I am plotting bar chart using below code as an example:
fig = make_subplots(rows=1, cols=2, shared_yaxes=True, horizontal_spacing= 0)
y = ['10', '20', '30', '40', '50','60']
width=2.9
fig.add_trace(go.Bar(x=[34, 64, 20,24,12,89], y=y,orientation='h',name = '1',marker_color='gold', width=width),row=1, col=1)
fig.add_trace(go.Bar(x=[14, 24, 50,34,9,104], y=y,orientation='h',name = '2',marker_color='darkorange',width=width),row=1, col=1)
fig['layout']['xaxis']['autorange'] = "reversed"
fig.add_trace(go.Bar(x=[17,46,68,22,12,93], y=y,orientation='h',name = '3',marker_color='deepskyblue',width=width),row=1, col=2)
fig.add_trace(go.Bar(x=[57,45,14,44,8,100], y=y,orientation='h',name = '4',marker_color='royalblue',width=width),row=1, col=2)
fig.update_layout(title_text="Data Chart",title_x=0.45, bargap=0.4)
fig.show()
but when i am trying plot the same chart using pandas dataframe ,I have with me, I am getting error and chart is not same as i have like above.
Datagrame I have is like
1 2 3 4
100 23 34 56 67
110 46 78 94 56
120 71 88 17 85
130 92 99 72 35
140 39 35 64 72
150 81 50 120 12
Is there a easy fix so that I can achieve exact bar chart as I have in image above using Pandas Dataframe.
Identical to the sample script by specifying a column of data frames, respectively
import pandas as pd
import numpy as np
import io
data = '''
1 2 3 4
100 23 34 56 67
110 46 78 94 56
120 71 88 17 85
130 92 99 72 35
140 39 35 64 72
150 81 50 120 12
'''
df = pd.read_csv(io.StringIO(data), delim_whitespace=True)
import plotly.graph_objects as go
from plotly.subplots import make_subplots
fig = make_subplots(rows=1, cols=2, shared_yaxes=True, horizontal_spacing= 0)
Y = df.index
width=2.9
fig.add_trace(go.Bar(x=df['1'], y=y,orientation='h',name='1',marker_color='gold', width=width),row=1, col=1)
fig.add_trace(go.Bar(x=df['2'], y=y,orientation='h',name='2',marker_color='darkorange',width=width),row=1, col=1)
fig['layout']['xaxis']['autorange'] = "reversed"
fig.add_trace(go.Bar(x=df['3'], y=y,orientation='h',name='3',marker_color='deepskyblue',width=width),row=1, col=2)
fig.add_trace(go.Bar(x=df['4'], y=y,orientation='h',name='4',marker_color='royalblue',width=width),row=1, col=2)
fig.update_layout(title_text="Data Chart",title_x=0.45, bargap=0.4)
fig.show()
Related
Suppose I have a dataframe df
pd demand mon1 mon2 mon3
abc1 137 46 37 31
abc2 138 33 37 50
abc3 120 38 47 46
abc4 149 39 30 30
abc5 129 33 42 42
abc6 112 30 45 43
abc7 129 43 33 45
I want to satisfy the demand of each pd month-wise. I am generating some random numbers which indicate satisfied demand. For example, for pd abc1, demand is 137, say I have produced 42 units for mon1, but mon1 demand is 46. Hence revised dataframe would be
pd demand mon2 mon3
abc1 137 - 42= 95 37 + 4 (Unsatisfied demand for previous month) 31
Then it will run for mon2 and so on. In this way, I would like to capture, how much demand would be satisfied for each pd (excess or unsatisfied).
My try:
import pandas as pd
import random
mon = ['mon1', 'mon2', 'mon3']
for i in df['pd'].values.tolist():
t = df.loc[df['pd'] == i, :]
for m in t.columns[2:]:
y = t[m].iloc[0]
n = random.randint(20, 70)
t['demand'] = t['demand'].iloc[0] - n
Not finding the logic exactly.
I'm saving the daily stock price for several stocks in a Pandas Dataframe. I'm using python and Jupyter notebook.
Once saved, I'm using matplotlib to graph the prices to check the data.
The idea is to graph 9 stocks at at time in a 3 x 3 subplot.
