The following code puts some points on the plane and draws a line from center to each point. For each point, there is a label and want to put the label after the point. Therefore, from center, we see a line, then a point and then a text. I want to put the label with the same slope of the line.
Currently, I have this code, but as you can see the rotated text is not properly aligned. How can I fix that?
import matplotlib.pyplot as plt
import numpy as np
from math import *
a = np.array([
[-0.108,0.414],
[0.755,-0.152],
[0.871,-0.039],
],)
labels = ["XXXXXXX", "YYYYYY", "ZZZZZZZ"]
x, y = a.T
plt.scatter(x, y)
plt.xlim(-1,1)
plt.ylim(-1,1)
ax = plt.axes()
for i in range(a.shape[0]):
px = a[i,0]
py = a[i,1]
ax.arrow(0, 0, px, py, head_width=0, head_length=0.1, length_includes_head=True)
angle = degrees(atan(py/px))
ax.annotate(labels[i], (px, py), rotation=angle)
plt.grid(True)
plt.show()
UPDATE:
I used the solution proposed here and modified
text_plot_location = np.array([0.51,0.51])
trans_angle = plt.gca().transData.transform_angles(np.array((45,)),text_plot_location.reshape((1,2)))[0]
ax.annotate(labels[i], (px, py), rotation=text_plot_location)
However, I get this error TypeError: unhashable type: 'numpy.ndarray'
Not ideal but a bit closer to what you want. The drawback is the arbitrary value of 30 points for the text offset that works for the given labels but needs to be adjusted for longer or shorter labels.
import matplotlib.pyplot as plt
import numpy as np
from math import *
a = np.array([[-0.108,0.414],[0.755,-0.152],[0.871,-0.039]])
labels = ["XXXXXXX", "YYYYYY", "ZZZZZZZ"]
x, y = a.T
plt.scatter(x, y)
plt.xlim(-1,1)
plt.ylim(-1,1)
ax = plt.axes()
for i in range(a.shape[0]):
px = a[i,0]
py = a[i,1]
ax.arrow(0, 0, px, py, head_width=0, head_length=0.1, length_includes_head=True)
angle = atan(py/px)
d = (-1 if px < 0 else 1) * 30
ax.annotate(labels[i], (px, py), rotation=degrees(angle), textcoords="offset points",
xytext=(d*cos(angle), d*sin(angle)),
verticalalignment='center', horizontalalignment='center')
plt.grid(True)
plt.show()
The link by #mapf is a bit cleaner, but this is what I came up with:
import matplotlib.pyplot as plt
import numpy as np
a = np.array([
[-0.108,0.414],
[0.755,-0.152],
[0.871,-0.039],
],)
labels = ["XXXXXXX", "YYYYYY", "ZZZZZZZ"]
x, y = a.T
fig, ax = plt.subplots()
ax.scatter(x, y)
ax.set_xlim(-1,1)
ax.set_ylim(-1,1)
line, = ax.plot(*a.T)
for jdx, (label, point) in enumerate(zip(labels, a)):
# find closest point
tmp = np.linalg.norm(a - point, axis = 1)
idx = np.argsort(tmp)[1]
other = a[idx]
# compute angle
deg = np.angle(complex(*(point - other)))
deg = np.rad2deg(deg)
ax.annotate(label, point, rotation = deg,
ha = 'left', va = 'baseline',
transform = ax.transData)
ax.grid(True)
fig.show()
I am not sure why the angle does not match the line exactly.
You made a simple mistake in your update. You need to pass trans_angle to the rotation key word instead of text_plot_location, however, I'm not sure if the result is what you are looking for.
import matplotlib.pyplot as plt
import numpy as np
from math import *
a = np.array([
[-0.108,0.414],
[0.755,-0.152],
[0.871,-0.039],
],)
labels = ["XXXXXXX", "YYYYYY", "ZZZZZZZ"]
x, y = a.T
plt.scatter(x, y)
plt.xlim(-1,1)
plt.ylim(-1,1)
ax = plt.axes()
for i in range(a.shape[0]):
px = a[i, 0]
py = a[i, 1]
ax.arrow(0, 0, px, py, head_width=0, head_length=0.1,
length_includes_head=True)
text_plot_location = np.array([0.51, 0.51])
angle = degrees(atan(py / px))
trans_angle = plt.gca().transData.transform_angles(
np.array((angle,)), text_plot_location.reshape((1, 2))
)[0]
ax.annotate(labels[i], (px, py), rotation=trans_angle)
plt.grid(True)
plt.show()
Related
I'm trying to place a plane on the surface of a sphere, although I think the math is correct, the resulting figure displays the plane at some point else.
