I am attempting to find the area inside an arbitrarily-shaped closed curve plotted in python (example image below). So far, I have tried to use both the alphashape and polygon methods to acheive this, but both have failed. I am now attempting to use OpenCV and the floodfill method to count the number of pixels inside the curve and then I will later convert that to an area given the area that a single pixel encloses on the plot.
Example image:
testplot.jpg
In order to do this, I am doing the following, which I adapted from another post about OpenCV.
import cv2
import numpy as np
# Input image
img = cv2.imread('testplot.jpg', cv2.IMREAD_GRAYSCALE)
# Dilate to better detect contours
temp = cv2.dilate(temp, cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (3, 3)))
# Find largest contour
cnts, _ = cv2.findContours(255-temp, cv2.RETR_TREE , cv2.CHAIN_APPROX_NONE) #255-img and cv2.RETR_TREE is to account for how cv2 expects the background to be black, not white, so I convert the background to black.
largestCnt = [] #I expect this to yield the blue contour
for cnt in cnts:
if (len(cnt) > len(largestCnt)):
largestCnt = cnt
# Determine center of area of largest contour
M = cv2.moments(largestCnt)
x = int(M["m10"] / M["m00"])
y = int(M["m01"] / M["m00"])
# Initial mask for flood filling, should cover entire figure
width, height = temp.shape
mask = img2 = np.ones((width + 2, height + 2), np.uint8) * 255
mask[1:width, 1:height] = 0
# Generate intermediate image, draw largest contour onto it, flood fill this contour
temp = np.zeros(temp.shape, np.uint8)
temp = cv2.drawContours(temp, largestCnt, -1, 255, cv2.FILLED)
_, temp, mask, _ = cv2.floodFill(temp, mask, (x, y), 255)
temp = cv2.morphologyEx(temp, cv2.MORPH_OPEN, cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (3, 3)))
area = cv2.countNonZero(temp) #Number of pixels encircled by blue line
I expect from this to get to a place where I have the same image as above, but with the center of the contour filled in white and the background and original blue contour in black. I end up with this:
result.jpg
While this at first glance appears to have accurately turned the area inside the contour white, the white area is actually larger than the area inside the contour and so the result I get is overestimating the number of pixels inside it.
Any input on this would be greatly appreciated. I am fairly new to OpenCV so I may have misunderstood something.
EDIT:
Thanks to a comment below, I made some edits and this is now my code, with edits noted:
import cv2
import numpy as np
# EDITED INPUT IMAGE: Input image
img = cv2.imread('testplot2.jpg', cv2.IMREAD_GRAYSCALE)
# EDIT: threshold
_, temp = cv2.threshold(img, 250, 255, cv2.THRESH_BINARY_INV)
# EDIT, REMOVED: Dilate to better detect contours
# Find largest contour
cnts, _ = cv2.findContours(temp, cv2.RETR_EXTERNAL , cv2.CHAIN_APPROX_NONE)
largestCnt = [] #I expect this to yield the blue contour
for cnt in cnts:
if (len(cnt) > len(largestCnt)):
largestCnt = cnt
# Determine center of area of largest contour
M = cv2.moments(largestCnt)
x = int(M["m10"] / M["m00"])
y = int(M["m01"] / M["m00"])
# Initial mask for flood filling, should cover entire figure
width, height = temp.shape
mask = img2 = np.ones((width + 2, height + 2), np.uint8) * 255
mask[1:width, 1:height] = 0
# Generate intermediate image, draw largest contour, flood filled
temp = np.zeros(temp.shape, np.uint8)
temp = cv2.drawContours(temp, largestCnt, -1, 255, cv2.FILLED)
_, temp, mask, _ = cv2.floodFill(temp, mask, (x, y), 255)
temp = cv2.morphologyEx(temp, cv2.MORPH_OPEN, cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (3, 3)))
area = cv2.countNonZero(temp) #Number of pixels encircled by blue line
I input a different image with the axes and the frame that python adds by default removed for ease. I get what I expect at the second step, so this image. However, in the enter image description here both the original contour and the area it encircles appear to have been made white, whereas I want the original contour to be black and only the area it encircles to be white. How might I acheive this?
The problem is your opening operation at the end. This morphological operation includes a dilation at the end that expands the white contour, increasing its area. Let’s try a different approach where no morphology is involved. These are the steps:
Convert your image to grayscale
Apply Otsu’s thresholding to get a binary image, let’s work with black and white pixels only.
Apply a first flood-fill operation at image location (0,0) to get rid of the outer white space.
