I have written a code that merges File B into File A based on a column 'Code'. Some of the values from File B, however, are generic ('Color') and I would need to do another merge with file C - but instead of creating a new column I would like to use the same column created during the first merge and whenever first merge returned value 'Color' only for those rows do merge with file C to get the proper value.
I went as far as merging A with B:
import pandas as pd
File_A = pd.read_excel(r'.../My Files/Python/Supplier cat testing/File A.xlsx')
File_B = pd.read_excel(r'.../My Files/Python/Supplier cat testing/File B.xlsx')
File_C = pd.read_excel(r'.../My Files/Python/Supplier cat testing/File C.xlsx')
results = pd.merge(File_A, File_B[['Code','Color']], on='Code')
results.to_excel('Output_File.xlsx', index=False)
Would anyone have any idea where do I even start, please?
Try :
dfOut = dfB.copy()
dfOut['Color'] = dfB.merge(dfC, on='Code').apply(lambda r: r.Color_x if r.Color_y == 'Color' else r.Color_y, axis=1)
print(df)
Output
Code Color
0 0 Green
1 1 Yellow
2 2 Orange
3 3 Red
4 4 Black
Related
I have many different tables that all have different column names and each refer to an outcome, like glucose, insulin, leptin etc (except keep in mind that the tables are all gigantic and messy with tons of other columns in them as well).
I am trying to generate a report that starts empty but then adds columns based on functions applied to each of the glucose, insulin, and leptin tables.
I have included a very simple example - ignore that the function makes little sense. The below code works, but I would like to, instead of copy + pasting final_report["outcome"] = over and over again, just run the find_result function over each of glucose, insulin, and leptin and add the "glucose_result", "insulin_result" and "leptin_result" to the final_report in one or a few lines.
Thanks in advance.
import pandas as pd
ids = [1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,4,4,4,4,4,4]
timepoint = [1,2,3,4,5,6,1,2,3,4,5,6,1,2,4,1,2,3,4,5,6]
outcome = [2,3,4,5,6,7,3,4,1,2,3,4,5,4,5,8,4,5,6,2,3]
glucose = pd.DataFrame({'id':ids,
'timepoint':timepoint,
'outcome':outcome})
insulin = pd.DataFrame({'id':ids,
'timepoint':timepoint,
'outcome':outcome})
leptin = pd.DataFrame({'id':ids,
'timepoint':timepoint,
'outcome':outcome})
ids = [1,2,3,4]
start = [1,1,1,1]
end = [6,6,6,6]
final_report = pd.DataFrame({'id':ids,
'start':start,
'end':end})
def find_result(subject, start, end, df):
df = df.loc[(df["id"] == subject) & (df["timepoint"] >= start) & (df["timepoint"] <= end)].sort_values(by = "timepoint")
return df["timepoint"].nunique()
final_report['glucose_result'] = final_report.apply(lambda x: find_result(x['id'], x['start'], x['end'], glucose), axis=1)
final_report['insulin_result'] = final_report.apply(lambda x: find_result(x['id'], x['start'], x['end'], insulin), axis=1)
final_report['leptin_result'] = final_report.apply(lambda x: find_result(x['id'], x['start'], x['end'], leptin), axis=1)
If you have to use this code structure, you can create a simple dictionary with your dataframes and their names and loop through them, creating new columns with programmatically assigned names:
input_dfs = {"glucose": glucose, "insulin": insulin, "leptin": leptin}
for name, df in input_dfs.items():
final_report[f"{name}_result"] = final_report.apply(
lambda x: find_result(x['id'], x['start'], x['end'], df),
axis=1
)
Output:
id start end glucose_result insulin_result leptin_result
0 1 1 6 6 6 6
1 2 1 6 6 6 6
2 3 1 6 3 3 3
3 4 1 6 6 6 6
I want to remove commas from a column named size.
CSV looks like below:
number name size
1 Car 9,32,123
2 Bike 1,00,000
3 Truck 10,32,111
I want the output as below:
number name size
1 Car 932123
2 Bike 100000
3 Truck 1032111
I am using python3 and Pandas module for handling this csv.
I am trying replace method but I don't get the desired output.
