Conditional list Python - python

I am opening all the files present in zip, then converting the string to List and thereafter, breaking the list into 5 elements from each line.
My code:
with zipfile.ZipFile(dummy.zip, 'r') as mz:
for f in mz.namelist():
data = mz.read(f).decode('utf-8').replace("\n", '').replace("\r", ',').lstrip().rstrip().split(",") #Removing all spaces and \r from text.
allist = [data[i:i + 5] for i in range(len(data))[::5]] #breaking list into 5 elements each
I am able to do it perfectly if all values are present but if any of the element in missing on particular line then it picks up the value from second line but I want to add NA at place of missing element.
File data:
Dummy.zip = "File1 + File2"
File1:
Yuli, yu#test.com, 0001, 8902
Su, su#test.com, 0002, 8903, Manager
File:2
Zaon, zn#test.com, 100, 9087, Analyst
June, ju#test.com, 278, 6078
Purpose of the code:
I am adding converting this list to dict, so adding keys to each entry as name, email, ext, Empid, Level

You can do it like this:
texts = [b"Yuli, yu#test.com, 0001, 8902\r\nSu, su#test.com, 0002, 8903, Manager",
b"Zaon, zn#test.com, 100, 9087, Analyst\r\nJune, ju#test.com, 278, 6078"]
result =[]
keys = "name,email,ext,Empid,Level".split(",")
# you do:
# with zipfile.ZipFile(dummy.zip, 'r') as mz:
# for f in mz.namelist():
# t = mz.read(f) here instead
# instead
for t in texts:
for line in t.decode("utf-8").split("\n"):
d = {k:"NA" for k in keys} # init all keys with NA
# update with actual values
d.update(zip(keys,(l.strip() for l in line.strip().split(","))))
# add to result list
result.append(d)
print(result)
Output:
[{'name': 'Yuli', 'email': 'yu#test.com', 'ext': '0001', 'Empid': '8902', 'Level': 'NA'},
{'name': 'Su', 'email': 'su#test.com', 'ext': '0002', 'Empid': '8903', 'Level': 'Manager'},
{'name': 'Zaon', 'email': 'zn#test.com', 'ext': '100', 'Empid': '9087', 'Level': 'Analyst'},
{'name': 'June', 'email': 'ju#test.com', 'ext': '278', 'Empid': '6078', 'Level': 'NA'}]