Filter small blobs using an area filter
Find the “Curve Canvas” (The white space that encloses the curve) and locate and store its starting point at (targetX, targetY)
Apply a second flood-fill al location (targetX, targetY)
Get the area of the isolated blob with cv2.countNonZero
Let’s take a look at the code:
import cv2
import numpy as np
# Set image path
path = "C:/opencvImages/"
fileName = "cLIjM.jpg"
# Read Input image
inputImage = cv2.imread(path+fileName)
inputCopy = inputImage.copy()
# Convert BGR to grayscale:
grayscaleImage = cv2.cvtColor(inputImage, cv2.COLOR_BGR2GRAY)
# Threshold via Otsu + bias adjustment:
threshValue, binaryImage = cv2.threshold(grayscaleImage, 0, 255, cv2.THRESH_BINARY+cv2.THRESH_OTSU)
This is the binary image you get:
Now, let’s flood-fill at the corner located at (0,0) with a black color to get rid of the first white space. This step is very straightforward:
# Flood-fill background, seed at (0,0) and use black color:
cv2.floodFill(binaryImage, None, (0, 0), 0)
This is the result, note how the first big white area is gone:
Let’s get rid of the small blobs applying an area filter. Everything below an area of 100 is gonna be deleted:
# Perform an area filter on the binary blobs:
componentsNumber, labeledImage, componentStats, componentCentroids = \
cv2.connectedComponentsWithStats(binaryImage, connectivity=4)
# Set the minimum pixels for the area filter:
minArea = 100
# Get the indices/labels of the remaining components based on the area stat
# (skip the background component at index 0)
remainingComponentLabels = [i for i in range(1, componentsNumber) if componentStats[i][4] >= minArea]
# Filter the labeled pixels based on the remaining labels,
# assign pixel intensity to 255 (uint8) for the remaining pixels
filteredImage = np.where(np.isin(labeledImage, remainingComponentLabels) == True, 255, 0).astype('uint8')
This is the result of the filter:
Now, what remains is the second white area, I need to locate its starting point because I want to apply a second flood-fill operation at this location. I’ll traverse the image to find the first white pixel. Like this:
# Get Image dimensions:
height, width = filteredImage.shape
# Store the flood-fill point here:
targetX = -1
targetY = -1
for i in range(0, width):
for j in range(0, height):
# Get current binary pixel:
currentPixel = filteredImage[j, i]
# Check if it is the first white pixel:
if targetX == -1 and targetY == -1 and currentPixel == 255:
targetX = i
targetY = j
print("Flooding in X = "+str(targetX)+" Y: "+str(targetY))
There’s probably a more elegant, Python-oriented way of doing this, but I’m still learning the language. Feel free to improve the script (and share it here). The loop, however, gets me the location of the first white pixel, so I can now apply a second flood-fill at this exact location:
# Flood-fill background, seed at (targetX, targetY) and use black color:
cv2.floodFill(filteredImage, None, (targetX, targetY), 0)
You end up with this:
As you see, just count the number of non-zero pixels:
# Get the area of the target curve:
area = cv2.countNonZero(filteredImage)
print("Curve Area is: "+str(area))
The result is:
Curve Area is: 1510
Here is another approach using Python/OpenCV.
Read Input
convert to HSV colorspace
Threshold on color range of blue
Find the largest contour
Get its area and print that
draw the contour as a white filled contour on black background
Save the results
Input:
import cv2
import numpy as np
# read image as grayscale
img = cv2.imread('closed_curve.jpg')
# convert to HSV
hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
#select blu color range in hsv
lower = (24,128,115)
upper = (164,255,255)
# threshold on blue in hsv
thresh = cv2.inRange(hsv, lower, upper)
# get largest contour
contours = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
contours = contours[0] if len(contours) == 2 else contours[1]
big_contour = max(contours, key=cv2.contourArea)
area = cv2.contourArea(c)
print("Area =",area)
# draw filled contour on black background
result = np.zeros_like(thresh)
cv2.drawContours(result, [c], -1, 255, cv2.FILLED)
# save result
cv2.imwrite("closed_curve_thresh.jpg", thresh)
cv2.imwrite("closed_curve_result.jpg", result)
# view result
cv2.imshow("threshold", thresh)
cv2.imshow("result", result)
cv2.waitKey(0)
cv2.destroyAllWindows()
Threshold Image:
Result Filled Contour On Black Background:
Area Result:
Area = 2347.0
Related
I am trying to detect all of the overlapping circle/ellipses shapes in this image all of which have digits on them. I have tried different types of image processing techniques using OpenCV, however I cannot detect the shapes that overlap the tree. I have tried erosion and dilation however it has not helped.
