I'm currently coding a chatbot for my streaming. Since it needs to do multiple things at once I'm using the multiprocessing module, that way it can still respond to commands and do functions at the same time. My problem now is that I have one process dedicated to some web scraping and another one to look at chat and respond if a command is being typed. My thoughts were, if I append the information from one process to a global list, and then when the command is being typed in chat, the other process can use the information in the appended list. Well, this didn't work and I learned that this is because the 2 processes don't have shared memory, although both having access to the same list, they are both copies of the list, so even if one appends, in the other process' case, it will still be empty. I've come across a few questions regarding this here on stack overflow, but the examples are very specific and since I'm fairly new to coding still, I had a hard time figuring out how to apply it to my own code. For this exact reason, I've simplified the problem so it can help others who are in a similar situation, by having my example broad enough and simple enough for anyone to understand it once they read the solution. Thus this is not the code I'm actually using for my chatbot, but one that mimics the problem.
import multiprocessing as mp
import time
globalList = []
def readList():
while True:
time.sleep(2)
if globalList:
print(globalList)
else:
print("List is Empty")
print(globalList)
def writeList():
while True:
time.sleep(3)
globalList.append("Item")
print(globalList)
if __name__ == '__main__':
p1 = mp.Process(target=readList)
p2 = mp.Process(target=writeList)
p1.start()
p2.start()
When running this code you can see that the writeList function will keep adding another item to the list, but the readList function will keep showing an empty list.
I hope some master wiz out there can help me with this problem.
In Python processes cannot straightforwardly access global mutable objects created by other processes. For this, you can use, for example, a multiprocessing.Manager and its proxy objects. Your adapted example:
import multiprocessing as mp
import time
def readList(shared_list):
while True:
time.sleep(2)
if shared_list:
print(shared_list)
else:
print("List is Empty")
print(shared_list)
def writeList(shared_list):
while True:
time.sleep(3)
shared_list.append("Item")
print(shared_list)
if __name__ == '__main__':
manager = mp.Manager()
shared_list = manager.list()
p1 = mp.Process(target=readList, args=(shared_list,))
p2 = mp.Process(target=writeList, args=(shared_list,))
p1.start()
p2.start()
p1.join()
p2.join()
You can not have that by normal means. Processes have their own memory space. Threads, on the other hand, have same memory space and are ran within one process.
For more, please, reffer to this answer Multiprocessing vs Threading Python
Related
So I have two webscrapers that collect data from two different sources. I am running them both simultaneously to collect a specific piece of data (e.g. covid numbers).
When one of the functions finds data I want to use that data without waiting for the other one to finish.
So far I tried the multiprocessing - pool module and to return the results with get() but by definition I have to wait for both get() to finish before I can continue with my code. My goal is to have the code as simple and as short as possible.
My webscraper functions can be run with arguments and return a result if found. It is also possible to modify them.
The code I have so far which waits for both get() to finish.
from multiprocessing import Pool
from scraper1 import main_1
from scraper2 import main_2
from twitter import post_tweet
if __name__ == '__main__':
with Pool(processes=2) as pool:
r1 = pool.apply_async(main_1, ('www.website1.com','June'))
r2 = pool.apply_async(main_2, ())
data = r1.get()
data2 = r2.get()
post_tweet("New data is {}".format(data))
post_tweet("New data is {}".format(data2))
From here I have seen that threading might be a better option since webscraping involves a lot of waiting and only little parsing but I am not sure how I would implement this.
I think the solution is fairly easy but I have been searching and trying different things all day without much success so I think I will just ask here. (I only started programming 2 months ago)
As always there are many ways to accomplish this task.
you have already mentioned using a Queue:
from multiprocessing import Process, Queue
from scraper1 import main_1
from scraper2 import main_2
def simple_worker(target, args, ret_q):
ret_q.put(target(*args)) # mp.Queue has it's own mutex so we don't need to worry about concurrent read/write
if __name__ == "__main__":
q = Queue()
p1 = Process(target=simple_worker, args=(main_1, ('www.website1.com','June'), q))
p2 = Process(target=simple_worker, args=(main_2, ('www.website2.com','July'), q))
p1.start()
p2.start()
first_result = q.get()
do_stuff(first_result)
#don't forget to get() the second result before you quit. It's not a good idea to
#leave things in a Queue and just assume it will be properly cleaned up at exit.