Related

Create a new dictionary from a nested JSON output after parsing

In python3 I need to get a JSON response from an API call,
and parse it so I will get a dictionary That only contains the data I need.
The final dictionary I ecxpt to get is as follows:
{'Severity Rules': ('cc55c459-eb1a-11e8-9db4-0669bdfa776e', ['cc637182-eb1a-11e8-9db4-0669bdfa776e']), 'auto_collector': ('57e9a4ec-21f7-4e0e-88da-f0f1fda4c9d1', ['0ab2470a-451e-11eb-8856-06364196e782'])}
the JSON response returns the following output:
{
'RuleGroups': [{
'Id': 'cc55c459-eb1a-11e8-9db4-0669bdfa776e',
'Name': 'Severity Rules',
'Order': 1,
'Enabled': True,
'Rules': [{
'Id': 'cc637182-eb1a-11e8-9db4-0669bdfa776e',
'Name': 'Severity Rule',
'Description': 'Look for default severity text',
'Enabled': False,
'RuleMatchers': None,
'Rule': '\\b(?P<severity>DEBUG|TRACE|INFO|WARN|ERROR|FATAL|EXCEPTION|[I|i]nfo|[W|w]arn|[E|e]rror|[E|e]xception)\\b',
'SourceField': 'text',
'DestinationField': 'text',
'ReplaceNewVal': '',
'Type': 'extract',
'Order': 21520,
'KeepBlockedLogs': False
}],
'Type': 'user'
}, {
'Id': '4f6fa7c6-d60f-49cd-8c3d-02dcdff6e54c',
'Name': 'auto_collector',
'Order': 4,
'Enabled': True,
'Rules': [{
'Id': '2d6bdc1d-4064-11eb-8856-06364196e782',
'Name': 'auto_collector',
'Description': 'DO NOT CHANGE!! Created via API coralogix-blocker tool',
'Enabled': False,
'RuleMatchers': None,
'Rule': 'AUTODISABLED',
'SourceField': 'subsystemName',
'DestinationField': 'subsystemName',
'ReplaceNewVal': '',
'Type': 'block',
'Order': 1,
'KeepBlockedLogs': False
}],
'Type': 'user'
}]
}
I was able to create a dictionary that contains the name and the RuleGroupsID, like that:
response = requests.get(url,headers=headers)
output = response.json()
outputlist=(output["RuleGroups"])
groupRuleName = [li['Name'] for li in outputlist]
groupRuleID = [li['Id'] for li in outputlist]
# Create a dictionary of NAME + ID
ruleDic = {}
for key in groupRuleName:
for value in groupRuleID:
ruleDic[key] = value
groupRuleID.remove(value)
break
Which gave me a simple dictionary:
{'Severity Rules': 'cc55c459-eb1a-11e8-9db4-0669bdfa776e', 'Rewrites': 'ddbaa27e-1747-11e9-9db4-0669bdfa776e', 'Extract': '0cb937b6-2354-d23a-5806-4559b1f1e540', 'auto_collector': '4f6fa7c6-d60f-49cd-8c3d-02dcdff6e54c'}
but when I tried to parse it as nested JSON things just didn't work.
In the end, I managed to create a function that returns this dictionary,
I'm doing it by breaking the JSON into 3 lists by the needed elements (which are Name, Id, and Rules from the first nest), and then create another list from the nested JSON ( which listed everything under Rule) which only create a list from the keyword "Id".
Finally creating a dictionary using a zip command on the lists and dictionaries created earlier.
def get_filtered_rules() -> List[dict]:
groupRuleName = [li['Name'] for li in outputlist]
groupRuleID = [li['Id'] for li in outputlist]
ruleIDList = [li['Rules'] for li in outputlist]
ruleIDListClean = []
ruleClean = []
for sublist in ruleIDList:
try:
lstRule = [item['Rule'] for item in sublist]
ruleClean.append(lstRule)
ruleContent=list(zip(groupRuleName, ruleClean))
ruleContentDictionary = dict(ruleContent)
lstID = [item['Id'] for item in sublist]
ruleIDListClean.append(lstID)
# Create a dictionary of NAME + ID + RuleID
ruleDic = dict(zip(groupRuleName, zip(groupRuleID, ruleIDListClean)))
except Exception as e: print(e)
return ruleDic

search values in a list of nested dictionaries

I want to perform searches on values in a list of nested dictionaries and return another key:value pairs. These dictionaries are metafiles. Basically I want to search the ID of each dictionary, find all dictionaries that have the same ID, and return the file location (key:value) pairs.
metafile = [{'metadata':{'Title':'The Sun Also Rises', 'ID': 'BAY121-F1164EAB499'}, 'content': 'xyz', 'File_Path': 'file_location1'},
{'metadata':{'Title':'Of Mice and Men', 'ID': '499B0BAB#dfg'}, 'content': 'abc', 'File_Path': 'file_location2'},
{'metadata':{'Title':'The Sun Also Rises Review', 'ID': 'BAY121-F1164EAB499'}, 'content': 'ftw', 'File_Path': 'file_location3'}]
I created a loop to perform my search as follows. It returns an empty list though, how should I modify this so that the file paths are returned?
search_ID = 'BAY121-F1164EAB499'
path =[]
for a in metafile:
for val in a['metadata']['ID']:
if search_ID == val:
path.append(a['File_Path'])
you don't need an inner loop for this:
correct code
search_ID = 'BAY121-F1164EAB499'
path =[]
for a in metafile:
#a['metadata']['ID'] already gives you the value of ID
if search_ID == a['metadata']['ID']:
path.append(a['File_Path'])
output
['file_location1', 'file_location3']
You don't need to iterate through a['metadata']['ID'], instead just access them directly. So the modified code would be
metafile = [{'metadata':{'Title':'The Sun Also Rises', 'ID': 'BAY121-
F1164EAB499'}, 'content': 'xyz', 'File_Path': 'file_location1'},
{'metadata':{'Title':'Of Mice and Men', 'ID': '499B0BAB#dfg'}, 'content': 'abc',
'File_Path': 'file_location2'},
{'metadata':{'Title':'The Sun Also Rises Review', 'ID': 'BAY121-F1164EAB499'},
'content': 'ftw', 'File_Path': 'file_location3'}]
search_ID = 'BAY121-F1164EAB499'
path =[]
for a in metafile:
if a["metadata"]["ID"] == search_ID:
path.append(a['File_Path'])