Any pointers on how to go about this would be great. I have attached my code below
original = frame.copy()
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
blurred = cv2.GaussianBlur(gray, (3, 3), 0)
canny = cv2.Canny(blurred, 120, 255, 1)
kernel = np.ones((5, 5), np.uint8)
dilate = cv2.dilate(canny, kernel, iterations=1)
# Find contours
cnts = cv2.findContours(dilate, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
cnts = cnts[0] if len(cnts) == 2 else cnts[1]
image_number = 0
for c in cnts:
x, y, w, h = cv2.boundingRect(c)
cv2.rectangle(frame, (x, y), (x + w, y + h), (36, 255, 12), 2)
ROI = original[y:y + h, x:x + w]
cv2.imwrite("ROI_{}.png".format(image_number), ROI)
image_number += 1
cv2.imshow('canny', canny)
cv2.imshow('image', frame)
cv2.waitKey(0)
Here's a possible solution. I'm assuming that the target blobs (the saucer-like things) are always labeled - that is, they always have a white number inside them. The idea is to create a digits mask, because their size and color seem to be constant. I use the digits as guide to obtain sample pixels of the ellipses. Then, I convert these BGR pixels to HSV, create a binary mask and use that info to threshold and locate the ellipses. Let's check out the code:
# imports:
import cv2
import numpy as np
# image path
path = "D://opencvImages//"
fileName = "4dzfr.png"
# Reading an image in default mode:
inputImage = cv2.imread(path + fileName)
# Deep copy for results:
inputImageCopy = inputImage.copy()
# Convert RGB to grayscale:
grayscaleImage = cv2.cvtColor(inputImage, cv2.COLOR_BGR2GRAY)
# Get binary image via Otsu:
binaryImage = np.where(grayscaleImage >= 200, 255, 0)
# The above operation converted the image to 32-bit float,
# convert back to 8-bit uint
binaryImage = binaryImage.astype(np.uint8)
The first step is to make a mask of the digits. I also created a deep copy of the BGR image. The digits are close to white (That is, an intensity close to 255). I use 200 as threshold and obtain this result:
Now, let's locate these contours on this binary mask. I'm filtering based on aspect ratio, as the digits have a distinct aspect ratio close to 0.70. I'm also filtering contours based on hierarchy - as I'm only interested on external contours (the ones that do not have children). That's because I really don't need contours like the "holes" inside the digit 8:
# Find the contours on the binary image:
contours, hierarchy = cv2.findContours(binaryImage, cv2.RETR_CCOMP, cv2.CHAIN_APPROX_SIMPLE)
# Store the sampled pixels here:
sampledPixels = []
# Look for the outer bounding boxes (no children):
for i, c in enumerate(contours):
# Get the contour bounding rectangle:
boundRect = cv2.boundingRect(c)
# Get the dimensions of the bounding rect:
rectX = boundRect[0]
rectY = boundRect[1]
rectWidth = boundRect[2]
rectHeight = boundRect[3]
# Compute the aspect ratio:
aspectRatio = rectWidth / rectHeight
# Create the filtering threshold value:
delta = abs(0.7 - aspectRatio)
epsilon = 0.1
# Get the hierarchy:
currentHierarchy = hierarchy[0][i][3]
# Prepare the list of sampling points (One for the ellipse, one for the circle):
samplingPoints = [ (rectX - rectWidth, rectY), (rectX, rectY - rectHeight) ]
# Look for the target contours:
if delta < epsilon and currentHierarchy == -1:
# This list will hold both sampling pixels:
pixelList = []
# Get sampling pixels from the two locations:
for s in range(2):
# Get sampling point:
sampleX = samplingPoints[s][0]
sampleY = samplingPoints[s][1]
# Get sample BGR pixel:
samplePixel = inputImageCopy[sampleY, sampleX]
# Store into temp list:
pixelList.append(samplePixel)
# convert list to tuple:
pixelList = tuple(pixelList)
# Save pixel value:
sampledPixels.append(pixelList)
Ok, there area a couple of things happening in the last snippet of code. We want to sample pixels from both the ellipse and the circle. We will use two sampling locations that are function of each digit's original position. These positions are defined in the samplingPoints tuple. For the ellipse, I'm sampling at a little before the top right position of the digit. For the circle, I'm sapling directly above the top right position - we end up with two pixels for each figure.