Here is the code to compute and visualize it;
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
plt.style.use('dark_background')
# point and the unit vector
point = np.array([ 349370.39178182, 5570903.05977037, 3085958.36621096])
unit_vector = point/np.linalg.norm(point)
# the math
print(f'plane equation:\nAx + By + Cz + D = 0')
D = np.sum(unit_vector * point)
print(f'D=-(point * unit_vector) = {D:.2f}')
print(f'plane equation:\n{unit_vector[0]:1.4f}x + {unit_vector[1]:1.4f}y + {unit_vector[2]:1.4f}z + {D:.1f} = 0')
print(f'{-1*unit_vector[2]:1.4f}z = {unit_vector[0]:1.4f}x + {unit_vector[1]:1.4f}y + {D:.1f}')
print(f'z = ({unit_vector[0]:1.4f}x + {unit_vector[1]:1.4f}y + {D:.1f}) / {-1*unit_vector[2]:1.4f}')
x = np.linspace(-3e6,+3e6,100)
y = np.linspace(-3e6,+3e6,100)
X,Y = np.meshgrid(x,y)
Z = (0.05477656*X +0.87344241*Y + 6378100.0)/-0.48383662
# plotting stuff
def set_axis_equal_scale(ax, ticks_off=True):
xl = ax.set_xlim()
yl = ax.set_ylim()
zl = ax.set_zlim()
maxx=max(max(xl), max(yl), max(zl))
minn=min(min(xl), min(yl), min(zl))
ax.set_xlim(minn, maxx)
ax.set_ylim(minn, maxx)
ax.set_zlim(minn, maxx)
if ticks_off:
ax.set_xticks([])
ax.set_yticks([])
ax.set_zticks([])
fig = plt.figure(figsize=(5,5))
ax = fig.add_subplot(111, projection='3d')
# plot wireframe
radius = 6.3781e6 # in units m
uu, vv = np.mgrid[0:2*np.pi:200j, 0:np.pi:100j]
xE = radius * np.cos(uu)*np.sin(vv)
yE = radius * np.sin(uu)*np.sin(vv)
zE = radius * np.cos(vv)
ax.plot_wireframe(xE,yE,zE, color='w', alpha=0.1)
ax.scatter(point[0], point[1], point[2], s=500, color='r')
ax.plot([0,point[0]], [0,point[1]], [0,point[2]], color='w', lw=2)
surf = ax.plot_surface(X, Y, Z)
ax.scatter(0,0,0, marker='o', s=900, color='b')
ax.view_init(25, -190)
ax.axis('off')
set_axis_equal_scale(ax)
I expect the plane to be on where the red marker is and perpendicular to the white line connecting the center and the red marker.
[here is the image][1]
[1]: https://i.stack.imgur.com/LHPzW.png
I'm looking for help to draw a 3D cone using matplotlib.
My goal is to draw a HSL cone, then base on the vertex coordinats i will select the color.
from matplotlib import cm
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
import numpy as np
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
theta1 = np.linspace(0, 2*np.pi, 100)
r1 = np.linspace(-2, 0, 100)
t1, R1 = np.meshgrid(theta1, r1)
X1 = R1*np.cos(t1)
Y1 = R1*np.sin(t1)
Z1 = 5+R1*2.5
theta2 = np.linspace(0, 2*np.pi, 100)
r2 = np.linspace(0, 2, 100)
t2, R2 = np.meshgrid(theta2, r2)
X2 = R2*np.cos(t2)
Y2 = R2*np.sin(t2)
Z2 = -5+R2*2.5
ax.set_xlabel('x axis')
ax.set_ylabel('y axis')
ax.set_zlabel('z axis')
# ax.set_xlim(-2.5, 2.5)
# ax.set_ylim(-2.5, 2.5)
# ax.set_zlim(0, 5)
ax.set_aspect('equal')
ax.plot_surface(X1, Y1, Z1, alpha=0.8, color="blue")
ax.plot_surface(X2, Y2, Z2, alpha=0.8, color="blue")
# ax.plot_surface(X, Y, Z, alpha=0.8)
#fig. savefig ("Cone.png", dpi=100, transparent = False)
plt.show()
HSL CONE
My cone
So my question now is how to define color of each element.