second_result = q.get()
p1.join()
p2.join()
You could also still use a Pool by using imap_unordered and just taking the first result:
from multiprocessing import Pool
from scraper1 import main_1
from scraper2 import main_2
def simple_worker2(args):
target, arglist = args #unpack args
return target(*arglist)
if __name__ == "__main__":
tasks = ((main_1, ('www.website1.com','June')),
(main_2, ('www.website2.com','July')))
with Pool() as p: #Pool context manager handles worker cleanup (your target function may however be interrupted at any point if the pool exits before a task is complete
for result in p.imap_unordered(simple_worker2, tasks, chunksize=1):
do_stuff(result)
break #don't bother with further results
I've seen people use queues in such cases: create one and pass it to both parsers so that they put their results in queue instead of returning them. Then do a blocking pop on the queue to retrieve the first available result.
I have seen that threading might be a better option
Almost true but not quite. I'd say that asyncio and async-based libraries is much better than both threading and multiprocessing when we're talking about code with a lot of blocking I/O. If it's applicable in your case, I'd recommend rewriting both your parsers in async.
I want to do clustering on 10,000 models. Before that, I have to calculate the pearson corralation coefficient associated with every two models. That's a large amount of computation, so I use multiprocessing to spawn processes, assigning the computing job to 16 cpus.My code is like this:
import numpy as np
from multiprocessing import Process, Queue
def cc_calculator(begin, end, q):
index=lambda i,j,n: i*n+j-i*(i+1)/2-i-1
for i in range(begin, end):
for j in range(i, nmodel):
all_cc[i][j]=get_cc(i,j)
q.put((index(i,j,nmodel),all_cc[i][j]))
def func(i):
res=(16-i)/16
res=res**0.5
res=int(nmodel*(1-res))
return res
nmodel=int(raw_input("Entering the number of models:"))
all_cc=np.zeros((nmodel,nmodel))
ncc=int(nmodel*(nmodel-1)/2)
condensed_cc=[0]*ncc
q=Queue()
mprocess=[]
for ii in range(16):
begin=func(i)
end=func(i+1)
p=Process(target=cc_calculator,args=(begin,end,q))
mprocess+=[p]
p.start()
for x in mprocess:
x.join()
while not q.empty():
(ind, value)=q.get()
ind=int(ind)
condensed_cc[ind]=value
np.save("condensed_cc",condensed_cc)
where get_cc(i,j) calculates the corralation coefficient associated with model i and j. all_cc is an upper triangular matrix and all_cc[i][j] stores the cc value. condensed_cc is another version of all_cc. I'll process it to achive condensed_dist to do the clustering. The "func" function helps assign to each cpu almost the same amout of computing.
I run the program successfully with nmodel=20. When I try to run the program with nmodel=10,000, however, seems that it never ends.I wait about two days and use top command in another terminal window, no process with command "python" is still running. But the program is still running and there is no output file. I use Ctrl+C to force it to stop, it points to the line: x.join(). nmodel=40 ran fast but failed with the same problem.
Maybe this problem has something to do with q. Because if I comment the line: q.put(...), it runs successfully.Or something like this:
q.put(...)
q.get()
It is also ok.But the two methods will not give a right condensed_cc. They don't change all_cc or condensed_cc.
Another example with only one subprocess:
from multiprocessing import Process, Queue
def g(q):
num=10**2
for i in range(num):
print '='*10
print i
q.put((i,i+2))
print "qsize: ", q.qsize()
q=Queue()
p=Process(target=g,args=(q,))
p.start()
p.join()
while not q.empty():
q.get()
It is ok with num= 100 but fails with num=10,000. Even with num=100**2, they did print all i and q.qsizes. I cannot figure out why. Also, Ctrl+C causes trace back to p.join().
I want to say more about the size problem of queue. Documentation about Queue and its put method introduces Queue as Queue([maxsize]), and it says about the put method:...block if neccessary until a free slot is available. These all make one think that the subprocess is blocked because of running out of spaces of the queue. However, as I mentioned before in the second example, the result printed on the screen proves an increasing qsize, meaning that the queue is not full. I add one line:
print q.full()
after the print size statement, it is always false for num=10,000 while the program still stuck somewhere. Emphasize one thing: top command in another terminal shows no process with command python. That really puzzles me.
I'm using python 2.7.9.
I believe the problem you are running into is described in the multiprocessing programming guidelines: https://docs.python.org/2/library/multiprocessing.html#multiprocessing-programming
Specifically this section:
Joining processes that use queues
Bear in mind that a process that has put items in a queue will wait before terminating until all the buffered items are fed by the “feeder” thread to the underlying pipe. (The child process can call the cancel_join_thread() method of the queue to avoid this behaviour.)
This means that whenever you use a queue you need to make sure that all items which have been put on the queue will eventually be removed before the process is joined. Otherwise you cannot be sure that processes which have put items on the queue will terminate. Remember also that non-daemonic processes will be joined automatically.
An example which will deadlock is the following:
from multiprocessing import Process, Queue
def f(q):
q.put('X' * 1000000)
if __name__ == '__main__':
queue = Queue()
p = Process(target=f, args=(queue,))
p.start()
p.join() # this deadlocks
obj = queue.get()
A fix here would be to swap the last two lines (or simply remove the p.join() line).
You might also want to check out the section on "Avoid Shared State".
It looks like you are using .join to avoid the race condition of q.empty() returning True before something is added to it. You should not rely on .empty() at all while using multiprocessing (or multithreading). Instead you should handle this by signaling from the worker process to the main process when it is done adding items to the queue. This is normally done by placing a sentinal value in the queue, but there are other options as well.
I'm trying to run a function with multiprocessing. This is the code:
import multiprocessing as mu
output = []
def f(x):
output.append(x*x)
jobs = []
np = mu.cpu_count()
for n in range(np*500):
p = mu.Process(target=f, args=(n,))
jobs.append(p)
running = []
for i in range(np):
p = jobs.pop()
running.append(p)
p.start()
while jobs != []:
for r in running:
if r.exitcode == 0:
try:
running.remove(r)
p = jobs.pop()
p.start()
running.append(p)
except IndexError:
break
print "Done:"
print output
The output is [], while it should be [1,4,9,...]. Someone sees where i'm making a mistake?
You are using multiprocessing, not threading. So your output list is not shared between the processes.
There are several possible solutions;
Retain most of your program but use a multiprocessing.Queue instead of a list. Let the workers put their results in the queue, and read it from the main program. It will copy data from process to process, so for big chunks of data this will have significant overhead.
You could use shared memory in the form of multiprocessing.Array. This might be the best solution if the processed data is large.
Use a Pool. This takes care of all the process management for you. Just like with a queue, it copies data from process to process. It is probably the easiest to use. IMO this is the best option if the data sent to/from each worker is small.
Use threading so that the output list is shared between threads. Threading in CPython has the restriction that only one thread at a time can be executing Python bytecode, so you might not get as much performance benefit as you'd expect. And unlike the multiprocessing solutions it will not take advantage of multiple cores.
Edit:
Thanks to #Roland Smith to point out.
The main problem is the function f(x). When child process call this, it's unable for them to fine the output variable (since it's not shared).
Edit:
Just as #cdarke said, in multiprocessing you have to carefully control the shared object that child process could access(maybe a lock), and it's pretty complicated and hard to debug.
Personally I suggest to use the Pool.map method for this.
For instance, I assume that you run this code directly, not as a module, then your code would be:
import multiprocessing as mu
def f(x):
return x*x
if __name__ == '__main__':
np = mu.cpu_count()
args = [n for n in range(np*500)]
pool = mu.Pool(processes=np)
result = pool.map(f, args)
pool.close()
pool.join()
print result
but there's something you must know
if you just run this file but not import with module, the if __name__ == '__main__': is important, since python will load this file as a module for other process, if you don't place the function 'f' outside if __name__ == '__main__':, the child process would not be able to find your function 'f'
**Edit:**thanks #Roland Smith point out that we could use tuple
if you have more then one args for the function f, then you might need a tuple to do so, for instance
def f((x,y))
return x*y
args = [(n,1) for n in range(np*500)]
result = pool.map(f, args)
or check here for more detailed discussion
Ive been trying to read up on threading and multiprocessing but all the examples are to intricate and advanced for my level of python/programming knowlegde. I want to run a function, which consists of a while loop, and while that loop runs I want to continue with the program and eventually change the condition for the while-loop and end that process. This is the code:
class Example():
def __init__(self):
self.condition = False
def func1(self):
self.condition = True
while self.condition:
print "Still looping"
time.sleep(1)
print "Finished loop"
def end_loop(self):
self.condition = False
The I make the following function-calls:
ex = Example()
ex.func1()
time.sleep(5)
ex.end_loop()
What I want is for the func1 to run for 5s before the end_loop() is called and changes the condition and ends the loop and thus also the function. I.e I want one process to start and "go" into func1 and at the same time I want time.sleep(5) to be called, so the processes "split" when arriving at func1, one process entering the function while the other continues down the program and start with the time.sleep(5) execution.
This must be the most basic example of a multiprocess, still Ive had trouble finding a simple way to do it!
Thank you
EDIT1: regarding do_something. In my real problem do_something is replaced by some code that communicates with another program via a socket and receives packages with coordinates every 0.02s and stores them in membervariables of the class. I want this constant updating of the coordinates to start and then be able to to read the coordinates via other functions at the same time.
However that is not so relevant. What if do_something is replaced by:
time.sleep(1)
print "Still looping"
How do I solve my problem then?
EDIT2: I have tried multiprocessing like this:
from multiprocessing import Process
ex = Example()
p1 = Process(target=ex.func1())
p2 = Process(target=ex.end_loop())
p1.start()
time.sleep(5)
p2.start()
When I ran this, I never got to p2.start(), so that did not help. Even if it had this is not really what Im looking for either. What I want would be just to start the process p1, and then continue with time.sleep and ex.end_loop()
The first problem with your code are the calls
p1 = Process(target=ex.func1())
p2 = Process(target=ex.end_loop())
With ex.func1() you're calling the function and pass the return value as target parameter. Since the function doesn't return anything, you're effectively calling
p1 = Process(target=None)
p2 = Process(target=None)
which makes, of course, no sense.
After fixing that, the next problem will be shared data: when using the multiprocessing package, you implement concurrency using multiple processes which, by default, cannot simply share data afaik. Have a look at Sharing state between processes in the package's documentation to read about this. Especially take the first sentence into account: "when doing concurrent programming it is usually best to avoid using shared state as far as possible"!
So you might want to also have a look at Exchanging objects between processes to read about how to send/receive data between two different processes. So, instead of simply setting a flag to stop the loop, it might be better to send a message to signal the loop should be terminated.
Also note that processes are a heavyweight form of multiprocessing, they spawn multiple OS processes which comes with a relatively big overhead. multiprocessing's main purpose is to avoid problems imposed by Python's Global Interpreter Lock (google about this to read more...) If your problem is'nt much more complex than what you've told us, you might want to use the threading package instead: threads come with less overhead than processes and also allow to access the same data (although you really should read about synchronization when doing this...)
I'm afraid, multiprocessing is an inherently complex subject. So I think you will need to advance your programming/python skills to successfully use it. But I'm sure you'll manage this, the python documentation about this is comprehensive and there are a lot of other resources about this.
To tackle your EDIT2 problem, you could try using the shared memory map Value.
import time
from multiprocessing import Process, Value
class Example():
def func1(self, cond):
while (cond.value == 1):
print('do something')
time.sleep(1)
return
if __name__ == '__main__':
ex = Example()
cond = Value('i', 1)
proc = Process(target=ex.func1, args=(cond,))
proc.start()
time.sleep(5)
cond.value = 0
proc.join()
(Note the target=ex.func1 without the parentheses and the comma after cond in args=(cond,).)
But look at the answer provided by MartinStettner to find a good solution.
Suppose I have the following in Python
# A loop
for i in range(10000):
Do Task A
# B loop
for i in range(10000):
Do Task B
How do I run these loops simultaneously in Python?
If you want concurrency, here's a very simple example:
from multiprocessing import Process
def loop_a():
while 1:
print("a")
def loop_b():
while 1:
print("b")
if __name__ == '__main__':
Process(target=loop_a).start()
Process(target=loop_b).start()
This is just the most basic example I could think of. Be sure to read http://docs.python.org/library/multiprocessing.html to understand what's happening.