You'll notice I'm doing a little bit of data type juggling, converting lists to tuples. I want these pixels stored as a tuple for convenience. If I draw bounding rectangles of the digits, this would be the resulting image:
Now, let's loop through the pixel list, convert them to HSV and create a HSV mask over the original BGR image. The final bounding rectangles of the ellipses are stored in boundingRectangles, additionally I draw results on the deep copy of the original input:
# Final bounding rectangles are stored here:
boundingRectangles = []
# Loop through sampled pixels:
for p in range(len(sampledPixels)):
# Get current pixel tuple:
currentPixelTuple = sampledPixels[p]
# Prepare the HSV mask:
imageHeight, imageWidth = binaryImage.shape[:2]
hsvMask = np.zeros((imageHeight, imageWidth), np.uint8)
# Process the two sampling pixels:
for m in range(len(currentPixelTuple)):
# Get current pixel in the list:
currentPixel = currentPixelTuple[m]
# Create BGR Mat:
pixelMat = np.zeros([1, 1, 3], dtype=np.uint8)
pixelMat[0, 0] = currentPixel
# Convert the BGR pixel to HSV:
hsvPixel = cv2.cvtColor(pixelMat, cv2.COLOR_BGR2HSV)
H = hsvPixel[0][0][0]
S = hsvPixel[0][0][1]
V = hsvPixel[0][0][2]
# Create HSV range for this pixel:
rangeThreshold = 5
lowerValues = np.array([H - rangeThreshold, S - rangeThreshold, V - rangeThreshold])
upperValues = np.array([H + rangeThreshold, S + rangeThreshold, V + rangeThreshold])
# Create HSV mask:
hsvImage = cv2.cvtColor(inputImage.copy(), cv2.COLOR_BGR2HSV)
tempMask = cv2.inRange(hsvImage, lowerValues, upperValues)
hsvMask = hsvMask + tempMask
First, I create a 1 x 1 Matrix (or Numpy Array) with just a BGR pixel value - the first of two I previously sampled. In this way, I can use cv2.cvtColor to get the corresponding HSV values. Then, I create lower and upper threshold values for the HSV mask. However, the image seems synthetic, and a range-based thresholding could be reduced to a unique tuple. After that, I create the HSV mask using cv2.inRange.
This will yield the HSV mask for the ellipse. After applying the method for the circle we will end up with two HSV masks. Well, I just added the two arrays to combine both masks. At the end you will have something like this, this is the "composite" HSV mask created for the first saucer-like figure:
We can apply a little bit of morphology to join both shapes, just a little closing will do:
# Set kernel (structuring element) size:
kernelSize = 3
# Set morph operation iterations:
opIterations = 2
# Get the structuring element:
morphKernel = cv2.getStructuringElement(cv2.MORPH_RECT, (kernelSize, kernelSize))
# Perform closing:
hsvMask = cv2.morphologyEx(hsvMask, cv2.MORPH_CLOSE, morphKernel, None, None, opIterations,cv2.BORDER_REFLECT101)
This is the result:
Nice. Let's continue and get the bounding rectangles of all the shapes. I'm using the boundingRectangles list to store each bounding rectangle, like this:
# Process current contour:
currentContour, _ = cv2.findContours(hsvMask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
for _, c in enumerate(currentContour):
# Get the contour's bounding rectangle:
boundRect = cv2.boundingRect(c)
# Get the dimensions of the bounding rect:
rectX = boundRect[0]
rectY = boundRect[1]
rectWidth = boundRect[2]
rectHeight = boundRect[3]
# Store and set bounding rect:
boundingRectangles.append(boundRect)
color = (0, 0, 255)
cv2.rectangle(inputImageCopy, (int(rectX), int(rectY)),
(int(rectX + rectWidth), int(rectY + rectHeight)), color, 2)
cv2.imshow("Objects", inputImageCopy)
cv2.waitKey(0)
This is the image of the located rectangles once every sampled pixel is processed:
so I've been trying to code a Python script, which takes an image as input and then cuts out a rectangle with a specific background color. However, what causes a problem for my coding skills, is that the rectangle is not on a fixed position in every image (the position will be random).
I do not really understand how to manage the numpy functions. I also read something about OpenCV, but I'm totally new to it. So far I just cropped the images through the ".crop" function, but then I would have to use fixed values.
This is how the input image could look and now I would like to detect the position of the yellow rectangle and then crop the image to its size.
Help is appreciated, thanks in advance.
Edit: #MarkSetchell's way works pretty good, but found a issue for a different test picture. The problem with the other picture is that there are 2 small pixels with the same color at the top and the bottom of the picture, which cause errors or a bad crop.
