python pandas stop fillna at last non NaN value - python

I have a dataframe where the index is date increasing and the columns are observations of variables. The array is sparse.
My goal is to propogate forward in time a known value to fill NaN but I want to stop at the last non-NaN value as that last value signifies the "death" of the variable.
e.g. for the dataset
a
b
c
2020-01-01
NaN
11
NaN
2020-02-01
1
NaN
NaN
2020-03-01
NaN
NaN
14
2020-04-01
2
NaN
NaN
2020-05-01
NaN
NaN
NaN
2020-06-01
NaN
NaN
15
2020-07-01
3
NaN
NaN
2020-08-01
NaN
NaN
NaN
I want to output
a
b
c
2020-01-01
NaN
11
NaN
2020-02-01
1
NaN
NaN
2020-03-01
1
NaN
14
2020-04-01
2
NaN
14
2020-05-01
2
NaN
14
2020-06-01
2
NaN
15
2020-07-01
3
NaN
NaN
2020-08-01
NaN
NaN
NaN
I can identify the index of the last observation using df.notna()[::-1].idxmax() but can't figure out how to use this as a way to limit the fillna function
I'd be grateful for any suggestions. Many thanks

Use DataFrame.where for forward filling by mask - testing only non missing values by back filling them:
df = df.where(df.bfill().isna(), df.ffill())
print (df)
a b c
2020-01-01 NaN 11.0 NaN
2020-02-01 1.0 NaN NaN
2020-03-01 1.0 NaN 14.0
2020-04-01 2.0 NaN 14.0
2020-05-01 2.0 NaN 14.0
2020-06-01 2.0 NaN 15.0
2020-07-01 3.0 NaN NaN
2020-08-01 NaN NaN NaN
Your solution should be used too if compare Series converted to numpy array with broadcasting:
mask = df.notna()[::-1].idxmax().to_numpy() < df.index.to_numpy()[:, None]
df = df.where(mask, df.ffill())
print (df)
a b c
2020-01-01 NaN 11.0 NaN
2020-02-01 1.0 NaN NaN
2020-03-01 1.0 NaN 14.0
2020-04-01 2.0 NaN 14.0
2020-05-01 2.0 NaN 14.0
2020-06-01 2.0 NaN 15.0
2020-07-01 3.0 NaN NaN
2020-08-01 NaN NaN NaN

You can use Series.last_valid_index which is specifically designed for this (to return the index for last non-NA/null value) , to just ffill up to that point:
Assuming your dataset is called df:
df.apply(lambda x: x.loc[:x.last_valid_index()].ffill())
index a b c
0 2020-01-01 NaN 11.00 NaN
1 2020-02-01 1.00 NaN NaN
2 2020-03-01 1.00 NaN 14.00
3 2020-04-01 2.00 NaN 14.00
4 2020-05-01 2.00 NaN 14.00
5 2020-06-01 2.00 NaN 15.00
6 2020-07-01 3.00 NaN NaN
7 2020-08-01 NaN NaN NaN
More on this on:
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.last_valid_index.html

Related

Pandas dataframe with identical date, add seconds to differentiate the rows

I have a pandas dataframe as following:
Date time LifeTime1 LifeTime2 LifeTime3 LifeTime4 LifeTime5
2020-02-11 17:30:00 6 7 NaN NaN 3
2020-02-11 17:30:00 NaN NaN 3 3 NaN
2020-02-12 15:30:00 2 2 NaN NaN 3
2020-02-16 14:30:00 4 NaN NaN NaN 1
2020-02-16 14:30:00 NaN 7 NaN NaN NaN
2020-02-16 14:30:00 NaN NaN 8 2 NaN
The dates are identical for some rows, is it possible to add 1 second, 2 second, 3 seconds to 2, 3, and 4 identical dates? So if its just one unique date, leave as is. If there are two identical dates, leave first one as is but add 1 second to the second identical date. And if three identical date, leave first as is, second add 1 second and add 2 second to third one. Is this possible to do easily in pandas?
You can use groupby.cumcount combined with pandas.to_datetime with unit='s' to add incremental seconds to the duplicated rows:
s = pd.to_datetime(df['Date time'])
df['Date time'] = s+pd.to_timedelta(s.groupby(s).cumcount(), unit='s')
As a one liner with python 3.8+ walrus operator:
df['Date time'] = ((s:=pd.to_datetime(df['Date time']))
+pd.to_timedelta(s.groupby(s).cumcount(), unit='s')
)
output:
Date time LifeTime1 LifeTime2 LifeTime3 LifeTime4 LifeTime5
0 2020-02-11 17:30:00 6.0 7.0 NaN NaN 3.0
1 2020-02-11 17:30:01 NaN NaN 3.0 3.0 NaN
2 2020-02-12 15:30:00 2.0 2.0 NaN NaN 3.0
3 2020-02-16 14:30:00 4.0 NaN NaN NaN 1.0
4 2020-02-16 14:30:01 NaN 7.0 NaN NaN NaN
5 2020-02-16 14:30:02 NaN NaN 8.0 2.0 NaN