When I want to check other stock tickers I have to mannualy change each ticker in each subplot, which takes a long time and seems inefficient.
¿Is there a way to do this with some sort of list and for loop?
Here is my current code. It works but it seems to long and hard to update. (Stock tickers are only examples from a vanguard model portfolio).
x = price_df.index
a = price_df["P_VOO"]
b = price_df["P_VGK"]
c = price_df["P_VPL"]
d = price_df["P_IEMG"]
e = price_df["P_MCHI"]
f = price_df["P_VNQ"]
g = price_df["P_GDX"]
h = price_df["P_BND"]
i = price_df["P_BNDX"]
# Plot a figure with various axes scales
fig = plt.figure(figsize=(15,10))
# Subplot 1
plt.subplot(331)
plt.plot(x, a)
plt.title("VOO")
plt.ylim([0,550])
plt.grid(True)
plt.subplot(332)
plt.plot(x, b)
plt.title("VGK")
plt.ylim([0,400])
plt.grid(True)
plt.subplot(333)
plt.plot(x, c)
plt.title('VPL')
plt.ylim([0,110])
plt.grid(True)
plt.subplot(334)
plt.plot(x, d)
plt.title('IEMG')
plt.ylim([0,250])
plt.grid(True)
plt.subplot(335)
plt.plot(x, e)
plt.title('MCHI')
plt.ylim([0,75])
plt.grid(True)
plt.subplot(336)
plt.plot(x, f)
plt.title('P_VNQ')
plt.ylim([0,55])
plt.grid(True)
plt.subplot(337)
plt.plot(x, g)
plt.title('P_GDX')
plt.ylim([0,8])
plt.grid(True)
plt.subplot(338)
plt.plot(x, h)
plt.title('P_BND')
plt.ylim([0,200])
plt.grid(True)
plt.subplot(339)
plt.plot(x, i)
plt.title('P_BNDX')
plt.ylim([0,350])
plt.grid(True)
plt.tight_layout()
Try with DataFrame.plot and enable subplots, set the layout and figsize:
axes = df.plot(subplots=True, title=df.columns.tolist(),
grid=True, layout=(3, 3), figsize=(15, 10))
plt.tight_layout()
plt.show()
Or use plt.subplots to set the layout then plot on those axes with DataFrame.plot:
# setup subplots
fig, axes = plt.subplots(nrows=3, ncols=3, figsize=(15, 10))
# Plot DataFrame on axes
df.plot(subplots=True, ax=axes, title=df.columns.tolist(), grid=True)
plt.tight_layout()
plt.show()
Sample Data and imports:
import numpy as np
import pandas as pd
from matplotlib import pyplot as plt
np.random.seed(5)
df = pd.DataFrame(np.random.randint(10, 100, (10, 9)),
columns=list("ABCDEFGHI"))
df:
A B C D E F G H I
0 88 71 26 83 18 72 37 40 90
1 17 86 25 63 90 37 54 87 85
2 75 57 40 94 96 28 19 51 72
3 11 92 26 88 15 68 10 90 14
4 46 61 37 41 12 78 48 93 29
5 28 17 40 72 21 77 75 65 13
6 88 37 39 43 99 95 17 26 24
7 41 19 48 57 26 15 44 55 69
8 34 23 41 42 86 54 15 24 57
9 92 10 17 96 26 74 18 54 47
Does this implementation not work out in your case?
x = price_df.index
cols = ["P_VOO","P_VGK",...] #Populate before running
ylims = [[0,550],...] #Populate before running
# Plot a figure with various axes scales
fig = plt.figure(figsize=(15,10))
# Subplot 1
for i, (col, ylim) in enumerate(zip(cols, ylims)):
plt.subplot(331+i)
plt.plot(x, price_df[col])
plt.title(col.split('_')[1])
plt.ylim(ylim)
plt.grid(True)
Haven't run the code in my local, could have some minor bugs. But you get the general idea, right?
I currently have a dataframe that has as an index the years from 1990 to 2014 (25 rows). I want my plot to have the X axis with all the years showing. I'm using add_subplot as I plan to have 4 plots in this figure (all of them with the same X axis).