i have found a solution, maybe it will be usefull for others.
from mpl_toolkits.mplot3d import Axes3D
from matplotlib import cm
import matplotlib.pyplot as plt
import numpy as np
import colorsys
from matplotlib.tri import Triangulation
from mpl_toolkits.mplot3d.art3d import Poly3DCollection
n_angles = 80
n_radii = 20
# An array of radii
# Does not include radius r=0, this is to eliminate duplicate points
radii = np.linspace(0.0, 0.5, n_radii)
# An array of angles
angles = np.linspace(0, 2*np.pi, n_angles, endpoint=False)
# Repeat all angles for each radius
angles = np.repeat(angles[..., np.newaxis], n_radii, axis=1)
# Convert polar (radii, angles) coords to cartesian (x, y) coords
# (0, 0) is added here. There are no duplicate points in the (x, y) plane
x = np.append(0, (radii*np.cos(angles)).flatten())
y = np.append(0, (radii*np.sin(angles)).flatten())
# Pringle surface
z = 1+-np.sqrt(x**2+y**2)*2
print(x.shape, y.shape, angles.shape, radii.shape, z.shape)
# NOTE: This assumes that there is a nice projection of the surface into the x/y-plane!
tri = Triangulation(x, y)
triangle_vertices = np.array([np.array([[x[T[0]], y[T[0]], z[T[0]]],
[x[T[1]], y[T[1]], z[T[1]]],
[x[T[2]], y[T[2]], z[T[2]]]]) for T in tri.triangles])
x2 = np.append(0, (radii*np.cos(angles)).flatten())
y2 = np.append(0, (radii*np.sin(angles)).flatten())
# Pringle surface
z2 = -1+np.sqrt(x**2+y**2)*2
# NOTE: This assumes that there is a nice projection of the surface into the x/y-plane!
tri2 = Triangulation(x2, y2)
triangle_vertices2 = np.array([np.array([[x2[T[0]], y2[T[0]], z2[T[0]]],
[x2[T[1]], y2[T[1]], z2[T[1]]],
[x2[T[2]], y2[T[2]], z2[T[2]]]]) for T in tri2.triangles])
triangle_vertices = np.concatenate([triangle_vertices, triangle_vertices2])
midpoints = np.average(triangle_vertices, axis=1)
def find_color_for_point(pt):
c_x, c_y, c_z = pt
angle = np.arctan2(c_x, c_y)*180/np.pi
if (angle < 0):
angle = angle + 360
if c_z < 0:
l = 0.5 - abs(c_z)/2
#l=0
if c_z == 0:
l = 0.5
if c_z > 0:
l = (1 - (1-c_z)/2)
if c_z > 0.97:
l = (1 - (1-c_z)/2)
col = colorsys.hls_to_rgb(angle/360, l, 1)
return col
facecolors = [find_color_for_point(pt) for pt in midpoints] # smooth gradient
# facecolors = [np.random.random(3) for pt in midpoints] # random colors
coll = Poly3DCollection(
triangle_vertices, facecolors=facecolors, edgecolors=None)
fig = plt.figure()
ax = fig.gca(projection='3d')
ax.add_collection(coll)
ax.set_xlim(-1, 1)
ax.set_ylim(-1, 1)
ax.set_zlim(-1, 1)
ax.elev = 50
plt.show()
Inspired from Jake Vanderplas with Python Data Science Handbook, when you are drawing some 3-D plot whose base is a circle, it is likely that you would try:
# Actually not sure about the math here though:
u, v = np.mgrid[0:2*np.pi:100j, 0:np.pi:20j]
x = np.cos(u)*np.sin(v)
y = np.sin(u)*np.sin(v)
and then think about the z-axis. Since viewing from the z-axis the cone is just a circle, so the relationships between z and x and y is clear, which is simply: z = np.sqrt(x ** 2 + y ** 2). Then you can draw the cone based on the codes below:
from mpl_toolkits import mplot3d
import numpy as np
import matplotlib.pyplot as plt
from matplotlib import cm
def f(x, y):
return np.sqrt(x ** 2 + y ** 2)
fig = plt.figure()
ax = plt.axes(projection='3d')
# Can manipulate with 100j and 80j values to make your cone looks different
u, v = np.mgrid[0:2*np.pi:100j, 0:np.pi:80j]
x = np.cos(u)*np.sin(v)
y = np.sin(u)*np.sin(v)
z = f(x, y)
ax.plot_surface(x, y, z, cmap=cm.coolwarm)