Groupby dataframe to get not null elements from each group member

I have a dataframe where in some cases a case has its records in more than one row, with nulls in some rows as so:
date_rounded 1 2 3 4 5
0 2020-04-01 00:05:00 0.0 NaN NaN NaN NaN
1 2020-04-01 00:05:00 NaN 1.0 44.0 44.0 46.454
2 2020-04-01 00:05:00 NaN NaN NaN NaN NaN
I want to have only one row with the filled data, so far I have:
df.groupby(['date_rounded']).apply(lambda df0: df0.fillna(method='ffill').fillna(method='bfill').drop_duplicates())
this works, but it is slow, any better ideas?
Thanks
You can also use groupby and first:
df.groupby("date_rounded").first()
1 2 3 4 5
date_rounded
2020-04-01 00:05:00 0.0 1.0 44.0 44.0 46.454
If you need to fill within each group, you can use groupby().apply and bfill:
df.groupby('date_rounded', as_index=False).apply(lambda x: x.bfill().iloc[0])
Output:
0 date_rounded 1 2 3 4 5
0 2020-04-01 00:05:00 0.0 1.0 44.0 44.0 46.454

Moving average in a pandas dataframe on valid values (non empty rows) [duplicate]

This question already has answers here:
Replace NaN or missing values with rolling mean or other interpolation
(2 answers)
Python: Sliding windowed mean, ignoring missing data
(2 answers)
Closed 4 years ago.
I have a df like this:
a001 a002 a003 a004 a005
time_axis
2017-02-07 1 NaN NaN NaN NaN
2017-02-14 NaN NaN NaN NaN NaN
2017-03-20 NaN NaN 2 NaN NaN
2017-04-03 NaN 3 NaN NaN NaN
2017-05-15 NaN NaN NaN NaN NaN
2017-06-05 NaN NaN NaN NaN NaN
2017-07-10 NaN 6 NaN NaN NaN
2017-07-17 4 NaN NaN NaN NaN
2017-07-24 NaN NaN NaN 1 NaN
2017-08-07 NaN NaN NaN NaN NaN
2017-08-14 NaN NaN NaN NaN NaN
2017-08-28 NaN NaN NaN NaN 5
And I would like to make a rolling mean for each row on the previous 3 valid values(not empty rows) and save in another df:
last_3
time_axis
2017-02-07 1 # still there is only a row
2017-02-14 1 # only a valid value(in the first row) -> average is the value itself
2017-03-20 1.5 # average on the previous rows (only 2 rows contain value-> (2+1)/2
2017-04-03 2 # average on the previous rows with non-NaN values(2017-02-14 excluded) (2+3+1)/3
2017-05-15 2 # Same reason as the previous row
2017-06-05 2 # Same reason
2017-07-10 3.6 # Now the considered values are:2,3,6
2017-07-17 4.3 # considered values: 4,6,3
2017-07-24 3.6 # considered values: 1,4,6
2017-08-07 3.6 # no new values in this row, so again 1,4,6
2017-08-14 3.6 # same reason
2017-08-28 3.3 # now the considered values are: 5,1,4
I was trying deleting the empty rows in the first dataframe and then apply rolling and mean, but I think it is the wrong approach(df1 in my example already exist):
df2 = df.dropna(how='all')
df1['last_3'] = df2.mean(axis=1).rolling(window=3, min_periods=3).mean()
I think you need:
df2 = df.dropna(how='all')
df['last_3'] = df2.mean(axis=1).rolling(window=3, min_periods=1).mean()
df['last_3'] = df['last_3'].ffill()
print (df)
a001 a002 a003 a004 a005 last_3
2017-02-07 1.0 NaN NaN NaN NaN 1.000000
2017-02-14 NaN NaN NaN NaN NaN 1.000000
2017-03-20 NaN NaN 2.0 NaN NaN 1.500000
2017-04-03 NaN 3.0 NaN NaN NaN 2.000000
2017-05-15 NaN NaN NaN NaN NaN 2.000000
2017-06-05 NaN NaN NaN NaN NaN 2.000000
2017-07-10 NaN 6.0 NaN NaN NaN 3.666667
2017-07-17 4.0 NaN NaN NaN NaN 4.333333
2017-07-24 NaN NaN NaN 1.0 NaN 3.666667
2017-08-07 NaN NaN NaN NaN NaN 3.666667
2017-08-14 NaN NaN NaN NaN NaN 3.666667
2017-08-28 NaN NaN NaN NaN 5.0 3.333333