To create the dataframe:
import pandas as pd
import numpy as np
index = np.arange(1990,2015,1)
columns = ['Total Population','Urban Population']
pop_plot = pd.DataFrame(index=index, columns=columns)
pop_plot = df_.fillna(0)
pop_plot['Total Population'] = np.arange(150,175,1)
pop_plot['Urban Population'] = np.arange(50,125,3)
Total Population Urban Population
1990 150 50
1991 151 53
1992 152 56
1993 153 59
1994 154 62
1995 155 65
1996 156 68
1997 157 71
1998 158 74
1999 159 77
2000 160 80
2001 161 83
2002 162 86
2003 163 89
2004 164 92
2005 165 95
2006 166 98
2007 167 101
2008 168 104
2009 169 107
2010 170 110
2011 171 113
2012 172 116
2013 173 119
2014 174 122
The code that I currently have:
fig = plt.figure(figsize=(10,5))
ax1 = fig.add_subplot(2,2,1, xticklabels=pop_plot.index)
plt.subplot(2, 2, 1)
plt.plot(pop_plot)
legend = plt.legend(pop_plot, bbox_to_anchor=(0.1, 1, 0.8, .45), loc=3, ncol=1, mode='expand')
legend.get_frame().set_alpha(0)
ax1.set_xticks(range(len(pop_plot.index)))
This is the plot that I get:
When I comment the set_xticks I get the following plot:
#ax1.set_xticks(range(len(pop_plot.index)))
I've tried a couple of answers that I found here, but I didn't have much success.
It's not clear what ax1.set_xticks(range(len(pop_plot.index))) should be used for. It will set the ticks to the numbers 0,1,2,3 etc. while your plot should range from 1990 to 2014.
Instead, you want to set the ticks to the numbers of your data:
ax1.set_xticks(pop_plot.index)
Complete corrected example:
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
index = np.arange(1990,2015,1)
columns = ['Total Population','Urban Population']
pop_plot = pd.DataFrame(index=index, columns=columns)
pop_plot['Total Population'] = np.arange(150,175,1)
pop_plot['Urban Population'] = np.arange(50,125,3)
fig = plt.figure(figsize=(10,5))
ax1 = fig.add_subplot(2,2,1)
ax1.plot(pop_plot)
legend = ax1.legend(pop_plot, bbox_to_anchor=(0.1, 1, 0.8, .45), loc=3, ncol=1, mode='expand')
legend.get_frame().set_alpha(0)
ax1.set_xticks(pop_plot.index)
plt.show()
The easiest option is to use the xticks parameter for pandas.DataFrame.plot
Pass the dataframe index to xticks: xticks=pop_plot.index
# given the dataframe in the OP
ax = pop_plot.plot(xticks=pop_plot.index, figsize=(15, 5))
# move the legend
ax.legend(bbox_to_anchor=(0.1, 1, 0.8, .45), loc=3, ncol=1, mode='expand', frameon=False)
I have a histogram (matplotlib or plotly) and want to color a specific bar, witch has value N in the bar range (for example if N=131 the colored bar must be 130-132). How can i do that?
When calling plt.hist(), it will return three things. Firstly an array holding the value in each bin. Secondly the values for each of the bins, and lastly an array of patches. These let you modify each bar individually. So all you need to do is determine which bin is for the range 130-132 and then modify the colour, for example:
import numpy as np
import matplotlib.pyplot as plt
values = np.random.randint(51, 140, 1000)
n, bins, patches = plt.hist(values, bins=np.arange(50, 140, 2), align='left', color='g')
patches[40].set_fc('r')
plt.show()
Would display something like:
Here the 41st patch corresponds to the range 130-132 as the bins I have chosen start at 50 and go up to 140 in steps of 2. So there will be 45 bins in total. If you print bins you would see that index 40 is the one you want:
[ 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84
86 88 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118 120
122 124 126 128 130 132 134 136 138]
I am using iPython to do some coding. When I open the notebook and run some codes by doing SHIFT+ENTER it runs. But after one or two times, it stops giving any output. Why is that. I have to shutdown the notebook again open it and then it runs for few times and same problem again.
Here is the code I have used.
Cell Toolbar:
Question 1: Rotational Invariance of PCA
I(1): Importing the data sets and plotting a scatter plot of the two.
