Faster matrix calculation in numpy - python

Is there some faster variant of computing the following matrix (from this paper), given a nxn matrix M and a n-vector X:
?
I currently compute it as follows:
#M, X are given as numpy arrays
G = np.zeros((n,n))
for i in range(0,n):
for j in range(i,n):
xi = X[i]
if i == j:
G[i,j] = abs(xi)
else:
xi2 = xi*xi
xj = X[j]
xj2 = xj*xj
mij = M[i,j]
mid = (xi2 - xj2)/mij
top = mij*mij + mid*mid + 2*xi2 + 2*xj2
G[i,j] = math.sqrt(top)/2
This is very slow, but I suspect there is a nicer "numpythonic" way of doing this instead of looping...
EDIT: While all answers work and are much faster than my naive implementation, I chose the one I benchmarked to be the fastest. Thanks!

Quite straightforward actually.
import math
import numpy as np
n = 5
M = np.random.rand(n, n)
X = np.random.rand(n)
Your code and result:
G = np.zeros((n,n))
for i in range(0,n):
for j in range(i,n):
xi = X[i]
if i == j:
G[i,j] = abs(xi)
else:
xi2 = xi*xi
xj = X[j]
xj2 = xj*xj
mij = M[i,j]
mid = (xi2 - xj2)/mij
top = mij*mij + mid*mid + 2*xi2 + 2*xj2
G[i,j] = math.sqrt(top)/2
array([[0.77847813, 5.26334534, 0.8794082 , 0.7785694 , 0.95799072],
[0. , 0.15662266, 0.88085031, 0.47955479, 0.99219171],
[0. , 0. , 0.87699707, 8.92340836, 1.50053712],
[0. , 0. , 0. , 0.45608367, 0.95902308],
[0. , 0. , 0. , 0. , 0.95774452]])
Using broadcasting:
temp = M**2 + ((X[:, None]**2 - X[None, :]**2) / M)**2 + 2 * (X[:, None]**2) + 2 * (X[None, :]**2)
G = np.sqrt(temp) / 2
array([[0.8284724 , 5.26334534, 0.8794082 , 0.7785694 , 0.95799072],
[0.89251217, 0.25682736, 0.88085031, 0.47955479, 0.99219171],
[0.90047282, 1.10306597, 0.95176428, 8.92340836, 1.50053712],
[0.85131766, 0.47379576, 0.87723514, 0.55013345, 0.95902308],
[0.9879939 , 1.46462011, 0.99516443, 0.95774481, 1.02135642]])
Note that you did not use the formula directly for diagonal elements and only computed for upper triangular region of G. I simply implemented the formula to calculate all G[i, j].
Note: If diagonal elements of M don't matter and they contain some zeros, just add some offset to avoid the divide by zero error like:
M[np.arange(n), np.arange(n)] += 1e-5
# Do calculation to get G
# Assign diagonal to X
G[np.arange(n), np.arange(n)] = abs(X)

First, you function is not you equation. As this line
mid = (xi2 - xj2)/mij
should be
mid = (xi - xj)/mij
Second, I use numpy generate your equation.
Generate test data
test_m = np.array(
[
[1, 2, 3, 4, 5],
[1, 2, 3, 4, 5],
[1, 2, 3, 4, 5],
[1, 2, 3, 4, 5],
[1, 2, 3, 4, 5],
]
)
test_x = np.array([5, 6, 7, 8, 9])
build function
def solve(m, x):
x_size = x.shape[0]
x = x.reshape(1, -1)
reshaped_x = x.reshape(-1, 1)
result = np.sqrt(
m ** 2
+ ((reshaped_x - x) / m) ** 2
+ 2 * np.repeat(reshaped_x, x_size, axis=1) ** 2
+ 2 * np.repeat(x, x_size, axis=0) ** 2
) / 2
return result
run
print(solve(test_m, test_x))
In fact, the result part could be simpfy like this:
result = np.sqrt(
m ** 2
+ ((reshaped_x - x) / m) ** 2
+ 2 * reshaped_x ** 2
+ 2 * x ** 2
) / 2

Tested with googles colab:
import numba
import numpy as np
import math
# your implementation
def bench_1(n):
#M, X are given as numpy arrays
G = np.zeros((n,n))
M = np.random.rand(n, n)
X = np.random.rand(n)
for i in range(0,n):
for j in range(i,n):
xi = X[i]
if i == j:
G[i,j] = abs(xi)
else:
xi2 = xi*xi
xj = X[j]
xj2 = xj*xj
mij = M[i,j]
mid = (xi2 - xj2)/mij
top = mij*mij + mid*mid + 2*xi2 + 2*xj2
G[i,j] = math.sqrt(top)/2
return G
%%timeit
n = 1000
bench_1(n)
1 loop, best of 3: 1.61 s per loop
Using Numba to compile the function:
#numba.jit(nopython=True, parallel=True)
def bench_2(n):
#M, X are given as numpy arrays
G = np.zeros((n,n))
M = np.random.rand(n, n)
X = np.random.rand(n)
for i in range(0,n):
for j in range(i,n):
xi = X[i]
if i == j:
G[i,j] = abs(xi)
else:
xi2 = xi*xi
xj = X[j]
xj2 = xj*xj
mij = M[i,j]
mid = (xi2 - xj2)/mij
top = mij*mij + mid*mid + 2*xi2 + 2*xj2
G[i,j] = math.sqrt(top)/2
return G
%%timeit
n = 1000
bench_2(n)
The slowest run took 88.13 times longer than the fastest. This could mean that an intermediate result is being cached.
1 loop, best of 3: 9.8 ms per loop

Related

Python implementation of Francis double step QR iteration algorithm does not converge

I am implementing the Francis double step QR Iteration algorithm using the notes and psuedocode from lecture https://people.inf.ethz.ch/arbenz/ewp/Lnotes/chapter4.pdf - Algorithm 4.5
The psuedocode is provided in Matlab I believe.
Below is the implementation of my code.
# compute upper hessenberg form of matrix
def hessenberg(A):
m,n = A.shape
H = A.astype(np.float64)
for k in range(n-2):
x = H[k+1:, k]
v = np.concatenate([np.array([np.sign(x[0]) * np.linalg.norm(x)]), x[1:]])
v = v / np.linalg.norm(v)
H[k+1:, k:] -= 2 * np.outer(v, np.dot(v, H[k+1:, k:]))
H[:, k+1:] -= 2 * np.outer(np.dot(H[:, k+1:], v), v)
return(H)
# compute first three elements of M
def first_three_M(T,s,t):
x = T[0, 0]**2 + T[0, 1] * T[1, 0] - s * T[0, 0] + t
y = T[1, 0] * (T[0, 0] + T[1, 1] - s)
z = T[1, 0] * T[2, 1]
return(x,y,z)
# householder reflection
def householder_reflection_step(x_1):
v = x_1[0] + np.sign(x_1[0]) * np.linalg.norm(x_1)
v = v / np.linalg.norm(v)
P = np.eye(3) - 2 * np.outer(v, v)
return(P)
# update elements of M
def update_M(T,k,p):
x = T[k+1, k]
y = T[k+2, k]
if k < p - 3:
z = T[k+3, k]
else:
z = 0
return(x,y,z)
# givens rotation
def givens_step(T,x_2,x,y,p,q,n):
# calculate c and s
c = x / np.sqrt(x**2 + y**2)
s = -y / np.sqrt(x**2 + y**2)
P = np.array([[c, s], [-s, c]])
T[q-1:p, p-3:n] = P.T # T[q-1:p, p-3:n]
T[0:p, p-2:p] = T[0:p, p-2:p] # P
return(T)
# deflation step
def deflation_step(T,p,q,epsilon):
if abs(T[p-1, p-2]) < epsilon * (abs(T[p-2, p-2]) + abs(T[p-1, p-1])):
T[p-1, p-2] = 0
p = p - 1
q = p - 1
elif abs(T[p-2, p-3]) < epsilon * (abs(T[p-3, p-3]) + abs(T[p-2, p-2])):
T[p-2, p-3] = 0
p = p - 2
q = p - 1
return(T,p,q)
# francis qr step
def francis_step(H, epsilon=0.90):
n = H.shape[0]
T = H.copy().astype(np.float64)
p = n - 1
while p > 2:
q = p - 1
s = T[q, q] + T[p, p]
t = T[q, q] * T[p, p] - T[q, p] * T[p, q]
# Compute M
x,y,z = first_three_M(T,s,t)
x_1 = np.transpose([[x], [y], [z]])
# Bulge chasing
for k in range(p - 3):
# Compute Householder reflector
P = householder_reflection_step(x_1)
r = max(1, k-1)
T[k:k+3, r:] = P.T # T[k:k+3, r:]
r = min(k + 3, p)
T[0:r, k:k+3] = T[0:r, k:k+3] # P
# Update M
x,y,z = update_M(T,k,p)
x_2 = np.transpose([[x], [y]])
# Compute Givens rotation
T = givens_step(T,x_2,x,y,p,q,n)
# Check for convergence
T,p,q = deflation_step(T,p,q,epsilon)
return(T)
# francis qr iteration
def francis_qr_iteration(A):
m,n = A.shape
H = hessenberg(A)
eigvals = []
iters = 0
max_iters = 100
while iters<max_iters:
# Perform Francis step
T = francis_step(H)
eigvals.append(np.diag(T))
iters+=1
return(eigvals)
# for quick testing
A = np.array([[2, 2, 3, 4, 2],
[1, 2, 4, 2, 3],
[4, 1, 2, 1, 5],
[5, 2, 5, 2, 1],
[3, 6, 3, 1, 4]])
eigenvals = francis_qr_iteration(A)
#comparing our method to scipy - final eigvals obtained
print(len(eigenvals))
print(sorted(eigenvals[-1]))
print(sorted(scipy.linalg.eig(A)[0].real))
And this is the output I am getting.
100
[-4.421235127393854, -0.909209110641351, -0.8342390091346807, 3.7552499102751575, 8.215454029003958]
[-3.0411228516834217, -1.143605409373778, -1.143605409373778, 3.325396565009845, 14.002937105421134]
The matrix T is not changing and hence it does not converge to the Schur form through which I can obtain the eigenvalues by using np.diag(T). I believe the error is coming either from the Givens rotation step or the Householder reflection step. It could be an indexing issue since I tried to work in python using matlab psuedocode. Please let me know where I am going wrong so I can improve the code and make it converge.