If you want to send data back to the program, I'd recommend using a Queue (which in my experience is easiest to use).
You can use a thread instead if you don't mind the global interpreter lock. Processes are more expensive to instantiate but they offer true concurrency.
There are many possible options for what you wanted:
use loop
As many people have pointed out, this is the simplest way.
for i in xrange(10000):
# use xrange instead of range
taskA()
taskB()
Merits: easy to understand and use, no extra library needed.
Drawbacks: taskB must be done after taskA, or otherwise. They can't be running simultaneously.
multiprocess
Another thought would be: run two processes at the same time, python provides multiprocess library, the following is a simple example:
from multiprocessing import Process
p1 = Process(target=taskA, args=(*args, **kwargs))
p2 = Process(target=taskB, args=(*args, **kwargs))
p1.start()
p2.start()
merits: task can be run simultaneously in the background, you can control tasks(end, stop them etc), tasks can exchange data, can be synchronized if they compete the same resources etc.
drawbacks: too heavy!OS will frequently switch between them, they have their own data space even if data is redundant. If you have a lot tasks (say 100 or more), it's not what you want.
threading
threading is like process, just lightweight. check out this post. Their usage is quite similar:
import threading
p1 = threading.Thread(target=taskA, args=(*args, **kwargs))
p2 = threading.Thread(target=taskB, args=(*args, **kwargs))
p1.start()
p2.start()
coroutines
libraries like greenlet and gevent provides something called coroutines, which is supposed to be faster than threading. No examples provided, please google how to use them if you're interested.
merits: more flexible and lightweight
drawbacks: extra library needed, learning curve.
Why do you want to run the two processes at the same time? Is it because you think they will go faster (there is a good chance that they wont). Why not run the tasks in the same loop, e.g.
for i in range(10000):
doTaskA()
doTaskB()
The obvious answer to your question is to use threads - see the python threading module. However threading is a big subject and has many pitfalls, so read up on it before you go down that route.
Alternatively you could run the tasks in separate proccesses, using the python multiprocessing module. If both tasks are CPU intensive this will make better use of multiple cores on your computer.
There are other options such as coroutines, stackless tasklets, greenlets, CSP etc, but Without knowing more about Task A and Task B and why they need to be run at the same time it is impossible to give a more specific answer.
from threading import Thread
def loopA():
for i in range(10000):
#Do task A
def loopB():
for i in range(10000):
#Do task B
threadA = Thread(target = loopA)
threadB = Thread(target = loobB)
threadA.run()
threadB.run()
# Do work indepedent of loopA and loopB
threadA.join()
threadB.join()
You could use threading or multiprocessing.
How about: A loop for i in range(10000): Do Task A, Do Task B ? Without more information i dont have a better answer.
I find that using the "pool" submodule within "multiprocessing" works amazingly for executing multiple processes at once within a Python Script.
See Section: Using a pool of workers
Look carefully at "# launching multiple evaluations asynchronously may use more processes" in the example. Once you understand what those lines are doing, the following example I constructed will make a lot of sense.
import numpy as np
from multiprocessing import Pool
def desired_function(option, processes, data, etc...):
# your code will go here. option allows you to make choices within your script
# to execute desired sections of code for each pool or subprocess.
return result_array # "for example"
result_array = np.zeros("some shape") # This is normally populated by 1 loop, lets try 4.
processes = 4
pool = Pool(processes=processes)
args = (processes, data, etc...) # Arguments to be passed into desired function.
multiple_results = []
for i in range(processes): # Executes each pool w/ option (1-4 in this case).
multiple_results.append(pool.apply_async(param_process, (i+1,)+args)) # Syncs each.
results = np.array(res.get() for res in multiple_results) # Retrieves results after
# every pool is finished!
for i in range(processes):
result_array = result_array + results[i] # Combines all datasets!
The code will basically run the desired function for a set number of processes. You will have to carefully make sure your function can distinguish between each process (hence why I added the variable "option".) Additionally, it doesn't have to be an array that is being populated in the end, but for my example, that's how I used it. Hope this simplifies or helps you better understand the power of multiprocessing in Python!