Updated Answer
I have updated my answer to cope with specks of noisy outlier pixels of the same colour as the yellow box. This works by running a 3x3 median filter over the image first to remove the spots:
#!/usr/bin/env python3
import numpy as np
from PIL import Image, ImageFilter
# Open image and make into Numpy array
im = Image.open('image.png').convert('RGB')
na = np.array(im)
orig = na.copy() # Save original
# Median filter to remove outliers
im = im.filter(ImageFilter.MedianFilter(3))
# Find X,Y coordinates of all yellow pixels
yellowY, yellowX = np.where(np.all(na==[247,213,83],axis=2))
top, bottom = yellowY[0], yellowY[-1]
left, right = yellowX[0], yellowX[-1]
print(top,bottom,left,right)
# Extract Region of Interest from unblurred original
ROI = orig[top:bottom, left:right]
Image.fromarray(ROI).save('result.png')
Original Answer
Ok, your yellow colour is rgb(247,213,83), so we want to find the X,Y coordinates of all yellow pixels:
#!/usr/bin/env python3
from PIL import Image
import numpy as np
# Open image and make into Numpy array
im = Image.open('image.png').convert('RGB')
na = np.array(im)
# Find X,Y coordinates of all yellow pixels
yellowY, yellowX = np.where(np.all(na==[247,213,83],axis=2))
# Find first and last row containing yellow pixels
top, bottom = yellowY[0], yellowY[-1]
# Find first and last column containing yellow pixels
left, right = yellowX[0], yellowX[-1]
# Extract Region of Interest
ROI=na[top:bottom, left:right]
Image.fromarray(ROI).save('result.png')
You can do the exact same thing in Terminal with ImageMagick:
# Get trim box of yellow pixels
trim=$(magick image.png -fill black +opaque "rgb(247,213,83)" -format %# info:)
# Check how it looks
echo $trim
251x109+101+220
# Crop image to trim box and save as "ROI.png"
magick image.png -crop "$trim" ROI.png
If still using ImageMagick v6 rather than v7, replace magick with convert.
What I see is dark and light gray areas on sides and top, a white area, and a yellow rectangle with gray triangles inside the white area.
The first stage I suggest is converting the image from RGB color space to HSV color space.
The S color channel in HSV space, is the "color saturation channel".
All colorless (gray/black/white) are zeros and yellow pixels are above zeros in the S channel.
Next stages:
Apply threshold on S channel (convert it to binary image).
The yellow pixels goes to 255, and other goes to zero.
Find contours in thresh (find only the outer contour - only the rectangle).
Invert polarity of the pixels inside the rectangle.
The gray triangles become 255, and other pixels are zeros.
Find contours in thresh - find the gray triangles.
Here is the code:
import numpy as np
import cv2
# Read input image
img = cv2.imread('img.png')
# Convert from BGR to HSV color space
hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
# Get the saturation plane - all black/white/gray pixels are zero, and colored pixels are above zero.
s = hsv[:, :, 1]
# Apply threshold on s - use automatic threshold algorithm (use THRESH_OTSU).
ret, thresh = cv2.threshold(s, 0, 255, cv2.THRESH_BINARY+cv2.THRESH_OTSU)
# Find contours in thresh (find only the outer contour - only the rectangle).
contours = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)[-2] # [-2] indexing takes return value before last (due to OpenCV compatibility issues).
# Mark rectangle with green line
cv2.drawContours(img, contours, -1, (0, 255, 0), 2)
# Assume there is only one contour, get the bounding rectangle of the contour.
x, y, w, h = cv2.boundingRect(contours[0])
# Invert polarity of the pixels inside the rectangle (on thresh image).
thresh[y:y+h, x:x+w] = 255 - thresh[y:y+h, x:x+w]
# Find contours in thresh (find the triangles).
contours = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)[-2] # [-2] indexing takes return value before last (due to OpenCV compatibility issues).
# Iterate triangle contours
for c in contours:
if cv2.contourArea(c) > 4: # Ignore very small contours
# Mark triangle with blue line
cv2.drawContours(img, [c], -1, (255, 0, 0), 2)
# Show result (for testing).
cv2.imshow('img', img)
cv2.waitKey(0)
cv2.destroyAllWindows()
S color channel in HSV color space:
thresh - S after threshold:
thresh after inverting polarity of the rectangle:
Result (rectangle and triangles are marked):
Update:
In case there are some colored dots on the background, you can crop the largest colored contour:
import cv2
import imutils # https://pypi.org/project/imutils/
# Read input image
img = cv2.imread('img2.png')