# Some other effects you may want to try based on your needs:
# ax.plot_surface(x, y, -z, cmap=cm.coolwarm)
# ax.scatter3D(x, y, z, color="b")
# ax.plot_wireframe(x, y, z, color="b")
# ax.plot_wireframe(x, y, -z, color="r")
# Can set your view from different angles.
ax.view_init(azim=15, elev=15)
ax.set_xlabel("x")
ax.set_ylabel("y")
ax.set_zlabel("z")
plt.show()
ax.set_ylabel("y")
ax.set_zlabel("z")
plt.show()
And from my side, the cone looks like:
and hope it helps.
I use matplotlib to generate an image in the following way:
fig = plt.figure()
ax = fig.add_subplot(111)
ax.fill(border[0],border[1], color='g', linewidth=1, fill=True, alpha = 0.5)
patches = []
for x1,y1,r in zip(x, y, radii):
circle = Circle((x1,y1), r)
patches.append(circle)
p = PatchCollection(patches, cmap='cool', alpha=1.0)
p.set_array(c)
ax.add_collection(p)
plt.colorbar(p)
plt.savefig(fig_name)
What I want to have is a polygon (given by its border) and colored circles on the top of this polygon. However, I get the polygon on the top of the circles.
This is strange because I plot the polygon first and then I add circles to the plot.
Does anybody know why it happens and how this problem can be resolved?
ADDED
As requested, here is fully working example:
import pandas
import matplotlib
import matplotlib.pyplot as plt
from matplotlib.collections import PatchCollection
from matplotlib.patches import Circle, Polygon
import numpy as np
def plot_xyc(df, x_col, y_col, c_col, radius, fig_name, title, zrange):
resolution = 50
x = df[x_col]
y = df[y_col]
c = df[c_col]
x0 = (max(x) + min(x))/2.0
y0 = (max(y) + min(y))/2.0
dx = (max(x) - min(x))
dy = (max(y) - min(y))
delta = max(dx, dy)
radii = [delta*radius for i in range(len(x))]
fig = plt.figure()
plt.title(title)
ax = fig.add_subplot(111)
border = ([-3, 3, 3, -3], [-3, -3, 3, 3])
ax.fill(border[0],border[1], color='g', linewidth=1, fill=True, alpha = 1.0)
patches = []
for x1,y1,r in zip(x, y, radii):
circle = Circle((x1,y1), r)
patches.append(circle)
patches.append(Circle((-100,-100), r))
patches.append(Circle((-100,-100), r))
p = PatchCollection(patches, cmap='cool', alpha=1.0)
p.set_array(c)
max_ind = max(c.index)
c.set_value(max_ind + 1, min(zrange))
c.set_value(max_ind + 2, max(zrange))
plt.xlim([x0 - delta/2.0 - 0.05*delta, x0 + delta/2.0 + 0.05*delta])
plt.ylim([y0 - delta/2.0 - 0.05*delta, y0 + delta/2.0 + 0.05*delta])
ax.add_collection(p)
plt.colorbar(p)
plt.savefig(fig_name)
if __name__ == '__main__':
df = pandas.DataFrame({'x':[1,2,3,4], 'y':[4,3,2,1], 'z':[1,1,2,2]})
plot_xyc(df, 'x', 'y', 'z', 0.1, 'test2.png', 'My Titlle', (0.0, 3.0))
You're looking for zorder.
In matplotlib, all additional arguments are just passed up the class heirarchy. zorder is a kwarg of the Artist class, so you just need to make sure that at some point it gets zorder.