In [1]:
# Channging the working directory
import os
os.getcwd()
path="/Users/file/"
os.chdir(path)
pwd=os.getcwd()
print(pwd)
# Importing the libraries
import pandas as pd
import numpy as np
import scipy as sp
# Mentioning the files to be imported
file=["2d-gaussian.csv","2d-gaussian-rotated.csv"]
# Importing the two csv files in pandas dataframes
XI=pd.read_csv(file[0],header=None)
XII=pd.read_csv(file[1],header=None)
#XI
XII
Out[5]:
0 1
0 1.372310 -2.111748
1 -0.397896 1.968246
2 0.336945 1.338646
3 1.983127 -2.462349
4 -0.846672 0.606716
5 0.582438 -0.645748
6 4.346416 -4.645564
7 0.830186 -0.599138
8 -2.460311 2.096945
9 -1.594642 2.828128
10 3.767641 -3.401645
11 0.455917 -0.224665
12 2.878315 -2.243932
13 -1.062223 0.142675
14 -0.698950 1.113589
15 -4.681619 4.289080
16 0.411498 -0.041293
17 0.276973 0.187699
18 1.500835 -0.284463
19 -0.387535 -0.265205
20 3.594708 -2.581400
21 2.263455 -2.660592
22 -1.686090 1.566998
23 1.381510 -0.944383
24 -0.085535 -1.697205
25 1.030609 -1.448967
26 3.647413 -3.322129
27 -3.474906 2.977695
28 -7.930797 8.506523
29 -0.931702 1.440784
... ... ...
70 4.433750 -2.515612
71 1.495646 -0.058674
72 -0.928938 0.605706
73 -0.890883 -0.005911
74 -2.245630 1.333171
75 -0.707405 0.121334
76 0.675536 -0.822801
77 1.975917 -1.757632
78 -1.239322 2.053495
79 -2.360047 1.842387
80 2.436710 -1.445505
81 0.348497 -0.635207
82 -1.423243 -0.017132
83 0.881054 -1.823523
84 0.052809 1.505141
85 -2.466735 2.406453
86 -0.499472 0.970673
87 4.489547 -4.443907
88 -2.000164 4.125330
89 1.833832 -1.611077
90 -0.944030 0.771001
91 -1.677884 1.920365
92 0.372318 -0.474329
93 -2.073669 2.020200
94 -0.131636 -0.844568
95 -1.011576 1.718216
96 -1.017175 -0.005438
97 5.677248 -4.572855
98 2.179323 -1.704361
99 1.029635 -0.420458
100 rows × 2 columns
The two raw csv files have been imported as data frames. Next we will concatenate both the dataframes into one dataframe to plot a combined scatter plot
In [6]:
# Joining two dataframes into one.
df_combined=pd.concat([XI,XII],axis=1,ignore_index=True)
df_combined
Out[6]:
0 1 2 3
0 2.463601 -0.522861 1.372310 -2.111748
1 -1.673115 1.110405 -0.397896 1.968246
2 -0.708310 1.184822 0.336945 1.338646
3 3.143426 -0.338861 1.983127 -2.462349
4 -1.027700 -0.169674 -0.846672 0.606716
5 0.868458 -0.044767 0.582438 -0.645748
6 6.358290 -0.211529 4.346416 -4.645564
7 1.010685 0.163375 0.830186 -0.599138
8 -3.222466 -0.256939 -2.460311 2.096945
9 -3.127371 0.872207 -1.594642 2.828128
10 5.069451 0.258798 3.767641 -3.401645
11 0.481244 0.163520 0.455917 -0.224665
12 3.621976 0.448577 2.878315 -2.243932
13 -0.851991 -0.650218 -1.062223 0.142675
14 -1.281659 0.293194 -0.698950 1.113589
15 -6.343242 -0.277567 -4.681619 4.289080
16 0.320172 0.261774 0.411498 -0.041293
17 0.063126 0.328573 0.276973 0.187699
18 1.262396 0.860105 1.500835 -0.284463
19 -0.086500 -0.461557 -0.387535 -0.265205
20 4.367168 0.716517 3.594708 -2.581400
21 3.481827 -0.280818 2.263455 -2.660592
22 -2.300280 -0.084211 -1.686090 1.566998
23 1.644655 0.309095 1.381510 -0.944383
24 1.139623 -1.260587 -0.085535 -1.697205
25 1.753325 -0.295824 1.030609 -1.448967
26 4.928210 0.230011 3.647413 -3.322129
27 -4.562678 -0.351581 -3.474906 2.977695
28 -11.622940 0.407100 -7.930797 8.506523
29 -1.677601 0.359976 -0.931702 1.440784
... ... ... ... ...