Snapshot from my code :
import pandas as pd
df = pd.read_csv("file.csv")
// df.replace(",","")
// df['size'] = df['size'].replace(to_replace = "," , value = "")
// df['size'] = df['size'].replace(",", "")
df['size'] = df['size'].replace({",", ""})
print(df['size']) // expecting to see 'size' column without comma
I don't see any error/exception. The last line print(df['size']) simply displays values as it is, ie, with commas.
With replace, we need regex=True because otherwise it looks for exact match in a cell, i.e., cells with , in them only:
>>> df["size"] = df["size"].replace(",", "", regex=True)
>>> df
number name size
0 1 Car 932123
1 2 Bike 100000
2 3 Truck 1032111
I am using python3 and Pandas module for handling this csv
Note that pandas.read_csv function has optional argument thousands, if , are used for denoting thousands you might set thousands="," consider following example
import io
import pandas as pd
some_csv = io.StringIO('value\n"1"\n"1,000"\n"1,000,000"\n')
df = pd.read_csv(some_csv, thousands=",")
print(df)
output
value
0 1
1 1000
2 1000000
For brevity I used io.StringIO, same effect might be achieved providing name of file with same content as first argument in io.StringIO.
Try with str.replace instead:
df['size'] = df['size'].str.replace(',', '')
Optional convert to int with astype:
df['size'] = df['size'].str.replace(',', '').astype(int)
number name size
0 1 Car 932123
1 2 Bike 100000
2 3 Truck 1032111
Sample Frame Used:
df = pd.DataFrame({'number': [1, 2, 3], 'name': ['Car', 'Bike', 'Truck'],
'size': ['9,32,123', '1,00,000', '10,32,111']})
number name size
0 1 Car 9,32,123
1 2 Bike 1,00,000
2 3 Truck 10,32,111
I currently have 2 csv files and am reading them both in, and need to get the ID's in one csv and find them in the other so that I can get their row of data. Currently I have the following code that I believe goes through the first dataframe but only is adding the last match onto the new dataframe. I need it to add all of the subsequent rows however.
Here is my code:
patientSet = pd.read_csv("794_chips_RMA.csv")
affSet = probeset[probeset['Analysis']==1].reset_index(drop=True)
houseGenes = probeset[probeset['Analysis']==0].reset_index(drop=True)
for x in affSet['Probeset']:
#patients = patientSet[patientSet['ID']=='1557366_at'].reset_index(drop=True)
#patients = patientSet[patientSet['ID']=='224851_at'].reset_index(drop=True)
patients = patientSet[patientSet['ID']==x].reset_index(drop=True)
print(affSet['Probeset'])
print(patientSet['ID'])
print(patients)
The following is the output:
0 1557366_at
1 224851_at
2 1554784_at
3 231578_at
4 1566643_a_at
5 210747_at
6 231124_x_at
7 211737_x_at
Name: Probeset, dtype: object
0 1007_s_at
1 1053_at
2 117_at
3 121_at
4 1255_g_at
...
54670 AFFX-ThrX-5_at
54671 AFFX-ThrX-M_at
54672 AFFX-TrpnX-3_at
54673 AFFX-TrpnX-5_at
54674 AFFX-TrpnX-M_at
Name: ID, Length: 54675, dtype: object
ID phchp003v1 phchp003v2 phchp003v3 ... phchp367v1 phchp367v2 phchp368v1 phchp368v2
0 211737_x_at 12.223453 11.747159 9.941889 ... 14.828389 9.322779 10.609053 10.771162
as you can see, it is only matching the very last ID from the first dataframe, and not all of them. How can I get them all to match and be in patients? Thank you.
you probably want to use the merge function
df_inner = pd.merge(df1, df2, on='id', how='inner')
check here https://www.datacamp.com/community/tutorials/joining-dataframes-pandas search for "inner join"
--edit--
you can specify the columns (using left_on=None,right_on=None,) , look here: https://pandas.pydata.org/pandas-docs/stable/user_guide/merging.html#database-style-dataframe-or-named-series-joining-merging
#Rui Lima already posted the correct answer, but you'll need to use the following to make it work:
df = pd.merge(patientSet , affSet, on='ID', how='inner')
I am a beginner in python. I have a hundred pair of CSV file. The file looks like this:
25_13oct_speed_0.csv
26_13oct_speed_0.csv
25_13oct_speed_0.1.csv
26_13oct_speed_0.1.csv
25_13oct_speed_0.2.csv
26_13oct_speed_0.2.csv
and others
I want to concatenate the pair files between 25 and 26 file. each pair of the file has a speed threshold (Speed_0, 0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0,1.1,1.2,1.3,1.4,1.5,1.6,1.7,1.8,1.9,2.0) which is labeled on the file name. These files have the same structure data.