You can do it two ways in your example;
either add it in here:
ax.fill(border[0],border[1], color='g', linewidth=1, fill=True, alpha = 1.0, zorder=1)
or here:
p = PatchCollection(patches, cmap='cool', alpha=1.0, zorder=2)
or if you want, both. Objects with a higher zorder sit on top of those with lower values.
I would like to position a colorbar inside a scatter plot by specifying the position in data coordinates.
Here is an example of how it works when specifying figure coordinates:
import numpy as np
import matplotlib.pyplot as plt
#Generate some random data:
a = -2
b = 2
x = (b - a) * np.random.random(50) + a
y = (b - a) * np.random.random(50) + a
z = (b) * np.random.random(50)
#Do a scatter plot
fig = plt.figure()
hdl = plt.scatter(x,y,s=20,c=z,marker='o',vmin=0,vmax=2)
ax = plt.gca()
ax.set_xlim([-2,2])
ax.set_ylim([-2,2])
#Specifying figure coordinates works fine:
fig_coord = [0.2,0.8,0.25,0.05]
cbar_ax = fig.add_axes(fig_coord)
clevs = [0, 1 , 2]
cb1 = plt.colorbar(hdl, cax=cbar_ax, orientation='horizontal', ticks=clevs)
plt.show()
...Ok, can't include an image of the plot here because I am lacking reputation. But the above code will give you an impression....
Now the question is, how could I position the colorbar at data coordinates, to appear at e.g.:
left, bottom, width, height: -1.5, 1.5, 1, 0.25
I have experimented with a few things, like determining the axes position within the figure and transforming it to data coordinates but didn't succeed.
Many thanks for ideas or pointing me to already answered similar questions!
Here is what I did (not particularly beautiful but it helps). Thanks tcaswell !
#[lower left x, lower left y, upper right x, upper right y] of the desired colorbar:
dat_coord = [-1.5,1.5,-0.5,1.75]
#transform the two points from data coordinates to display coordinates:
tr1 = ax.transData.transform([(dat_coord[0],dat_coord[1]),(dat_coord[2],dat_coord[3])])
#create an inverse transversion from display to figure coordinates:
inv = fig.transFigure.inverted()
tr2 = inv.transform(tr1)
#left, bottom, width, height are obtained like this:
datco = [tr2[0,0], tr2[0,1], tr2[1,0]-tr2[0,0],tr2[1,1]-tr2[0,1]]
#and finally the new colorabar axes at the right position!
cbar_ax = fig.add_axes(datco)
#the rest stays the same:
clevs = [0, 1 , 2]
cb1 = plt.colorbar(hdl, cax=cbar_ax, orientation='horizontal', ticks=clevs)
plt.show()
Here is what I did, based on the comments to my original question:
import numpy as np
import matplotlib.pyplot as plt
a = -2
b = 2
x = (b - a) * np.random.random(50) + a
y = (b - a) * np.random.random(50) + a
z = (b) * np.random.random(50)
fig = plt.figure()
hdl = plt.scatter(x,y,s=20,c=z,marker='o',vmin=0,vmax=2)
ax = plt.gca()
ax.set_xlim([-2,2])
ax.set_ylim([-2,2])
#[(lower left x, lower left y), (upper right x, upper right y)] of the desired colorbar:
dat_coord = [(-1.5,1.5),(-0.5,1.75)]
#transform the two points from data coordinates to display coordinates:
tr1 = ax.transData.transform(dat_coord)
#create an inverse transversion from display to figure coordinates:
inv = fig.transFigure.inverted()
tr2 = inv.transform(tr1)
#left, bottom, width, height are obtained like this:
datco = [tr2[0,0], tr2[0,1], tr2[1,0]-tr2[0,0],tr2[1,1]-tr2[0,1]]
#and finally the new colorabar axes at the right position!
cbar_ax = fig.add_axes(datco)
#the rest stays the same:
clevs = [0, 1 , 2]
cb1 = plt.colorbar(hdl, cax=cbar_ax, orientation='horizontal', ticks=clevs)
plt.show()
Two step to specify the position in data coordinates of an Axes:
use Axes.set_axes_locator() to set a function that return a Bbox object in figure coordinate.