70 4.913941 1.356329 4.433750 -2.515612
71 1.099070 1.016093 1.495646 -0.058674
72 -1.085156 -0.228560 -0.928938 0.605706
73 -0.625769 -0.634129 -0.890883 -0.005911
74 -2.530594 -0.645206 -2.245630 1.333171
75 -0.586007 -0.414415 -0.707405 0.121334
76 1.059484 -0.104132 0.675536 -0.822801
77 2.640018 0.154351 1.975917 -1.757632
78 -2.328373 0.575707 -1.239322 2.053495
79 -2.971570 -0.366041 -2.360047 1.842387
80 2.745141 0.700888 2.436710 -1.445505
81 0.695584 -0.202735 0.348497 -0.635207
82 -0.994271 -1.018499 -1.423243 -0.017132
83 1.912425 -0.666426 0.881054 -1.823523
84 -1.026954 1.101637 0.052809 1.505141
85 -3.445865 -0.042626 -2.466735 2.406453
86 -1.039549 0.333189 -0.499472 0.970673
87 6.316906 0.032272 4.489547 -4.443907
88 -4.331379 1.502719 -2.000164 4.125330
89 2.435918 0.157511 1.833832 -1.611077
90 -1.212710 -0.122350 -0.944030 0.771001
91 -2.544347 0.171460 -1.677884 1.920365
92 0.598670 -0.072133 0.372318 -0.474329
93 -2.894802 -0.037809 -2.073669 2.020200
94 0.504119 -0.690281 -0.131636 -0.844568
95 -1.930254 0.499670 -1.011576 1.718216
96 -0.715406 -0.723096 -1.017175 -0.005438
97 7.247917 0.780923 5.677248 -4.572855
98 2.746180 0.335849 2.179323 -1.704361
99 1.025371 0.430754 1.029635 -0.420458
100 rows × 4 columns
Plotting two separate scatter plot of all the four columns onto one scatter diagram
In [ ]:
import matplotlib.pyplot as plt
# Fucntion for scatter plot
def scatter_plot():
# plots scatter for first two columns(Unrotated Gaussian data)
plt.scatter(df_combined.ix[:,0], df_combined.ix[:,1],color='red',marker='+')
# plots scatter for Rotated Gaussian data
plt.scatter(df_combined.ix[:,2], df_combined.ix[:,3] ,color='green', marker='x')
legend = plt.legend(loc='upper right')
# set ranges of x and y axes
plt.xlim([-12,12])
plt.ylim([-12,12])
plt.show()
# Function call
scatter_plot()
In [ ]:
def plot_me1():
# create figure and axes
fig = plt.figure()
# split the page into a 1x1 array of subplots and put me in the first one (111)
# (as a matter of fact, the only one)
ax = fig.add_subplot(111)
# plots scatter for x, y1
ax.scatter(df_combined.ix[:,0], df_combined.ix[:,1], color='red', marker='+', s=100)
# plots scatter for x, y2
ax.scatter(df_combined.ix[:,2], df_combined.ix[:,3], color='green', marker='x', s=100)
plt.xlim([-12,12])
plt.ylim([-12,12])
plt.show()
plot_me1()
In [ ]:
You should not use plt.show() in the notebook. This will open an external window that blocks the evaluation of your cell.
Instead begin your notebooks with %matplotlib inline or the cool new %matplotlib notebook (the latter is only possible with matplotlib >= 1.4.3 and ipython >= 3.0)
After the evaluation of each cell, the (still open) figure object is automatically shown in your notebook.
This minimal code example works in notebook. Note that it does not call plt.show()
%matplotlib inline
import matplotlib.pyplot as plt
x = [1,2,3]
y = [3,2,1]
_ = plt.plot(x,y)
%matplotlib inline simply displays the image.
%matplotlib notebook was added recently and offers many of the cool features (zooming, measuring,...) of the interactive backends: