Whats time complexity of this python function? - python

def hasPairWithSum(arr,target):
for i in range(len(arr)):
if ((target-arr[i]) in arr[i+1:]):
return True
return False
In python, is time complexity for this function O(n) or O(n^2), in other words 'if ((target-arr[i]) in arr[i+1:])' is this another for loop or no?
Also what about following function, is it also O(n^2), if not why:
def hasPairWithSum2(arr,target):
seen = set()
for num in arr:
num2 = target - num
if num2 in seen:
return True
seen.add(num)
return False
Thanks!

The first version has a O(n²) time complexity:
Indeed the arr[i+1:] already creates a new list with n-1-i elements, which is not a constant time operation. The in operator will scan that new list, and in worst case visit each value in that new list.
If we count the number of elements copied into a new list (with arr[i+1), we can sum those counts for each iteration of the outer loop:
n-1
+ n-2
+ n-3
+ ...
+ 1
+ 0
This is a triangular number, and equals n(n-1)/2, which is O(n²).
Second version
The second version, using a set, runs in O(n) average time complexity.
There is no list slicing here, and the in operator on a set has -- contrary to a list argument -- an average constant time complexity. So now every action within the loop has an (average) constant time complexity, giving the algorithm an average time complexity of O(n).
According to the python docs, the in operator for a set can have an amortised worst time complexity of O(n). So you would still get a worst time complexity for your algorithm of O(n²).

It's O(n^2)
First loop will run n times and second will run (n-m) for every n.
So the whole thing will run n(n-m) times that is n^2 - nm. Knowing that m<n we know that it has a complexity of O(n^2)
But if it's critical to something you might consult someone who is better at that.

Related

Time complexity for my max numbers implementation

def maxN(n:list[int])-> int:
if len(n)==2:
if n[0] > n[1]:
return n[0]
else:
return n[1]
if len(n) ==1:
return n[0]
else:
mid = len(n)//2
first = maxN(n[0:mid])
second= maxN(n[mid:])
if first>second:
return first
else:
return second
I'm getting struggled with my emplementation, because I don't know if this is better than simply using a for or a while loop.
At every level, every function calls two more functions until there are no more numbers. Roughly, the total number of functions calls will be 1 + 2 + 4 + 8 .... n. The total length of the series would be approximately logn as the array is halved at every level.
To get the total number of function calls, we could sum the specified GP series, which would give us the total as n.
We see that there n number of function calls in total and every function does constant amount of work. Thus, the time complexity would be O(n).
The time complexity is similar to the iterative version. However, we know that recursion consumes space in the call stack. Since there could be at most logn functions in the call stack (the depth of the recursive tree), the space complexity will be O(logn).
Thus, the iterative version would be a better choice as it has the same time complexity but a better, O(1), space complexity.
Edit: since the list being splitted into sublists in every function, the splitting cost would add up too. To avoid that, you could pass two variables in the function to the track the list boundary.

What is Time complexity of "set" and "if item in array" in Python?

I need to check if a number and its double exist in an array. This code using set to solve it. However I am not sure the Time complexity is better than O(N^2). I use the for loop and if 2*item in s like below. Isn't it to know whether the item is in an array, we use another O(N). Which mean O(N^2) in total? If it is optimal, how can I implement the codes in C without using nested loop?
Thanks a lot!
def checkIfExist(arr]) -> bool:
s = set(array)
for item in s:
if 2 * item in s and item != 0:
return True
if arr.count(0) >= 2:
return True
return False
The time complexity of the 'in' operator for sets in python is on average O(1) and only in the worst case O(N), since sets in python use a HashTable internally.
So your function's time complexity on average should be O(N) and only in the worst case will be O(N^2), where N is the length of the array.
More here https://wiki.python.org/moin/TimeComplexity

How do I calculate Time Complexity for this particular algorithm?