Pandas Dataframe interpolating in sections delimited by indexes

My sample code is as follow:
import pandas as pd
dictx = {'col1':[1,'nan','nan','nan',5,'nan',7,'nan',9,'nan','nan','nan',13],\
'col2':[20,'nan','nan','nan',22,'nan',25,'nan',30,'nan','nan','nan',25],\
'col3':[15,'nan','nan','nan',10,'nan',14,'nan',13,'nan','nan','nan',9]}
df = pd.DataFrame(dictx).astype(float)
I'm trying to interpolate various segments which contain the value 'nan'.
For context, I'm trying to track bus speeds using GPS data provided by the city (São Paulo, Brazil), but the data is scarce and with parts that do not provide the information, as the e.g., but there're segments which I know for a fact that they are stopped, such as dawn, but the information come as 'nan' as well.
What I need:
I've been experimenting with dataframe.interpolate() parameters (limit and limit_diretcion) but came up short. If I set df.interpolate(limit=2) I will not only interpolate the data that I need but the data where it shouldn't. So I need to interpolate between sections defined by a limit
Desired output:
Out[7]:
col1 col2 col3
0 1.0 20.00 15.00
1 nan nan nan
2 nan nan nan
3 nan nan nan
4 5.0 22.00 10.00
5 6.0 23.50 12.00
6 7.0 25.00 14.00
7 8.0 27.50 13.50
8 9.0 30.00 13.00
9 nan nan nan
10 nan nan nan
11 nan nan nan
12 13.0 25.00 9.00
The logic that I've been trying to apply is basically trying to find nan's and calculating the difference between their indexes and so createing a new dataframe_temp to interpolate and only than add it to another creating a new dataframe_final. But this has become hard to achieve due to the fact that 'nan'=='nan' return False
This is a hack but may still be useful. Likely Pandas 0.23 will have a better solution.
https://pandas-docs.github.io/pandas-docs-travis/whatsnew.html#dataframe-interpolate-has-gained-the-limit-area-kwarg
df_fw = df.interpolate(limit=1)
df_bk = df.interpolate(limit=1, limit_direction='backward')
df_fw.where(df_bk.notna())
col1 col2 col3
0 1.0 20.0 15.0
1 NaN NaN NaN
2 NaN NaN NaN
3 NaN NaN NaN
4 5.0 22.0 10.0
5 6.0 23.5 12.0
6 7.0 25.0 14.0
7 8.0 27.5 13.5
8 9.0 30.0 13.0
9 NaN NaN NaN
10 NaN NaN NaN
11 NaN NaN NaN
12 13.0 25.0 9.0
Not a Hack
More legitimate way of handling it.
Generalized to handle any limit.
def interp(df, limit):
d = df.notna().rolling(limit + 1).agg(any).fillna(1)
d = pd.concat({
i: d.shift(-i).fillna(1)
for i in range(limit + 1)
}).prod(level=1)
return df.interpolate(limit=limit).where(d.astype(bool))
df.pipe(interp, 1)
col1 col2 col3
0 1.0 20.0 15.0
1 NaN NaN NaN
2 NaN NaN NaN
3 NaN NaN NaN
4 5.0 22.0 10.0
5 6.0 23.5 12.0
6 7.0 25.0 14.0
7 8.0 27.5 13.5
8 9.0 30.0 13.0
9 NaN NaN NaN
10 NaN NaN NaN
11 NaN NaN NaN
12 13.0 25.0 9.0
