])
df1 = df1.groupby('id', as_index=False).nth[:N]
Another approach is to rank the values of each group and filter using these ranks.
# for the entire rows
N = 2
msk = df.groupby('id')['value'].rank(method='first', ascending=False) <= N
df1 = df[msk]
# for specific column rows
df1 = df.loc[msk, 'value']
Both of these are much faster than groupby().apply() and groupby().nlargest() calls as suggested in the other answers on here(1, 2, 3). On a sample with 100k rows and 8000 groups, a %timeit test showed that it was 24-150 times faster than those solutions.
Also, instead of slicing, you can also pass a list/tuple/range to a .nth() call:
df.groupby('id', as_index=False).nth([0,1])
# doesn't even have to be consecutive
# the following returns 1st and 3rd row of each id
df.groupby('id', as_index=False).nth([0,2])

Top 2 products counts per day Pandas

I have dataframe like in the below pic.
First; I want the top 2 products, second I need the top 2 products frequents per day, so I need to group it by days and select the top 2 products from products column, I tried this code but it gives an error.
df.groupby("days", as_index=False)(["products"] == "Follow Up").count()
enter image description here
You need to groupby over both days and products and then use size. Once you have done this you will have all the counts in the df you require.
You will then need to sort both the day and the default 0 column which now contains your counts, this has been created by resetting your index on the initial groupby.
We follow the instructions in Pandas get topmost n records within each group to give your desired result.
A full example:
Setup:
df = pd.DataFrame({'day':[1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3],
'value':['a','a','b','b','b','c','a','a','b','b','b','c','a','a','b','b','b','c']})
df.head(6)
day value
0 1 a
1 1 a
2 1 b
3 1 b
4 1 b
5 1 c
df_counts = df.groupby(['day','values']).size().reset_index().sort_values(['day', 0], ascending = [True, False])
df_top_2 = df_counts.groupby('day').head(2)
df_top_2
day value 0
1 1 b 3
0 1 a 2
4 2 b 3
3 2 a 2
7 3 b 3
6 3 a 2
Of course, you should rename the 0 column to something more reasonable but this is a minimal example.

Is it possible to use vectorization for a conditionnal count of rows in a Pandas Dataframe?

I have a Pandas Dataframe with data about calls. Each call has a unique ID and each customer has an ID (but can have multiple Calls). A third column gives a day. For each customer I want to calculate the maximum number of calls made in a period of 7 days.
I have been using the following code to count the number of calls within 7 days of the call on each row:
df['ContactsIN7Days'] = df.apply(lambda row: len(df[(df['PersonID']==row['PersonID']) & (abs(df['Day'] - row['Day']) <=7)]), axis=1)
Output:
CallID Day PersonID ContactsIN7Days
6 2 3 2
3 14 2 2
1 8 1 1
5 1 3 2
2 12 2 2
7 100 3 1
This works, however this is going to be applied on a big data set. Would there be a way to make this more efficient. Through vectorization?
IIUC this is a convoluted, but I think effective solution to your issue. Note that the order of your dataframe is modified as a result, and that your Day column is modified to a timedelta dtype:
Starting from your dataframe df:
CallID Day PersonID
0 6 2 3
1 3 14 2
2 1 8 1
3 5 1 3
4 2 12 2
5 7 100 3
Start by modifying Day to a timedelta series:
df['Day'] = pd.to_timedelta(df['Day'], unit='d')
Then, use pd.merge_asof, to merge your dataframe with the count of calls by each individual in a period of 7 days. To get this, use groupby with a pd.Grouper with a frequency of 7 days:
new_df = (pd.merge_asof(df.sort_values(['Day']),
df.sort_values(['Day'])
.groupby([pd.Grouper(key='Day', freq='7d'), 'PersonID'])
.size()
.to_frame('ContactsIN7Days')
.reset_index(),
left_on='Day', right_on='Day',
left_by='PersonID', right_by='PersonID',
direction='nearest'))
Your resulting new_df will look like this:
CallID Day PersonID ContactsIN7Days
0 5 1 days 3 2
1 6 2 days 3 2
2 1 8 days 1 1
3 2 12 days 2 2
4 3 14 days 2 2
5 7 100 days 3 1

Categories