# Convert from BGR to HSV color space
hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
# Get the saturation plane - all black/white/gray pixels are zero, and colored pixels are above zero.
s = hsv[:, :, 1]
cv2.imwrite('s.png', s)
# Apply threshold on s - use automatic threshold algorithm (use THRESH_OTSU).
ret, thresh = cv2.threshold(s, 0, 255, cv2.THRESH_BINARY+cv2.THRESH_OTSU)
# Find contours
cnts = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
cnts = imutils.grab_contours(cnts)
# Find the contour with the maximum area.
c = max(cnts, key=cv2.contourArea)
# Get bounding rectangle
x, y, w, h = cv2.boundingRect(c)
# Crop the bounding rectangle out of img
out = img[y:y+h, x:x+w, :].copy()
Result:
In opencv you can use inRange. This basically makes whatever color is in the range you speciefied white, and the rest black. This way all the yellow will be white.
Here is the documentation: https://docs.opencv.org/3.4/da/d97/tutorial_threshold_inRange.html
Say I have a multicolored map of the United States, and I want to know how many pixels in a particular state (Nevada, for example) are purple, how many are green, and how many are white. Can I do this with OpenCV?
I've tried to tackle this by turning each state on an uncolored "basemap" into its own contour using cv2.drawContours, then overlaying the two images (This is where things start to feel wrong).
I know that I can then use the following:
Nevada = contours[21]
area = cv2.contourArea(Nevada)
print(area)
to print the total number of pixels in a given state/contour, but I have no idea whether a similar function exists that will show me the number of pixels of a certain color within that state/contour. Is there a way to do this? Any guidance would be much appreciated.
Here is one way to do that in Python/OpenCV.
Read the basemap image as grayscale and threshold
Read the map image
Get all the contours from the thresholded baseman image
Define the colors
Loop over the contours and select contours in a specified range of areas (Adjust the lower bound to get more state contours)
For each acceptable contour, draw it filled in white on a black image
Mask the map image to show only the given contour
Use numpy to sum all the colored pixels in the masked map image
Print the index and color counts
Optionally view each masked map region
Get the centroid of the contour
Draw the index number at the centroid on the map image
At the end, after the loop, save the labeled map image
Base Map:
Map:
import cv2
import numpy as np
# read basemap image as grayscale
basemap = cv2.imread('basemap.png', cv2.COLOR_BGR2GRAY)
# threshold basemap and make single channel
thresh = cv2.threshold(basemap, 200, 255, cv2.THRESH_BINARY)[1]
thresh = thresh[:,:,0]
# read map
map = cv2.imread('map.png')
# define colors
red = (255,0,255)
green = (125,196,147)
blue = (232,197,159)
orange = (102,102,224)
# get contours
contours = cv2.findContours(thresh, cv2.RETR_CCOMP, cv2.CHAIN_APPROX_SIMPLE)
contours = contours[0] if len(contours) == 2 else contours[1]
# print table header
print('{:^15}{:^15}{:^15}{:^15}{:^15}'.format("index", "red_count", "green_count", "blue_count", "orange_count"))
# initialize labeled map
map_labeled = map.copy()
# loop over index and corresponding contour (cntr)
for index, cntr in enumerate(contours):
# filter on area
area = cv2.contourArea(cntr)
if area > 1000 and area < 20000 :
# draw contours on black image
mask = np.zeros_like(basemap)
cv2.drawContours(mask, contours, index, (255,255,255), cv2.FILLED)
# copy map
map_masked = map.copy()
# do bitwise_and between copied map and mask for a given contour
map_masked = cv2.bitwise_and(map_masked, mask)
# get counts for given contour
red_count = np.sum(np.where((map_masked == red).all(axis=2)))
green_count = np.sum(np.where((map_masked == green).all(axis=2)))
blue_count = np.sum(np.where((map_masked == blue).all(axis=2)))
orange_count = np.sum(np.where((map_masked == orange).all(axis=2)))
# print index and counts
print('{:^15}{:^15}{:^15}{:^15}{:^15}'.format(index, red_count, green_count, blue_count, orange_count))
# get centroid of contour for label placement
M = cv2.moments(cntr)
cx = int(M["m10"] / M["m00"])
cy = int(M["m01"] / M["m00"])
# label map with index
map_labeled = cv2.putText(map_labeled, str(index), (cx,cy), cv2.FONT_HERSHEY_PLAIN, 0.75, (0,0,0))
# view each state region from map isolated by mask from contour
# remove the following 3 lines if you do not want to hit the space key for each contour
cv2.imshow("index", map_masked)
cv2.waitKey(0)
cv2.destroyAllWindows()
# save labeled map
cv2.imwrite('map_labeled.png', map_labeled)
Labeled Map:
Terminal Listing Output:
I have a binary image and I want to find contours, to fit the biggest one into a new image with the size of the contour as if a rectangle was around it. In other words, to fit the contour into a new image with lower size.