Can also handle variation in NaN from column to column. Consider a different df
dictx = {'col1':[1,'nan','nan','nan',5,'nan','nan',7,'nan',9,'nan','nan','nan',13],\
'col2':[20,'nan','nan','nan',22,'nan',25,'nan','nan',30,'nan','nan','nan',25],\
'col3':[15,'nan','nan','nan',10,'nan',14,'nan',13,'nan','nan','nan',9,'nan']}
df = pd.DataFrame(dictx).astype(float)
df
col1 col2 col3
0 1.0 20.0 15.0
1 NaN NaN NaN
2 NaN NaN NaN
3 NaN NaN NaN
4 5.0 22.0 10.0
5 NaN NaN NaN
6 NaN 25.0 14.0
7 7.0 NaN NaN
8 NaN NaN 13.0
9 9.0 30.0 NaN
10 NaN NaN NaN
11 NaN NaN NaN
12 NaN NaN 9.0
13 13.0 25.0 NaN
Then with limit=1
df.pipe(interp, 1)
col1 col2 col3
0 1.0 20.0 15.0
1 NaN NaN NaN
2 NaN NaN NaN
3 NaN NaN NaN
4 5.0 22.0 10.0
5 NaN 23.5 12.0
6 NaN 25.0 14.0
7 7.0 NaN 13.5
8 8.0 NaN 13.0
9 9.0 30.0 NaN
10 NaN NaN NaN
11 NaN NaN NaN
12 NaN NaN 9.0
13 13.0 25.0 9.0
And with limit=2
df.pipe(interp, 2).round(2)
col1 col2 col3
0 1.00 20.00 15.0
1 NaN NaN NaN
2 NaN NaN NaN
3 NaN NaN NaN
4 5.00 22.00 10.0
5 5.67 23.50 12.0
6 6.33 25.00 14.0
7 7.00 26.67 13.5
8 8.00 28.33 13.0
9 9.00 30.00 NaN
10 NaN NaN NaN
11 NaN NaN NaN
12 NaN NaN 9.0
13 13.00 25.00 9.0
Here is a way to selectively ignore rows which are consecutive runs of NaNs whose length is greater than a certain size (given by limit):
import numpy as np
import pandas as pd
dictx = {'col1':[1,'nan','nan','nan',5,'nan',7,'nan',9,'nan','nan','nan',13],\
'col2':[20,'nan','nan','nan',22,'nan',25,'nan',30,'nan','nan','nan',25],\
'col3':[15,'nan','nan','nan',10,'nan',14,'nan',13,'nan','nan','nan',9]}
df = pd.DataFrame(dictx).astype(float)
limit = 2
notnull = pd.notnull(df).all(axis=1)
# assign group numbers to the rows of df. Each group starts with a non-null row,
# followed by null rows
group = notnull.cumsum()
# find the index of groups having length > limit
ignore = (df.groupby(group).filter(lambda grp: len(grp)>limit)).index
# only ignore rows which are null
ignore = df.loc[~notnull].index.intersection(ignore)
keep = df.index.difference(ignore)
# interpolate only the kept rows
df.loc[keep] = df.loc[keep].interpolate()
print(df)
prints
col1 col2 col3
0 1.0 20.0 15.0
1 NaN NaN NaN
2 NaN NaN NaN
3 NaN NaN NaN
4 5.0 22.0 10.0
5 6.0 23.5 12.0
6 7.0 25.0 14.0
7 8.0 27.5 13.5
8 9.0 30.0 13.0
9 NaN NaN NaN
10 NaN NaN NaN
11 NaN NaN NaN
12 13.0 25.0 9.0
By changing the value of limit you can control how big the group has to be before it should be ignored.
This is a partial answer.
for i in list(df):
for x in range(len(df[i])):
if not df[i][x] > -100:
df[i][x] = 0
df
col1 col2 col3
0 1.0 20.0 15.0
1 0.0 0.0 0.0
2 0.0 0.0 0.0
3 0.0 0.0 0.0
4 5.0 22.0 10.0
5 0.0 0.0 0.0
6 7.0 25.0 14.0
7 0.0 0.0 0.0
8 9.0 30.0 13.0
9 0.0 0.0 0.0
10 0.0 0.0 0.0
11 0.0 0.0 0.0
12 13.0 25.0 9.0
Now,
df["col1"][1] == df["col2"][1]
True