Creating a nested dictionary with for loop

I have a csv file and Im trying to create a nested dictionary that looks like this:
contacts = {"Tom": {"name": "Tom Techie",
"phone": "123 123546",
"email": "tom#tom.fi",
"skype": "skypenick"},
"Mike": {"name": "Mike Mechanic",
"phone": "000 123546",
"email": "mike#mike.fi",
"skype": "-Mike-M-"}}
etc
And this is what I have written:
file = open("csv","r")
d = {}
for i in file:
f = i.strip()
x = f.split(";")
if x[4] != "":
d.update({x[0] : {"name":x[1],
"phone":x[2],
"email":x[3],
"skype":x[4]}})
else:
d.update ({x[0] : {"name": x[1],
"phone": x[2],
"email": x[3]}})
However it prints the dict as a normal dictionary with the updates as keys when they should be like stated above.
EDIT:
First lines of the csv:
key;name;phone;email;skype
Tom;Tom Techie;123 123546;tom#tom.fi;skypenick
Mike;Mike Mechanic;000 123456;mike#mike.fi;-Mike-M-
Archie;Archie Architect;050 987654;archie#archie
You can use pd.read_csv() and to_dict():
import pandas as pd
contacts = pd.read_csv('test.csv', sep=';').set_index('key').to_dict(orient='index')
Yields:
{'Tom': {'name': 'Tom Techie', 'phone': '123 123546', 'email': 'tom#tom.fi', 'skype': 'skypenick'}, 'Mike': {'name': 'Mike Mechanic', 'phone': '000 123456', 'email': 'mike#mike.fi', 'skype': '-Mike-M-'}, 'Archie': {'name': 'Archie Architect', 'phone': '050 987654', 'email': 'archie#archie', 'skype': nan}}
I like the pandas answer, but if you don't want a 3rd party library, use the built-in csv module:
import csv
from pprint import pprint
D = {}
with open('csv',newline='') as f:
r = csv.DictReader(f,delimiter=';')
for line in r:
name = line['key']
del line['key']
D[name] = dict(line)
pprint(D)
Output:
{'Archie': {'email': 'archie#archie',
'name': 'Archie Architect',
'phone': '050 987654',
'skype': None},
'Mike': {'email': 'mike#mike.fi',
'name': 'Mike Mechanic',
'phone': '000 123456',
'skype': '-Mike-M-'},
'Tom': {'email': 'tom#tom.fi',
'name': 'Tom Techie',
'phone': '123 123546',
'skype': 'skypenick'}}
You can use zip() to achieve your goal:
file = """key;name;phone;email;skype
Tom;Tom Techie;123 123546;tom#tom.fi;skypenick
Mike;Mike Mechanic;000 123456;mike#mike.fi;-Mike-M-
Archie;Archie Architect;050 987654;archie#archie""".splitlines()
d = {}
h = None
for i in file: # works the same for your csv-file
# first row == header, store in h
if h is None:
h = i.strip().split(";")[1:]
continue # done for first row
x = i.strip().split(";")
# zip pairs the read in line with the header line to get tuples
# wich are fed into the dict constructor that creates the inner dict
d[x[0]] = dict(zip(h,x[1:]+[""])) # no default for skype
# use this instead if you want the skype key always present with empty default
# d[x[0]] = dict(zip(h,x[1:]+[""]))
print(d)
zip() discards the elements of the longer list - you won't need any checks for that.
Output:
{'Tom': {'name': 'Tom Techie', 'phone': '123 123546',
'email': 'tom#tom.fi', 'skype': 'skypenick'},
'Mike': {'name': 'Mike Mechanic', 'phone': '000 123456',
'email': 'mike#mike.fi', 'skype': '-Mike-M-'},
'Archie': {'name': 'Archie Architect', 'phone': '050 987654',
'email': 'archie#archie'}}
If you use the commented line, the data will get a default value of '' for the skype - works only b/c skype is the last element of the splitted line
You can use a dict comprehension! Assuming the data is something like
with open("df.csv", "r") as file:
d = {x.split(";")[0]:{
"name": x.split(";")[2],
"phone": x.split(";")[3],
"email": x.split(";")[1],
"skype": x.split(";")[4][:-1] # Slice off trailing newline
} for x in file}
d.pop("")
We want to open files using with whenever possible to benefit from Python's context management. See https://www.python.org/dev/peps/pep-0343/ for fundamental understanding of the with statement.
Since the key "" only appears once at the head of the csv, we can pop it at the end and avoid performing a comparison at every iteration. A dict comprehension accomplishes the same thing you wanted to achieve with d.update.
More about comprehensions:
https://docs.python.org/3/tutorial/datastructures.html#list-comprehensions
Edit: refactoring to remove the repetitive calls to .split can look something like this:
def line_to_dict(x, d):
x = x.split(";")
d[x[0]] = {
"name": x[2],
"phone": x[3],
"email": x[1],
"skype": x[4][:-1] # Slice off trailing newline
}
with open("df.csv", "r") as file:
d = {}
for x in file:
line_to_dict(x, d)
d.pop("")