The find contours routine is finding a rectangle for the whole image, and I don't need it. I look a contour of dimension (width - 1, height - 1) and skip it.
I want to remove biggest rectangle and then fit the 2nd biggest rectangle into a new image. That biggest rectangle will make the limits of the new image. Then I want to draw contours into a new white image.
I just don't know enough about OpenCV and the best way of doing this.
h = img.shape[0]
w = img.shape[1]
ret, img = cv2.threshold(img, 128, 255, cv2.THRESH_BINARY)
# are these the best find contours params?
contours, hierarchy = cv2.findContours(img, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
# paint a new image white
img = np.zeros((384, 640, 1), np.uint8)
img[:-1] = 255
# resize the contours
for i in range(0, len(contours)):
for j in range(0, len(contours[i])):
for k in range(0, len(contours[i][j])):
if contours[i][j][k][1] != h - 1 or contours[i][j][k][0] != w -1:
contours[i][j][k][1] = 384 * contours[i][j][k][1] / h
contours[i][j][k][0] = 640 * contours[i][j][k][0] / w
I can't find a way of finding the rectangle for the whole document. The biggest rectangle is image width * height, but in the 2nd one, only black pixels are visible.
In the comments you state that you want the black pixels as the bounds of the image. In that case you can use the method below. It loads the image as grayscale and then inverts it. So the white in the original image is now black (value: 0) and the black becomes white (value: 255). Next all rows and columns are summed up. The first and last rows/columns that have a sum that is greater than zero are the bounds of the black pixels in the original image. YOu can use these values to slice a new image.
Result:
Code:
import cv2
import numpy as np
# load the image as grayscale
img = cv2.imread('mQTiR.png',0)
#invert the image
img_inv = cv2.bitwise_not(img)
# sum each row and each column of the inverted image
sumOfCols = np.sum(img_inv, axis=0)
sumOfRows = np.sum(img_inv, axis=1)
# get the indexes of the rows/cols that are nonzero (=black in scan)
nonzeroX = np.nonzero(sumOfCols)[0]
nonzeroY = np.nonzero(sumOfRows)[0]
# get the first and last indexes, these are the bounds of the roi
minY = nonzeroY[0]
maxY = nonzeroY[-1]
minX = nonzeroX[0]
maxX = nonzeroX[-1]
#create subimage
subimage = img[minY:maxY,minX:maxX]
#display subimage
cv2.imshow('Result',subimage)
cv2.waitKey(0)
cv2.destroyAllWindows()
I'm trying to write a program that can detect the straight line cut on the circular lens, as seen on the left side of the image:
Now, I have tried using Canny edge detection, Hough Line Transform and findContour to separate the line alone, but I have been unsuccessful in doing so.
I have also tried to detect the line by first detecting the outer circle of the lens and performing a contour search within the ROI(detected circle), but I get random lines across the lens but not the output I want.
So first of all I would like to point out that your image is very noisy. Meaning that simply by looking for contours or edges or lines will probably not work because due to noise. This makes a task very difficult. If you are looking for a way to automatize such a task I would suggest to put some effort in finding the right lighting (I think that a classical dome light would suffice) as it would make much less noise on the image (less reflections ...) and hence it would be easier to make such algoritm.
That being said. I have made an example on how I would try to achieve such a task. Note that this solution might not work for other images but in this one example the result is quite good. It will maybe give you a new point of view on how to tackle this problem.
First I would try to perform an histogram equalization before tranforming the image to binary with OTSU threshold. After that I would perform opening (erosion followed by dilation) on the image:
After that I would make a bounding box over the biggest contour. With x,y,h,w I can calculate the center of bounding box which will serve as my center of the ROI I am going to create. Draw a circle with radius slightly less then w/2 on a copy of the image and a circle on a new mask with the radius equal to w/2. Then perform a bitwise operation:
Now you have your ROI and have to threshold it again to make the boundary without noise and search for contours:
Now you can see that you have two contours (inner and outer). So now you can extract the area where the lens is cut. You can do this by calculating distances between every point of the inner contour and outer contour. Formula for distance between 2 points is sqrt((x2-x1)^2 + (y2-y2)^2). Threshold this distances so that if the distance is less than some integer and draw a line between these two points on the image. I drew the distances with a blue line so. After that tranform the image to HSV colorspace and mask it with bitwise operation again so all that is left are those blue lines:
Perform an OTSU threshold again and select the biggest contour (those blue lines) and fit a line through the contour. Draw the line on the original image and you will get the ending result:
Example code:
import cv2
import numpy as np
### Perform histogram equalization and threshold with OTSU.
img = cv2.imread('lens.jpg')
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
equ = cv2.equalizeHist(gray)
_, thresh = cv2.threshold(equ,0,255,cv2.THRESH_BINARY+cv2.THRESH_OTSU)
### Perform opening (erosion followed by dilation) and search for contours.
kernel = np.ones((2,2),np.uint8)
opening = cv2.morphologyEx(thresh,cv2.MORPH_OPEN,kernel, iterations = 2)
_, contours, hierarchy = cv2.findContours(opening,cv2.RETR_TREE,cv2.CHAIN_APPROX_NONE)
### Select the biggest one and create a bounding box.
### This will be used to calculate the center of your ROI.
cnt = max(contours, key=cv2.contourArea)
### Calculate x and y of the center.
x,y,w2,h2 = cv2.boundingRect(cnt)
center_x = int(x+(w2/2))
center_y = int(y+(h2/2))
### Create the radius of your inner circle ROI and draw it on a copy of the image.
img2 = img.copy()
radius = int((w2/2)-20)
cv2.circle(img2,(center_x,center_y), radius, (0,0,0), -1)
### Create the radius of your inner circle ROI and draw it on a blank mask.
radius_2 = int(w2/2)
h,w = img.shape[:2]
mask = np.zeros((h, w), np.uint8)
cv2.circle(mask,(center_x,center_y), radius_2, (255,255,255), -1)
### Perform a bitwise operation so that you will get your ROI
res = cv2.bitwise_and(img2, img2, mask=mask)
### Modify the image a bit to eliminate noise with thresholding and closing.
_, thresh = cv2.threshold(res,190,255,cv2.THRESH_BINARY)
kernel = np.ones((3,3),np.uint8)
closing = cv2.morphologyEx(thresh,cv2.MORPH_CLOSE,kernel, iterations = 2)
### Search for contours again and select two biggest one.
gray = cv2.cvtColor(closing,cv2.COLOR_BGR2GRAY)
_, thresh = cv2.threshold(gray,0,255,cv2.THRESH_BINARY+cv2.THRESH_OTSU)
_, contours, hierarchy = cv2.findContours(thresh,cv2.RETR_TREE,cv2.CHAIN_APPROX_NONE)
area = sorted(contours, key=cv2.contourArea, reverse=True)
contour1 = area[0]
contour2 = area[1]
### Iterate through both contours and calculate the minimum distance.
### If it is less than the threshold you provide, draw the lines on the image.
### Forumula is sqrt((x2-x1)^2 + (y2-y2)^2).
for i in contour1:
x = i[0][0]
y = i[0][1]
for j in contour2:
x2 = j[0][0]
y2 = j[0][1]
dist = np.sqrt((x2-x)**2 + (y2-y)**2)
if dist < 12:
xy = (x,y)
x2y2 = (x2,y2)
line = (xy,x2y2)
cv2.line(img2,xy,x2y2,(255,0,0),2)
else:
pass
### Transform the image to HSV colorspace and mask the result.
hsv = cv2.cvtColor(img2, cv2.COLOR_BGR2HSV)
lower_blue = np.array([110,50,50])
upper_blue = np.array([130,255,255])
mask = cv2.inRange(hsv, lower_blue, upper_blue)
res = cv2.bitwise_and(img2,img2, mask= mask)
### Search fot contours again.
gray = cv2.cvtColor(res,cv2.COLOR_BGR2GRAY)
_, thresh = cv2.threshold(gray,0,255,cv2.THRESH_BINARY+cv2.THRESH_OTSU)
_, contours, hierarchy = cv2.findContours(thresh,cv2.RETR_TREE,cv2.CHAIN_APPROX_NONE)
cnt = max(contours, key=cv2.contourArea)
### Fit a line through the contour and draw it on the original image.
[vx,vy,x,y] = cv2.fitLine(cnt, cv2.DIST_L2,0,0.01,0.01)
left = int((-x*vy/vx) + y)
right = int(((w-x)*vy/vx)+y)
cv2.line(img,(w-1,right),(0,left),(0,0,255),2)
### Display the result.
cv2.imshow('img', img)
cv2.waitKey(0)
cv2.destroyAllWindows()