Merging columns and removing duplicates with Pandas

I need to merge similar columns and remove duplicates (entries with the same date). The data frame:
Albumin C-reactive protein CRP Ferritin Haemoglobin Hb Iron Nancy Index Plasma Platelets Transferrin saturation % Transferrin saturations UCEIS (0 to 8) WCC White Cell Count test_date
0 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 12.35 2016-04-17 23:00:00
1 NaN NaN NaN NaN 133.0 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 2016-04-17 23:00:00
2 NaN NaN NaN NaN NaN NaN NaN NaN NaN 406.0 NaN NaN NaN NaN NaN 2016-04-17 23:00:00
3 NaN NaN NaN NaN NaN NaN NaN NaN NaN 406.0 NaN NaN NaN NaN NaN 2016-04-17 23:00:00
4 NaN 32.2 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 2016-04-17 23:00:00
5 36.0 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 2016-04-17 23:00:00
6 NaN NaN NaN 99.7 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 2016-04-17 23:00:00
7 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 25.0 NaN NaN NaN NaN 2016-04-17 23:00:00
12 36.0 NaN 32.2 99.7 NaN 133.0 NaN NaN NaN 406.0 NaN 25.0 NaN 12.35 NaN 2016-04-17 23:00:00
14 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 7.0 NaN NaN 2016-04-25 23:00:00
79 34.0 NaN 5.4 55.9 NaN 133.0 NaN NaN NaN 372.0 NaN 28.0 NaN 7.99 NaN 2016-06-12 23:00:00
I need to get:
Albumin CRP Ferritin Hb Nancy Index Plasma Platelets Transferrin saturations UCEIS (0 to 8) WCC test_date
12 36.0 32.2 99.7 133.0 NaN NaN 406.0 25.0 NaN 12.35 2016-04-17 23:00:00
14 NaN NaN NaN NaN NaN NaN NaN NaN 7.0 NaN 2016-04-25 23:00:00
79 34.0 5.4 55.9 133.0 NaN NaN 372.0 28.0 NaN 7.99 2016-06-12 23:00:00
So, columns 'C-reactive protein' should be merged with 'CRP', 'Hemoglobin' with 'Hb', 'Transferrin saturation %' with 'Transferrin saturation'.
I can easily remove duplicates with .drop_duplicates(), but the trick is remove not only row with the same date, but also to make sure, that the values in the same column are duplicated. For example, 'C-reactive protein' at row '4' has the same values as 'CRP' in row '12', in addition, they both have the same entry date. Given all that, I need to have only 'CRP' column with values 32.2 and the date '2016-04-17' (plus other unique columns).
EDIT
Some entries are really duplicates (absolutely identical, due to system glitches), for example (last three rows, on 2016-06-20, indices '803' and '122'). Is the solution below capable of removing such identical rows?
P.S. Thanks for the amazing and general solution for duplicate, but not identical entries.
Albumin C-reactive protein CRP Ferritin Haemoglobin Hb Iron Nancy Index Plasma Platelets Transferrin saturation % Transferrin saturations UCEIS (0 to 8) WCC White Cell Count setName test_date
735 39.0 NaN 0.4 52.0 NaN 144.0 NaN NaN NaN 197.0 NaN 25.0 NaN 4.88 NaN Bloods 2016-05-31 23:00:00
803 40.0 NaN 0.2 81.0 NaN 147.0 NaN NaN NaN 234.0 NaN 35.0 NaN 8.47 NaN Bloods 2016-06-20 23:00:00
347 NaN NaN NaN NaN NaN NaN NaN NaN 1.0 NaN NaN NaN NaN NaN NaN Research Bloods 2016-06-20 23:00:00
122 40.0 NaN 0.2 81.9 NaN 147.0 NaN NaN NaN 234.0 NaN 35.0 NaN 8.47 NaN Bloods 2016-06-20 23:00:00
I think you need groupby with rename columns by dict:
d = {'C-reactive protein':'CRP', 'Hemoglobin':'Hb',
'Transferrin saturation %':'Transferrin saturations'}
df = df.groupby('test_date').max().rename(columns=d).groupby(axis=1, level=0).max()
print (df)
Albumin CRP Ferritin Haemoglobin Hb Iron \
test_date
2016-04-17 23:00:00 36.0 32.2 99.7 133.0 133.0 NaN
2016-04-25 23:00:00 NaN NaN NaN NaN NaN NaN
2016-06-12 23:00:00 34.0 5.4 55.9 NaN 133.0 NaN
Nancy Index Plasma Platelets Transferrin saturations \
test_date
2016-04-17 23:00:00 NaN NaN 406.0 25.0
2016-04-25 23:00:00 NaN NaN NaN NaN
2016-06-12 23:00:00 NaN NaN 372.0 28.0
UCEIS (0 to 8) WCC White Cell Count
test_date
2016-04-17 23:00:00 NaN 12.35 12.35
2016-04-25 23:00:00 7.0 NaN NaN
2016-06-12 23:00:00 NaN 7.99 NaN
More general solution is reshape by melt, remove duplicates and then create DataFrame back:
d = {'C-reactive protein':'CRP', 'Hemoglobin':'Hb',
'Transferrin saturation %':'Transferrin saturations'}
df = df.rename(columns=d).groupby(axis=1, level=0).max()
df = pd.melt(df, id_vars='test_date').dropna(subset=['value']).drop_duplicates()
df = df.groupby(['test_date','variable'])['value'] \
.apply(lambda x: pd.Series(x.values)) \
.unstack(1) \
.reset_index(level=1, drop=True) \
.reset_index() \
.rename_axis(None,axis=1)
print (df)
test_date Albumin CRP Ferritin Hb Platelets \
0 2016-04-17 23:00:00 1000.0 32.2 99.7 1000.0 406.0
1 2016-04-17 23:00:00 36.0 NaN NaN 133.0 NaN
2 2016-04-25 23:00:00 NaN NaN NaN NaN NaN
3 2016-06-12 23:00:00 34.0 5.4 55.9 133.0 372.0
Transferrin saturations UCEIS (0 to 8) WCC White Cell Count
0 25.0 NaN 12.35 12.35
1 NaN NaN NaN NaN
2 NaN 7.0 NaN NaN
3 28.0 NaN 7.99 NaN
What #jezrael was saying is that if you had a situation where:
Albumin C-reactive protein CRP test_date
0 NaN NaN 32 2016-04-17 23:00:00
1 NaN 8.0 NaN 2016-04-17 23:00:00
then his method would erase the 8.0 reading and keep only the 32 (this is because he does it in two steps (or 3?), in this line: df = df.groupby('test_date').max().rename(columns=d).groupby(axis=1, level=0).max()
df = df.groupby('test_date').max() # selects max of each column
# while collapsing 'test_date'
which for my truncated example would give:
Albumin C-reactive protein CRP test_date
0 NaN 8.0 32 2016-04-17 23:00:00
then rename .rename(columns=d) giving:
Albumin CRP CRP test_date
0 NaN 8.0 32 2016-04-17 23:00:00
then .groupby(axis=1, level=0).max() to group along rows (instead of down columns) which gives:
Albumin CRP test_date
0 NaN 32 2016-04-17 23:00:00
which is where you run the highest risk of losing data.
Alternative
I would split the original data into two frames first
df1 = df[["C-reactive protein","Haemoglobin", ...]]
df2 = df[["CRP", "Hb"]]
# then rename
df2 = df2.rename(columns={"CRP":"C-reactive protein", "Hb":"Haemoglobin", ...})
# use concat to stack them on one another
df3 = pd.concat([df1, df2]) # i've run out of names
df3 = df3.drop_duplicates() # perhaps also drop NAs?
but this is only necessary if you have multiple non-duplicate entries for the same test on the same day.

Categories