Python - Looping through API and writing Dict to csv

I am looping through an API to retrieve data for multiple ICO tokens. Now, I would like to save the data to a csv with variables in columns and 1 row for each ICO token. The basic code works, I have 2 problems:
- entries are written only in every second line, which is quite unpractical. How can I specify not to leave rows blank?
- the variable price is a list itself and thus saved in as a single item (with > 1 variables inside). How can I decompose the list to write one variable per column?
See my code here:
ICO_Wallet = '0xe8ff5c9c75deb346acac493c463c8950be03dfba',
'0x7654915a1b82d6d2d0afc37c52af556ea8983c7e',
'0x4DF812F6064def1e5e029f1ca858777CC98D2D81'
for index, Wallet in enumerate(ICO_Wallet) :
Name = ICO_name[index]
Number = ICO_No[index]
try:
URL = 'http://api.ethplorer.io/getTokenInfo/' + Wallet + '?apiKey=freekey'
except:
print(Wallet)
json_obj = urlopen(URL)
data = json.load(json_obj)
with open('token_data_test.csv','a') as f:
w = csv.writer(f, delimiter=";")
w.writerow(data.values())
time.sleep(1)
Sample output:
data Out[59]:
{'address': '0x8a854288a5976036a725879164ca3e91d30c6a1b',
'countOps': 24207,
'decimals': '18',
'ethTransfersCount': 0,
'holdersCount': 10005,
'issuancesCount': 0,
'lastUpdated': 1542599890,
'name': 'GET',
'owner': '0x9a417e4db28778b6d9a4f42a5d7d01252a3af849',
'price': {'availableSupply': '11388258.0',
'currency': 'USD',
'diff': -20.71,
'diff30d': -14.155971452386,
'diff7d': -22.52,
'marketCapUsd': '2814942.0',
'rate': '0.2471792958',
'ts': '1542641433',
'volume24h': '2371.62380719'},
'symbol': 'GET',
'totalSupply': '33368773400000170376363910',
'transfersCount': 24207}
As mentioned, it's an easy fix for the first problem, just modify the csv.writer line like this:
w = csv.writer(f, delimiter=";", lineterminator='\n')
For your second problem, you can flatten your json before passing into csv:
for k, v in data.pop('price').items():
data['price_{}'.format(k)] = v
This changes all items under price into price_itemname as a flattened key. The .pop() method also helps remove the 'price' key at the same time.
Result:
{'address': '0x8a854288a5976036a725879164ca3e91d30c6a1b',
'countOps': 24207,
'decimals': '18',
'ethTransfersCount': 0,
'holdersCount': 10005,
'issuancesCount': 0,
'lastUpdated': 1542599890,
'name': 'GET',
'owner': '0x9a417e4db28778b6d9a4f42a5d7d01252a3af849',
'price_availableSupply': '11388258.0',
'price_currency': 'USD',
'price_diff': -20.71,
'price_diff30d': -14.155971452386,
'price_diff7d': -22.52,
'price_marketCapUsd': '2814942.0',
'price_rate': '0.2471792958',
'price_ts': '1542641433',
'price_volume24h': '2371.62380719',
'symbol': 'GET',
'totalSupply': '33368773400000170376363910',
'transfersCount': 24207}
Now you can just pass that into your csv.writer().

