How do can I merge two rows in a pyspark dataframe that satisfy a condition?
Example:
dataframe
+---+---+------+
|src|dst|weight|
+---+---+------+
| 8| 7| 1|
| 1| 1| 93|
| 1| 4| 1|
| 4| 4| 2|
| 4| 1| 3|
| 1| 7| 1|
+---+---+------+
condition: (df.src,df.dst) == (df.dst,df.src)
expected output
summed the weight and deleted (4,1)
+---+---+------+
|src|dst|weight|
+---+---+------+
| 8| 7| 1|
| 1| 1| 93|
| 1| 4| 4| #
| 4| 4| 2|
| 1| 7| 1|
+---+---+------+
or
summed the weights and deleted (1,4)
+---+---+------+
|src|dst|weight|
+---+---+------+
| 8| 7| 1|
| 1| 1| 93|
| 4| 4| 2|
| 4| 1| 4| #
| 1| 7| 1|
+---+---+------+
You can add a src_dst column with the sorted array of src and dst, then get the sum of weights for each src_dst, and remove duplicate rows of src_dst:
from pyspark.sql import functions as F, Window
df2 = df.withColumn(
'src_dst',
F.sort_array(F.array('src', 'dst'))
).withColumn(
'weight',
F.sum('weight').over(Window.partitionBy('src_dst'))
).dropDuplicates(['src_dst']).drop('src_dst')
df2.show()
+---+---+------+
|src|dst|weight|
+---+---+------+
| 1| 7| 1|
| 1| 1| 93|
| 1| 4| 4|
| 8| 7| 1|
| 4| 4| 2|
+---+---+------+
I have a RDD in a form of:
[(('1', '10'), 1), (('10', '1'), 1), (('1', '12'), 1), (('12', '1'), 1)]
What I have done is
df = spark.createDataFrame(rdd, ["src", "rp"])
where I make a column of the tuple and int which looks like this:
+-------+-----+
| src|rp |
+-------+-----+
|[1, 10]| 1|
|[10, 1]| 1|
|[1, 12]| 1|
|[12, 1]| 1|
+-------+-----+
But I can't figure out how to make src column of the first element in [x,y] and dst column of the second element so i would have a dataframe with three columns src, dst and rp:
+-------+-----+-----+
| src|dst |rp |
+-------+-----+-----+
| 1| 10| 1|
| 10| 1| 1|
| 1| 12| 1|
| 12| 1| 1|
+-------+-----+-----+
You need an intermediate transformation on your RDD to make it a flat list of three elements:
spark.createDataFrame(rdd.map(lambda l: [l[0][0], l[0][1], l[1]]), ["src", "dst", "rp"])
+---+---+---+
|src|dst| rp|
+---+---+---+
| 1| 10| 1|
| 10| 1| 1|
| 1| 12| 1|
| 12| 1| 1|
+---+---+---+
You can just do a simple select on the dataframe to separate out the columns. No need to do a intermediate transformation as the other answer suggests.
from pyspark.sql.functions import col
df = sqlContext.createDataFrame(rdd, ["src", "rp"])
df = df.select(col("src._1").alias("src"), col("src._2").alias("dst"),col("rp"))
df.show()
Here's the result
+---+---+---+
|src|dst| rp|
+---+---+---+
| 1| 10| 1|
| 10| 1| 1|
| 1| 12| 1|
| 12| 1| 1|
+---+---+---+
I am trying to count consecutive values that appear in a column with Pyspark. I have the column "a" in my dataframe and expect to create the column "b".
+---+---+
| a| b|
+---+---+
| 0| 1|
| 0| 2|
| 0| 3|
| 0| 4|
| 0| 5|
| 1| 1|
| 1| 2|
| 1| 3|
| 1| 4|
| 1| 5|
| 1| 6|
| 2| 1|
| 2| 2|
| 2| 3|
| 2| 4|
| 2| 5|
| 2| 6|
| 3| 1|
| 3| 2|
| 3| 3|
+---+---+
I have tried to create the column "b" with lag function over some window, but without success.
w = Window\
.partitionBy(df.some_id)\
.orderBy(df.timestamp_column)
df.withColumn(
"b",
f.when(df.a == f.lag(df.a).over(w),
f.sum(f.lit(1)).over(w)).otherwise(f.lit(0))
)
I could resolve this issue with the following code:
df.withColumn("b",
f.row_number().over(Window.partitionBy("a").orderBy("timestamp_column"))
I have a pyspark dataframe, and I want to add an Id column to it that only increases if a condition is met.
Example:
over a Window on col1, if col2 value changes, the Id needs to be incremented by 1.