set the clip box of all children in the Axes by set_clip_box() method:
Here is the full code:
import numpy as np
import matplotlib.pyplot as plt
#Generate some random data:
a = -2
b = 2
x = (b - a) * np.random.random(50) + a
y = (b - a) * np.random.random(50) + a
z = (b) * np.random.random(50)
#Do a scatter plot
fig = plt.figure()
hdl = plt.scatter(x,y,s=20,c=z,marker='o',vmin=0,vmax=2)
ax = plt.gca()
ax.set_xlim([-2,2])
ax.set_ylim([-2,2])
#Specifying figure coordinates works fine:
fig_coord = [0.2,0.8,0.25,0.05]
cbar_ax = fig.add_axes(fig_coord)
def get_ax_loc(cbar_ax, render):
from matplotlib.transforms import Bbox
tr = ax.transData + fig.transFigure.inverted()
bbox = Bbox(tr.transform([[1, -0.5], [1.8, 0]]))
return bbox
clevs = [0, 1 , 2]
cb1 = plt.colorbar(hdl, cax=cbar_ax, orientation='horizontal', ticks=clevs)
def get_ax_loc(cbar_ax, render):
from matplotlib.transforms import Bbox
tr = ax.transData + fig.transFigure.inverted()
bbox = Bbox(tr.transform([[1, -0.5], [1.8, 0]]))
return bbox
def set_children_clip_box(artist, box):
for c in artist.get_children():
c.set_clip_box(box)
set_children_clip_box(c, box)
cbar_ax.set_axes_locator(get_ax_loc)
set_children_clip_box(cbar_ax, hdl.get_clip_box())
plt.show()
And here is the output:
Four-way logarithmic plot is a very often used graph for vibration control and earthquake protection. I am quite interesting in how this plot can be plotted in Matplotlib instead of adding axes in Inkscape. A sample of Four-way logarithmic plot is here.
A quick and dirty Python code can generate main part of the figure, but I cannot add the two axes onto the figure. http://matplotlib.org/examples/axes_grid/demo_curvelinear_grid.html provides an example of adding axes, but I fails to make it working. Anyone has similar experience on adding axes to Matplotlib figure?
from pylab import *
from mpl_toolkits.axisartist.grid_helper_curvelinear import GridHelperCurveLinear
from mpl_toolkits.axisartist import Subplot
beta=logspace(-1,1,500)
Rd={}
for zeta in [0.01,0.1,0.2,0.7,1]:
Rd[zeta]=beta/sqrt((1-beta*beta)**2+(2*beta*zeta)**2)
loglog(beta,Rd[zeta])
ylim([0.1,10])
xlim([0.1,10])
grid('on',which='minor')
Update: Thank you all! I use Inkscape to modify the figure above. I think the result is just fine. However, I am still looking for methods to draw this figure in Matplotlib.
Here is a partial solution. I am still working on how to do all of this in a natural loglog() plot rather than scaling the data. (To complete this example you would have to define custom tick-lables so that they display 10**x rather than x.)
%matplotlib inline # I am doing this in an IPython notebook.
from matplotlib import pyplot as plt
import numpy as np
from numpy import log10
# Generate the data
beta = np.logspace(-1, 1, 500)[:, None]
zeta = np.array([0.01,0.1,0.2,0.7,1])[None, :]
Rd = beta/np.sqrt((1 - beta*beta)**2 + (2*beta*zeta)**2)
def draw(beta=beta, Rd=Rd):
plt.plot(log10(beta), log10(Rd))
plt.ylim([log10(0.1), log10(10)])
plt.xlim([log10(0.1), log10(10)])
plt.grid('on',which='minor')
ax = plt.gca()
ax.set_aspect(1)
from mpl_toolkits.axisartist import GridHelperCurveLinear
from matplotlib.transforms import Affine2D
from mpl_toolkits.axisartist import SubplotHost
from mpl_toolkits.axisartist import Subplot
#tr = Affine2D().rotate(-np.pi/2)
#inv_tr = Affine2D().rotate(np.pi/2)
class Transform(object):
"""Provides transforms to go to and from rotated grid.