I know there are many other questions out there asking for the general guide of how to calculate the time complexity, such as this one.
From them I have learnt that when there is a loop, such as the (for... if...) in my Python programme, the Time complexity is N * N where N is the size of input. (please correct me if this is also wrong) (Edited once after being corrected by an answer)
# greatest common divisor of two integers
a, b = map(int, input().split())
list = []
for i in range(1, a+b+1):
if a % i == 0 and b % i == 0:
list.append(i)
n = len(list)
print(list[n-1])
However, do other parts of the code also contribute to the time complexity, that will make it more than a simple O(n) = N^2 ? For example, in the second loop where I was finding the common divisors of both a and b (a%i = 0), is there a way to know how many machine instructions the computer will execute in finding all the divisors, and the consequent time complexity, in this specific loop?
I wish the question is making sense, apologise if it is not clear enough.
Thanks for answering
First, a few hints:
In your code there is no nested loop. The if-statement does not constitute a loop.
Not all nested loops have quadratic time complexity.
Writing O(n) = N*N doesn't make any sense: what is n and what is N? Why does n appear on the left but N is on the right? You should expect your time complexity function to be dependent on the input of your algorithm, so first define what the relevant inputs are and what names you give them.
Also, O(n) is a set of functions (namely those asymptotically bounded from above by the function f(n) = n, whereas f(N) = N*N is one function. By abuse of notation, we conventionally write n*n = O(n) to mean n*n ∈ O(n) (which is a mathematically false statement), but switching the sides (O(n) = n*n) is undefined. A mathematically correct statement would be n = O(n*n).
You can assume all (fixed bit-length) arithmetic operations to be O(1), since there is a constant upper bound to the number of processor instructions needed. The exact number of processor instructions is irrelevant for the analysis.
Let's look at the code in more detail and annotate it:
a, b = map(int, input().split()) # O(1)
list = [] # O(1)
for i in range(1, a+b+1): # O(a+b) multiplied by what's inside the loop
if a % i == 0 and b % i == 0: # O(1)
list.append(i) # O(1) (amortized)
n = len(list) # O(1)
print(list[n-1]) # O(log(a+b))
So what's the overall complexity? The dominating part is indeed the loop (the stuff before and after is negligible, complexity-wise), so it's O(a+b), if you take a and b to be the input parameters. (If you instead wanted to take the length N of your input input() as the input parameter, it would be O(2^N), since a+b grows exponentially with respect to N.)
One thing to keep in mind, and you have the right idea, is that higher degree take precedence. So you can have a step that’s constant O(1) but happens n times O(N) then it will be O(1) * O(N) = O(N).
Your program is O(N) because the only thing really affecting the time complexity is the loop, and as you know a simple loop like that is O(N) because it increases linearly as n increases.
Now if you had a nested loop that had both loops increasing as n increased, then it would be O(n^2).

Calculating complexity of an algorithm (Big-O)

I'm currently doing some work around Big-O complexity and calculating the complexity of algorithms.
I seem to be struggling to work out the steps to calculate the complexity and was looking for some help to tackle this.
The function:
index = 0
while index < len(self.items):
if self.items[index] == item:
self.items.pop(index)
else:
index += 1
The actual challenge is to rewrite this function so that is has O(n) worst case complexity.
My problem with this is, as far as I thought, assignment statements and if statements have a complexity of O(1) whereas the while loop has a complexity of (n) and in the worst case any statements within the while loop could execute n times. So i work this out as 1 + n + 1 = 2 + n = O(n)
I figure I must be working this out incorrectly as there'd be no point in rewriting the function otherwise.
Any help with this is greatly appreciated.
If self.items is a list, the pop operation has complexity "k" where k is the index,
so the only way this is not O(N) is because of the pop operation.
Probably the exercise is done in order for you to use some other method of iterating and removing from the list.
To make it O(N) you can do:
self.items = [x for x in self.items if x == item]
If you are using Python's built in list data structure the pop() operation is not constant in the worst case and is O(N). So your overall complexity is O(N^2). You will need to use some other data structure like linked list if you cannot use auxiliary space.
With no arguments to pop its O(1)
With an argument to pop:
Average time Complexity O(k) (k represents the number passed in as an argument for pop
Amortized worst case time complexity O(k)
Worst case time complexity O(n)
Time Complexity - Python Wiki
So to make your code effective, allow user to pop from the end of the list:
for example:
def pop():
list.pop(-1)
Reference
Since you are passing index to self.items.pop(index), Its NOT O(1).

Time complexity of a function

I'm trying to find out the time complexity (Big-O) of functions and trying to provide appropriate reason.
First function goes:
r = 0
# Assignment is constant time. Executed once. O(1)
for i in range(n):
for j in range(i+1,n):
for k in range(i,j):
r += 1
# Assignment and access are O(1). Executed n^3
like this.
I see that this is triple nested loop, so it must be O(n^3).
but I think my reasoning here is very weak. I don't really get what is going
on inside the triple nested loop here
Second function is:
i = n
# Assignment is constant time. Executed once. O(1)
while i>0:
k = 2 + 2
i = i // 2
# i is reduced by the equation above per iteration.
# so the assignment and access which are O(1) is executed
# log n times ??
I found out this algorithm to be O(1). But like the first function,
I don't see what is going on in the while-loop.
Can someone explain thoroughly about the time complexity of the two
functions? Thanks!
For such a simple case, you could find the number of iterations of the innermost loop as a function of n exactly:
sum_(i=0)^(n-1)(sum_(j=i+1)^(n-1)(sum_(k=i)^(j-1) 1)) = 1/6 n (n^2-1)
i.e., Θ(n**3) time complexity (see Big Theta): it assumes that r += 1 is O(1) if r has O(log n) digits (model has words with log n bits).
The second loop is even simpler: i //= 2 is i >>= 1. n has Θ(log n) digits and each iteration drops one binary digit (shift right) and therefore the whole loop is Θ(log n) time complexity if we assume that the i >> 1 shift of log(n) digits is O(1) operation (same model as in the first example).
Well first of all, for the first function, the time complexity seems to be closer to O(N log N) because the parameters of each loop decreases each time.
Also, for the second function, the runtime is O(log2 N). Except, say i == n == 2. After one run i is 1. After another i is 0.5. After another i is 0.25. And so on... I assume you would want int(i).
For a rigorous mathematical approach to each function, you can go to https://www.coursera.org/course/algo. It's a great course for this sort of thing. I was sort of sloppy in my calculations.

Categories