Input:
+----+----+
|col1|col2|
+----+----+
| 1| A|
| 1| A|
| 1| B|
| 1| C|
| 2| A|
| 2| B|
| 2| B|
| 2| B|
| 2| C|
| 2| C|
+----+----+
output:
+----+----+----+
|col1|col2| ID|
+----+----+----+
| 1| A| 1|
| 1| A| 1|
| 1| B| 2|
| 1| C| 3|
| 2| A| 1|
| 2| B| 2|
| 2| B| 2|
| 2| B| 2|
| 2| C| 3|
| 2| C| 3|
+----+----+----+
Thanks :)
What you are looking for is the dense_rank function (pyspark doc here).
Assuming your dataframe variable is df you can do something like this:
import pyspark.sql.functions as F
from pyspark.sql.window import Window
...
df.withColumn('ID', F.dense_rank().over(Window.partitionBy('col1').orderBy('col2')))
I've got a dataframe like this and I want to duplicate the row n times if the column n is bigger than one:
A B n
1 2 1
2 9 1
3 8 2
4 1 1
5 3 3
And transform like this:
A B n
1 2 1
2 9 1
3 8 2
3 8 2
4 1 1
5 3 3
5 3 3
5 3 3
I think I should use explode, but I don't understand how it works...
Thanks
With Spark 2.4.0+, this is easier with builtin functions: array_repeat + explode:
from pyspark.sql.functions import expr
df = spark.createDataFrame([(1,2,1), (2,9,1), (3,8,2), (4,1,1), (5,3,3)], ["A", "B", "n"])
new_df = df.withColumn('n', expr('explode(array_repeat(n,int(n)))'))
>>> new_df.show()
+---+---+---+
| A| B| n|
+---+---+---+
| 1| 2| 1|
| 2| 9| 1|
| 3| 8| 2|
| 3| 8| 2|
| 4| 1| 1|
| 5| 3| 3|
| 5| 3| 3|
| 5| 3| 3|
+---+---+---+
The explode function returns a new row for each element in the given array or map.
One way to exploit this function is to use a udf to create a list of size n for each row. Then explode the resulting array.
from pyspark.sql.functions import udf, explode
from pyspark.sql.types import ArrayType, IntegerType
df = spark.createDataFrame([(1,2,1), (2,9,1), (3,8,2), (4,1,1), (5,3,3)] ,["A", "B", "n"])
+---+---+---+
| A| B| n|
+---+---+---+
| 1| 2| 1|
| 2| 9| 1|
| 3| 8| 2|
| 4| 1| 1|
| 5| 3| 3|
+---+---+---+
# use udf function to transform the n value to n times
n_to_array = udf(lambda n : [n] * n, ArrayType(IntegerType()))
df2 = df.withColumn('n', n_to_array(df.n))
+---+---+---------+
| A| B| n|
+---+---+---------+
| 1| 2| [1]|
| 2| 9| [1]|
| 3| 8| [2, 2]|
| 4| 1| [1]|
| 5| 3|[3, 3, 3]|
+---+---+---------+
# now use explode
df2.withColumn('n', explode(df2.n)).show()
+---+---+---+
| A | B | n |
+---+---+---+
| 1| 2| 1|
| 2| 9| 1|
| 3| 8| 2|
| 3| 8| 2|
| 4| 1| 1|
| 5| 3| 3|
| 5| 3| 3|
| 5| 3| 3|
+---+---+---+
I think the udf answer by #Ahmed is the best way to go, but here is an alternative method, that may be as good or better for small n:
First, collect the maximum value of n over the whole DataFrame:
max_n = df.select(f.max('n').alias('max_n')).first()['max_n']
print(max_n)
#3
Now create an array for each row of length max_n, containing numbers in range(max_n). The output of this intermediate step will result in a DataFrame like:
df.withColumn('n_array', f.array([f.lit(i) for i in range(max_n)])).show()
#+---+---+---+---------+
#| A| B| n| n_array|
#+---+---+---+---------+
#| 1| 2| 1|[0, 1, 2]|
#| 2| 9| 1|[0, 1, 2]|
#| 3| 8| 2|[0, 1, 2]|
#| 4| 1| 1|[0, 1, 2]|
#| 5| 3| 3|[0, 1, 2]|
#+---+---+---+---------+
Now we explode the n_array column, and filter to keep only the values in the array that are less than n. This will ensure that we have n copies of each row. Finally we drop the exploded column to get the end result:
df.withColumn('n_array', f.array([f.lit(i) for i in range(max_n)]))\
.select('A', 'B', 'n', f.explode('n_array').alias('col'))\
.where(f.col('col') < f.col('n'))\
.drop('col')\
.show()
#+---+---+---+
#| A| B| n|
#+---+---+---+
#| 1| 2| 1|
#| 2| 9| 1|
#| 3| 8| 2|
#| 3| 8| 2|
#| 4| 1| 1|
#| 5| 3| 3|
#| 5| 3| 3|
#| 5| 3| 3|
#+---+---+---+
However, we are creating a max_n length array for each row- as opposed to just an n length array in the udf solution. It's not immediately clear to me how this will scale vs. udf for large max_n, but I suspect the udf will win out.