Parameters
----------
ilim : (xmin, xmax, ymin, ymax)
The limits of the displayed axes (in physical units)
olim : (xmin, xmax, ymin, ymax)
The limits of the rotated axes (in physical units)
"""
def __init__(self, ilim, olim):
# Convert each to a 3x3 matrix and compute the transform
# [x1, y1, 1] = A*[x0, y0, 1]
x0, x1, y0, y1 = np.log10(ilim)
I = np.array([[x0, x0, x1],
[y0, y1, y1],
[ 1, 1, 1]])
x0, x1, y0, y1 = np.log10(olim)
x_mid = (x0 + x1)/2
y_mid = (y0 + y1)/2
O = np.array([[ x0, x_mid, x1],
[y_mid, y1, y_mid],
[ 1, 1, 1]])
self.A = np.dot(O, np.linalg.inv(I))
self.Ainv = np.linalg.inv(self.A)
def tr(self, x, y):
"""From "curved" (rotated) coords to rectlinear coords"""
x, y = map(np.asarray, (x, y))
return np.dot(self.A, np.asarray([x, y, 1]))[:2]
def inv_tr(self, x, y):
"""From rectlinear coords to "curved" (rotated) coords"""
x, y = map(np.asarray, (x, y))
return np.dot(self.Ainv, np.asarray([x, y, 1]))[:2]
ilim = (0.1, 10)
olim = (0.01, 100)
tr = Transform(ilim + ilim, olim + olim)
grid_helper = GridHelperCurveLinear((tr.tr, tr.inv_tr))
fig = plt.gcf()
ax0 = Subplot(fig, 1, 1, 1)
ax1 = Subplot(fig, 1, 1, 1, grid_helper=grid_helper, frameon=False)
ax1.set_xlim(*np.log10(olim))
ax1.set_ylim(*np.log10(olim))
ax1.axis["left"] = ax1.new_floating_axis(0, 0.)
ax1.axis["bottom"] = ax1.new_floating_axis(1, 0.0)
fig.add_subplot(ax0)
fig.add_subplot(ax1)
ax0.grid('on', which='both')
ax1.grid('on', which='both')
plt.plot(log10(beta), log10(Rd))
plt.ylim(np.log10(ilim))
plt.xlim(np.log10(ilim))
This seems to be a bit tricker than it should. There are ways to center the spines (axis lines), and ways to rotate them, but those do not work together. Adding a normal axis on a line (a la mpl demos) results in a curved axis (because it is logarithmic). Here is a [poor] example of how to draw -- as in, like you would with Inkscape something to look like an additional pair of axis spines with the example data.
import matplotlib.pyplot as plt
import numpy as np
#data
b = np.logspace(-1, 1, 500)
Rd = {}
for zeta in [0.01, 0.1, 0.2, 0.7, 1]:
Rd[zeta] = b / np.sqrt((1 - b * b) ** 2 + (2 * b * zeta) ** 2)
#plot
fig = plt.figure()
ax1 = fig.add_subplot(111)
for z in Rd:
ax1.loglog(b, Rd[z])
ax1.set_xlim([0.1, 10])
ax1.set_ylim([0.1, 10])
ax1.set_aspect(1.)
#draw lines to look like diagonal spines (axes)
xmin, xmax = ax1.get_xlim() # xlim == ylim
a = np.log10(xmin)
b = np.log10(xmax)
span = b - a
period_points = 3 # number of points/ticks per decade
npts = (span * period_points) + 1 # +1 for even powers of 10
x1 = np.logspace(a, b, num=npts)
x2 = np.logspace(b, a, num=npts)
ax1.plot(x1, x1, color='k', marker='x', ms='9')
ax1.plot(x1, x2, color='k', marker='x', ms='9')
#NOTE: v1.2.1 lacks 'TICKUP' and similar - these may be
# a better choice in v1.3x and beyond
ax1.text(0.97, 0.9,
"axis label: A",
size='large',
horizontalalignment='right',
verticalalignment='top',
rotation=45,
transform=ax1.transAxes,
#bbox={'facecolor': 'white', 'alpha': 0.5, 'pad': 10},
)
ax1.text(0.03, 0.9,
"axis label: B",
size='large',
horizontalalignment='left',
verticalalignment='top',
rotation=-45,
transform=ax1.transAxes,
#bbox={'facecolor': 'white', 'alpha': 0.5, 'pad': 10},
)
plt.savefig("example.pdf")