Implementation of an algorithm for simultaneous diagonalization

I am trying to write an implementation of an algorithm for the simultaneous diagonalization of two matrices (which are assumed to be simultaneously diagonalizable). However, the algorithm does not seem to converge. The algorithm is described in SIAM J. Matrix Anal. Appl. 14, 927 (1993).
Here is the first part of my code to set up a test case:
import numpy as np
import numpy.linalg as lin
from scipy.optimize import minimize
N = 3
# Unitary example matrix
X = np.array([
[-0.54717736-0.43779416j, 0.26046313+0.11082439j, 0.56151027-0.33692186j],
[-0.33452046-0.37890784j, -0.40907097-0.70730291j, -0.15344477+0.23100467j],
[-0.31253864-0.39468687j, 0.05342909+0.49940543j, -0.70062586+0.05835082j]
])
# Generate eigenvalues
LA = np.diag(np.arange(0, N))
LB = np.diag(np.arange(N, 2*N))
# Generate simultaneously diagonalizable matrices
A = X # LA # np.conj(X).T
B = X # LB # np.conj(X).T
This should generate two 3x3 matrices which are simultaneously diagonalizable, since they are constructed this way via X. The following code block then defines a few helper functions:
def off2(A, B):
"""Defines the distance from the matrices from
their diagonal form.
"""
C = np.abs(A) ** 2 + np.abs(B) ** 2
diag_idx = np.diag_indices(N)
C[diag_idx] = 0
return np.sum(C)
def Rijcs(i, j, c, s):
"""Function R(i, j, c, s) from the paper, see
Eq. (1) therein. Used for plane rotations in
the plane ij.
"""
res = np.eye(N, dtype=complex)
res[i, i] = c
res[i, j] = -np.conj(s)
res[j, i] = s
res[j, j] = np.conj(c)
return res
def cs(theta, phi):
"""Parametrization for c and s."""
c = np.cos(theta)
s = np.exp(1j * phi) * np.sin(theta)
return c, s
With these definitions, the algorithm can be implemented:
tol = 1e-10
Q = np.eye(N, dtype=complex)
while True:
off = off2(A, B)
# Print statement for debugging purposes
print(off)
# Terminate if the result is converged
if off <= tol * (lin.norm(A, "fro") + lin.norm(B, "fro")):
break
for i in range(N):
for j in range(i + 1, N):
def fij(c, s):
aij = A[i, j]
aji = A[j, i]
aii = A[i, i]
ajj = A[j, j]
bij = B[i, j]
bji = B[j, i]
bii = B[i, i]
bjj = B[j, j]
x = np.array(
[
[np.conj(aij), np.conj(aii - ajj), -np.conj(aji)],
[aji, (aii - ajj), -aij ],
[np.conj(bij), np.conj(bii - bjj), -np.conj(bji)],
[bji, (bii - bjj), -bij ]
]
)
y = np.array(
[
[c ** 2],
[c * s],
[s ** 2]
]
)
return lin.norm(x # y, 2)
# 5
result = minimize(
lambda x: fij(*cs(x[0], x[1])),
x0=(0, 0),
bounds=(
(-0.25 * np.pi, 0.25 * np.pi),
(-np.pi, np.pi)
),
)
theta, phi = result['x']
c, s = cs(theta, phi)
# 6
R = Rijcs(i, j, c, s)
# 7
Q = Q # R
A = np.conj(R).T # A # R
B = np.conj(R).T # B # R
As you can observe from the print statement, the "distance" of A and B from diagonal form does not really converge. Instead, the values printed range from 0.5 up to 3 and oscillate up and down. Is there a bug in this code and if so, where exactly is it?

Efficient way to create a dense matrix from diagonal vectors in Python?

I am trying to create this matrix in Python using numpy vectors:
where the values come from a function. I have implemented it with repeatedly using numpy.diag but for large dimensions, it becomes very slow. Here is the code:
def makeS(N):
vec = np.full(N, 2*v(x_range[1]))
vec[0]*=0.5
S = np.diag(vec)
vec = np.full(N-1, v(x_range[0]))
S+= np.diag(vec, 1)
for m in xrange(1, N):
vec = np.full(N-m, 2*v(x_range[m+1]))
vec[0]*= 0.5
S += np.diag(vec, -m)
return S
where v() is the said function and x_range is a vector of x-values. Is there a way to make this more efficient?
Edit:
Here is a full example:
import numpy as np
import math
N = 5
x_range = np.linspace(0, 1, N+1)
def v(x):
return math.exp(x)
def makeS(N):
vec = np.full(N, 2*v(x_range[1]))
vec[0]*=0.5
S = np.diag(vec)
vec = np.full(N-1, v(x_range[0]))
S+= np.diag(vec, 1)
for m in xrange(1, N):
vec = np.full(N-m, 2*v(x_range[m+1]))
vec[0]*= 0.5
S += np.diag(vec, -m)
return S
print makeS(N)
which outputs
[[ 1.22140276 1. 0. 0. 0. ]
[ 1.4918247 2.44280552 1. 0. 0. ]
[ 1.8221188 2.9836494 2.44280552 1. 0. ]
[ 2.22554093 3.6442376 2.9836494 2.44280552 1. ]
[ 2.71828183 4.45108186 3.6442376 2.9836494 2.44280552]]
This is the fastest approach I could find:
def makeS(N):
values = np.array([v(x) for x in x_range])
values_doubled = 2 * values
result = np.eye(N, k=1) * values[0]
result[:, 0] = values[1:]
for i in xrange(N - 1):
result[i + 1, 1:i + 2] = values_doubled[1:i + 2][::-1]
return result
With N=2000 the original takes 26.97 seconds on my machine while the new version takes 0.02339 seconds.
Here is the complete script for evaluating timings with some additional approaches.
import numpy as np
import math
import timeit
def v(x):
return math.exp(x)
def makeS1(N, x_range):
vec = np.full(N, 2 * v(x_range[1]))
vec[0] *= 0.5
S = np.diag(vec)
vec = np.full(N - 1, v(x_range[0]))
S += np.diag(vec, 1)
for m in xrange(1, N):
vec = np.full(N - m, 2 * v(x_range[m + 1]))
vec[0] *= 0.5
S += np.diag(vec, -m)
return S
def makeS2(N, x_range):
values = np.array([v(x) for x in x_range])
values_doubled = 2 * values
def value_at_position(ai, aj):
result = np.zeros((N, N))
for i, j in zip(ai.flatten(), aj.flatten()):
if j > i + 1:
continue
elif j == i + 1:
result[i, j] = values[0]
elif j == 0:
result[i, j] = values[i + 1]
else:
result[i, j] = values_doubled[i - j + 1]
return result
return np.fromfunction(value_at_position, (N, N))
def makeS3(N, x_range):
values = np.array([v(x) for x in x_range])
values_doubled = 2 * values
result = np.zeros((N, N))
for i in xrange(N):
for j in xrange(min(i + 2, N)):
if j == i + 1:
result[i, j] = values[0]
elif j == 0:
result[i, j] = values[i + 1]
else:
result[i, j] = values_doubled[i - j + 1]
return result
def makeS4(N, x_range):
values = np.array([v(x) for x in x_range])
values_doubled = 2 * values
result = np.eye(N, k=1) * values[0]
result[:, 0] = values[1:]
for i in xrange(N - 1):
result[i + 1, 1:i + 2] = values_doubled[1:i + 2][::-1]
return result
def main():
N = 2000
x_range = np.random.randn(N + 1)
start = timeit.default_timer()
s1 = makeS1(N, x_range)
print 'makeS1', timeit.default_timer() - start
start = timeit.default_timer()
s2 = makeS2(N, x_range)
print 'makeS2', timeit.default_timer() - start
start = timeit.default_timer()
s3 = makeS3(N, x_range)
print 'makeS3', timeit.default_timer() - start
start = timeit.default_timer()
s4 = makeS4(N, x_range)
print 'makeS4', timeit.default_timer() - start
if N < 10:
print s1
print s2
print s2
print s4
assert np.allclose(s1, s2)
assert np.allclose(s2, s3)
assert np.allclose(s3, s4)
main()
On my machine, this produces the output:
makeS1 26.9707232448
makeS2 11.7728229076
makeS3 0.643742975052
makeS4 0.0233912765665

Scikit-learn: How to run KMeans on a one-dimensional array?

I have an array of 13.876(13,876) values between 0 and 1. I would like to apply sklearn.cluster.KMeans to only this vector to find the different clusters in which the values are grouped. However, it seems KMeans works with a multidimensional array and not with one-dimensional ones. I guess there is a trick to make it work but I don't know how. I saw that KMeans.fit() accepts "X : array-like or sparse matrix, shape=(n_samples, n_features)", but it wants the n_samples to be bigger than one
I tried putting my array on a np.zeros() matrix and run KMeans, but then is putting all the non-null values on class 1 and the rest on class 0.
Can anyone help in running this algorithm on a one-dimensional array?
You have many samples of 1 feature, so you can reshape the array to (13,876, 1) using numpy's reshape:
from sklearn.cluster import KMeans
import numpy as np
x = np.random.random(13876)
km = KMeans()
km.fit(x.reshape(-1,1)) # -1 will be calculated to be 13876 here
Read about Jenks Natural Breaks. Function in Python found the link from the article:
def get_jenks_breaks(data_list, number_class):
data_list.sort()
mat1 = []
for i in range(len(data_list) + 1):
temp = []
for j in range(number_class + 1):
temp.append(0)
mat1.append(temp)
mat2 = []
for i in range(len(data_list) + 1):
temp = []
for j in range(number_class + 1):
temp.append(0)
mat2.append(temp)
for i in range(1, number_class + 1):
mat1[1][i] = 1
mat2[1][i] = 0
for j in range(2, len(data_list) + 1):
mat2[j][i] = float('inf')
v = 0.0
for l in range(2, len(data_list) + 1):
s1 = 0.0
s2 = 0.0
w = 0.0
for m in range(1, l + 1):
i3 = l - m + 1
val = float(data_list[i3 - 1])
s2 += val * val
s1 += val
w += 1
v = s2 - (s1 * s1) / w
i4 = i3 - 1
if i4 != 0:
for j in range(2, number_class + 1):
if mat2[l][j] >= (v + mat2[i4][j - 1]):
mat1[l][j] = i3
mat2[l][j] = v + mat2[i4][j - 1]
mat1[l][1] = 1
mat2[l][1] = v
k = len(data_list)
kclass = []
for i in range(number_class + 1):
kclass.append(min(data_list))
kclass[number_class] = float(data_list[len(data_list) - 1])
count_num = number_class
while count_num >= 2: # print "rank = " + str(mat1[k][count_num])
idx = int((mat1[k][count_num]) - 2)
# print "val = " + str(data_list[idx])
kclass[count_num - 1] = data_list[idx]
k = int((mat1[k][count_num] - 1))
count_num -= 1
return kclass
Use and visualization:
import numpy as np
import matplotlib.pyplot as plt
def get_jenks_breaks(...):...
x = np.random.random(30)
breaks = get_jenks_breaks(x, 5)
for line in breaks:
plt.plot([line for _ in range(len(x))], 'k--')
plt.plot(x)
plt.grid(True)
plt.show()
Result:

Procrustes Analysis with NumPy?

Is there something like Matlab's procrustes function in NumPy/SciPy or related libraries?
For reference. Procrustes analysis aims to align 2 sets of points (in other words, 2 shapes) to minimize square distance between them by removing scale, translation and rotation warp components.
Example in Matlab:
X = [0 1; 2 3; 4 5; 6 7; 8 9]; % first shape
R = [1 2; 2 1]; % rotation matrix
t = [3 5]; % translation vector
Y = X * R + repmat(t, 5, 1); % warped shape, no scale and no distortion
[d Z] = procrustes(X, Y); % Z is Y aligned back to X
Z
Z =
0.0000 1.0000
2.0000 3.0000
4.0000 5.0000
6.0000 7.0000
8.0000 9.0000
Same task in NumPy:
X = arange(10).reshape((5, 2))
R = array([[1, 2], [2, 1]])
t = array([3, 5])
Y = dot(X, R) + t
Z = ???
Note: I'm only interested in aligned shape, since square error (variable d in Matlab code) is easily computed from 2 shapes.
I'm not aware of any pre-existing implementation in Python, but it's easy to take a look at the MATLAB code using edit procrustes.m and port it to Numpy:
def procrustes(X, Y, scaling=True, reflection='best'):
"""
A port of MATLAB's `procrustes` function to Numpy.
Procrustes analysis determines a linear transformation (translation,
reflection, orthogonal rotation and scaling) of the points in Y to best
conform them to the points in matrix X, using the sum of squared errors
as the goodness of fit criterion.
d, Z, [tform] = procrustes(X, Y)
Inputs:
------------
X, Y
matrices of target and input coordinates. they must have equal
numbers of points (rows), but Y may have fewer dimensions
(columns) than X.
scaling
if False, the scaling component of the transformation is forced
to 1
reflection
if 'best' (default), the transformation solution may or may not
include a reflection component, depending on which fits the data
best. setting reflection to True or False forces a solution with
reflection or no reflection respectively.
Outputs
------------
d
the residual sum of squared errors, normalized according to a
measure of the scale of X, ((X - X.mean(0))**2).sum()
Z
the matrix of transformed Y-values
tform
a dict specifying the rotation, translation and scaling that
maps X --> Y
"""
n,m = X.shape
ny,my = Y.shape
muX = X.mean(0)
muY = Y.mean(0)
X0 = X - muX
Y0 = Y - muY
ssX = (X0**2.).sum()
ssY = (Y0**2.).sum()
# centred Frobenius norm
normX = np.sqrt(ssX)
normY = np.sqrt(ssY)
# scale to equal (unit) norm
X0 /= normX
Y0 /= normY
if my < m:
Y0 = np.concatenate((Y0, np.zeros(n, m-my)),0)
# optimum rotation matrix of Y
A = np.dot(X0.T, Y0)
U,s,Vt = np.linalg.svd(A,full_matrices=False)
V = Vt.T
T = np.dot(V, U.T)
if reflection != 'best':
# does the current solution use a reflection?
have_reflection = np.linalg.det(T) < 0
# if that's not what was specified, force another reflection
if reflection != have_reflection:
V[:,-1] *= -1
s[-1] *= -1
T = np.dot(V, U.T)
traceTA = s.sum()
if scaling:
# optimum scaling of Y
b = traceTA * normX / normY
# standarised distance between X and b*Y*T + c
d = 1 - traceTA**2
# transformed coords
Z = normX*traceTA*np.dot(Y0, T) + muX
else:
b = 1
d = 1 + ssY/ssX - 2 * traceTA * normY / normX
Z = normY*np.dot(Y0, T) + muX
# transformation matrix
if my < m:
T = T[:my,:]
c = muX - b*np.dot(muY, T)
#transformation values
tform = {'rotation':T, 'scale':b, 'translation':c}
return d, Z, tform
There is a Scipy function for it: scipy.spatial.procrustes
I'm just posting its example here:
>>> import numpy as np
>>> from scipy.spatial import procrustes
>>> a = np.array([[1, 3], [1, 2], [1, 1], [2, 1]], 'd')
>>> b = np.array([[4, -2], [4, -4], [4, -6], [2, -6]], 'd')
>>> mtx1, mtx2, disparity = procrustes(a, b)
>>> round(disparity)
0.0
You can have both Ordinary Procrustes Analysis and Generalized Procrustes Analysis in python with something like this:
import numpy as np
def opa(a, b):
aT = a.mean(0)
bT = b.mean(0)
A = a - aT
B = b - bT
aS = np.sum(A * A)**.5
bS = np.sum(B * B)**.5
A /= aS
B /= bS
U, _, V = np.linalg.svd(np.dot(B.T, A))
aR = np.dot(U, V)
if np.linalg.det(aR) < 0:
V[1] *= -1
aR = np.dot(U, V)
aS = aS / bS
aT-= (bT.dot(aR) * aS)
aD = (np.sum((A - B.dot(aR))**2) / len(a))**.5
return aR, aS, aT, aD
def gpa(v, n=-1):
if n < 0:
p = avg(v)
else:
p = v[n]
l = len(v)
r, s, t, d = np.ndarray((4, l), object)
for i in range(l):
r[i], s[i], t[i], d[i] = opa(p, v[i])
return r, s, t, d
def avg(v):
v_= np.copy(v)
l = len(v_)
R, S, T = [list(np.zeros(l)) for _ in range(3)]
for i, j in np.ndindex(l, l):
r, s, t, _ = opa(v_[i], v_[j])
R[j] += np.arccos(min(1, max(-1, np.trace(r[:1])))) * np.sign(r[1][0])
S[j] += s
T[j] += t
for i in range(l):
a = R[i] / l
r = [np.cos(a), -np.sin(a)], [np.sin(a), np.cos(a)]
v_[i] = v_[i].dot(r) * (S[i] / l) + (T[i] / l)
return v_.mean(0)
For testing purposes, the output of each algorithm can be visualized as follows:
import matplotlib.pyplot as p; p.rcParams['toolbar'] = 'None';
def plt(o, e, b):
p.figure(figsize=(10, 10), dpi=72, facecolor='w').add_axes([0.05, 0.05, 0.9, 0.9], aspect='equal')
p.plot(0, 0, marker='x', mew=1, ms=10, c='g', zorder=2, clip_on=False)
p.gcf().canvas.set_window_title('%f' % e)
x = np.ravel(o[0].T[0])
y = np.ravel(o[0].T[1])
p.xlim(min(x), max(x))
p.ylim(min(y), max(y))
a = []
for i, j in np.ndindex(len(o), 2):
a.append(o[i].T[j])
O = p.plot(*a, marker='x', mew=1, ms=10, lw=.25, c='b', zorder=0, clip_on=False)
O[0].set(c='r', zorder=1)
if not b:
O[2].set_color('b')
O[2].set_alpha(0.4)
p.axis('off')
p.show()
# Fly wings example (Klingenberg, 2015 | https://en.wikipedia.org/wiki/Procrustes_analysis)
arr1 = np.array([[588.0, 443.0], [178.0, 443.0], [56.0, 436.0], [50.0, 376.0], [129.0, 360.0], [15.0, 342.0], [92.0, 293.0], [79.0, 269.0], [276.0, 295.0], [281.0, 331.0], [785.0, 260.0], [754.0, 174.0], [405.0, 233.0], [386.0, 167.0], [466.0, 59.0]])
arr2 = np.array([[477.0, 557.0], [130.129, 374.307], [52.0, 334.0], [67.662, 306.953], [111.916, 323.0], [55.119, 275.854], [107.935, 277.723], [101.899, 259.73], [175.0, 329.0], [171.0, 345.0], [589.0, 527.0], [591.0, 468.0], [299.0, 363.0], [306.0, 317.0], [406.0, 288.0]])
def opa_out(a):
r, s, t, d = opa(a[0], a[1])
a[1] = a[1].dot(r) * s + t
return a, d, False
plt(*opa_out([arr1, arr2, np.matrix.copy(arr2)]))
def gpa_out(a):
g = gpa(a, -1)
D = [avg(a)]
for i in range(len(a)):
D.append(a[i].dot(g[0][i]) * g[1][i] + g[2][i])
return D, sum(g[3])/len(a), True
plt(*gpa_out([arr1, arr2]))
Probably you want to try this package with various flavors of different Procrustes methods, https://github.com/theochem/procrustes.

Categories