Mac Annotation X Y
A first 0 0
A last 0 0
B first 0 0
B last 0 0
Therefore, concatenate analyze is enough to join these two data. I use this method:
df1 = pd.read_csv('25_13oct_speed_0.csv')
df2 = pd.read_csv('26_13oct_speed_0.csv')
frames = [df1, df2]
result = pd.concat(frames)
for each pair files. but it takes time and not an elegant way. is there a good way to combine automatically the pair file and save simultaneously?
Idea is create DataFrame by list of files and add 2 new columns by Series.str.split by first _:
print (files)
['25_13oct_speed_0.csv', '26_13oct_speed_0.csv',
'25_13oct_speed_0.1.csv', '26_13oct_speed_0.1.csv',
'25_13oct_speed_0.2.csv', '26_13oct_speed_0.2.csv']
df1 = pd.DataFrame({'files': files})
df1[['g','names']] = df1['files'].str.split('_', n=1, expand=True)
print (df1)
files g names
0 25_13oct_speed_0.csv 25 13oct_speed_0.csv
1 26_13oct_speed_0.csv 26 13oct_speed_0.csv
2 25_13oct_speed_0.1.csv 25 13oct_speed_0.1.csv
3 26_13oct_speed_0.1.csv 26 13oct_speed_0.1.csv
4 25_13oct_speed_0.2.csv 25 13oct_speed_0.2.csv
5 26_13oct_speed_0.2.csv 26 13oct_speed_0.2.csv
Then loop per groups per column names, loop by groups with DataFrame.itertuples and create new DataFrame with read_csv, if necessary add new column filled by values from g, append to list, concat and last cave to new file by name from column names:
for i, g in df1.groupby('names'):
out = []
for n in g.itertuples():
df = pd.read_csv(n.files).assign(source=n.g)
out.append(df)
dfbig = pd.concat(out, ignore_index=True)
print (dfbig)
dfbig.to_csv(g['names'].iat[0])
Hello my dear coders,
I'm new to coding and I've stumbled upon a problem. I want to split a column of a csv file that I have imported via pandas in Python. The column name is CATEGORY and contains 1, 2 or 3 values such seperated by a comma (IE: 2343, 3432, 4959) Now I want to split these values into seperate columns named CATEGORY, SUBCATEGORY and SUBSUBCATEGORY.
I have tried this line of code:
products_combined[['CATEGORY','SUBCATEGORY', 'SUBSUBCATEGORY']] = products_combined.pop('CATEGORY').str.split(expand=True)
But I get this error: ValueError: Columns must be same length as key
Would love to hear your feedback <3
You need:
pd.DataFrame(df.CATEGORY.str.split(',').tolist(), columns=['CATEGORY','SUBCATEGORY', 'SUBSUBCATEGORY'])
Output:
CATEGORY SUBCATEGORY SUBSUBCATEGORY
0 2343 3432 4959
1 2343 3432 4959
I think this could be accomplished by creating three new columns and assigning each to a lambda function applied to the 'CATEGORY' column. Like so:
products_combined['SUBCATEGORY'] = products_combined['CATEGORY'].apply(lambda original: original[1] if len(original) > 1 else None)
products_combined['SUBSUBCATEGORY'] = products_combined['CATEGORY'].apply(lambda original: original[2] if len(original) > 2 else None)
products_combined['CATEGORY'] = products_combined['CATEGORY'].apply(lambda original: original[0])
The apply() method called on a series returns a new series that contains the result of running the passed function (in this case, the lambda function) on each row of the original series.
IIUC, use split and then Series:
(
df[0].apply(lambda x: pd.Series(x.split(",")))
.rename(columns={0:"CATEGORY", 1:"SUBCATEGORY", 2:"SUBSUBCATEGORY"})
)
CATEGORY SUBCATEGORY SUBSUBCATEGORY
0 2343 3432 4959
1 1 NaN NaN
2 44 55 NaN
Data:
d = [["2343,3432,4959"],["1"],["44,55"]]
df = pd.DataFrame(d)