Loading values to nested dicts from a list

I have a CSV files which has a header like this:
cpus/0/compatible clocks/HSE/compatible ../frequency memories/flash/compatible ../address ../size [and so on...]
I'm able to parse that header into a nested dictionaries which may look like this:
{'clocks': {'HSE': {'compatible': '[1]',
'frequency': '[2]'}},
'cpus': {'0': {'compatible': '[0]'}},
'memories': {'bkpsram': {'address': '[13]',
'compatible': '[12]',
'size': '[14]'},
'ccm': {'address': '[7]',
'compatible': '[6]',
'size': '[8]'},
'flash': {'address': '[4]',
'compatible': '[3]',
'size': '[5]'},
'sram': {'address': '[10]',
'compatible': '[9]',
'size': '[11]'}},
'pin-controller': {'GPIOA': {'enabled': '[16]'},
'GPIOB': {'enabled': '[17]'},
'GPIOC': {'enabled': '[18]'},
'GPIOD': {'enabled': '[19]'},
'GPIOE': {'enabled': '[20]'},
'GPIOF': {'enabled': '[21]'},
'GPIOG': {'enabled': '[22]'},
'GPIOH': {'enabled': '[23]'},
'GPIOI': {'enabled': '[24]'},
'GPIOJ': {'enabled': '[25]'},
'GPIOK': {'enabled': '[26]'},
'compatible': '[15]'}}
(it is a dict object, printed with pprint())
The values of keys which look like '[<number>]' reflect the index of column in the CSV file from which the data should be loaded.
As I mainly use C/C++ I would actually love to have pointers/references in Python, as then I would just put a pointer to a list element in each value and for each row I could modify list contents, but I think there's no way to obtain such behaviour easily in Python.
So now I plan to dump this dictionary into a string and perform following 3 modifications in a row:
replace { with {{,
replace } with }},
replace '[<number>]' with {<number>}.
After that I will be able to "load" the data with something like this ast.literal_eval(dictAsStr.format(*rowFromCsv)), but it seems like a waste of time to convert the whole dict to a string and then back to a dict...
Am I missing some other obvious solution here? The format of the CSV and the way I load the header is not fixed, I may alter that easily, but I would really like a solution which would not boil down to "visit each key recursively and load appropriate value from current row manually".
From the CSV file I load each row as a list of strings, for example:
['["ARM,Cortex-M4", "ARM,ARMv7-M"]',
'["ST,STM32-HSE", "fixed-clock"]',
'0',
'["on-chip-flash"]',
'0x8000000',
'131072',
'',
'',
'',
'["on-chip-ram"]',
'0x20000000',
'65536',
'',
'',
'',
'["ST,STM32-GPIOv2-pin-controller"]',
'False',
'False',
'False',
'',
'',
'',
'',
'False',
'',
'',
'']
Now I would like to insert the values from each loaded row (list of strings) into appropriate keys in the nested dictionary, so following with the examples above I would like to get:
{'clocks': {'HSE': {'compatible': '["ST,STM32-HSE", "fixed-clock"]',
'frequency': '0'}},
'cpus': {'0': {'compatible': '["ARM,Cortex-M4", "ARM,ARMv7-M"]'}},
'memories': {'bkpsram': {'address': '',
'compatible': '',
'size': ''},
'ccm': {'address': '',
'compatible': '',
'size': ''},
'flash': {'address': '0x8000000',
'compatible': '["on-chip-flash"]',
'size': '131072'},
'sram': {'address': '0x20000000',
'compatible': '["on-chip-ram"]',
'size': '65536'}},
'pin-controller': {'GPIOA': {'enabled': 'False'},
'GPIOB': {'enabled': 'False'},
'GPIOC': {'enabled': 'False'},
'GPIOD': {'enabled': ''},
'GPIOE': {'enabled': ''},
'GPIOF': {'enabled': ''},
'GPIOG': {'enabled': ''},
'GPIOH': {'enabled': 'False'},
'GPIOI': {'enabled': ''},
'GPIOJ': {'enabled': ''},
'GPIOK': {'enabled': ''},
'compatible': '["ST,STM32-GPIOv2-pin-controller"]'}}
For completeness, here are a few first lines from the CSV file I would like to load. The first column is not part of the dictionary presented above, as it is used for indexing.
chip,cpus/0/compatible,clocks/HSE/compatible,../frequency,memories/flash/compatible,../address,../size,memories/ccm/compatible,../address,../size,memories/sram/compatible,../address,../size,memories/bkpsram/compatible,../address,../size,pin-controller/compatible,pin-controller/GPIOA/enabled,pin-controller/GPIOB/enabled,pin-controller/GPIOC/enabled,pin-controller/GPIOD/enabled,pin-controller/GPIOE/enabled,pin-controller/GPIOF/enabled,pin-controller/GPIOG/enabled,pin-controller/GPIOH/enabled,pin-controller/GPIOI/enabled,pin-controller/GPIOJ/enabled,pin-controller/GPIOK/enabled
STM32F401CB,"[""ARM,Cortex-M4"", ""ARM,ARMv7-M""]","[""ST,STM32-HSE"", ""fixed-clock""]",0,"[""on-chip-flash""]",0x8000000,131072,,,,"[""on-chip-ram""]",0x20000000,65536,,,,"[""ST,STM32-GPIOv2-pin-controller""]",False,False,False,,,,,False,,,
STM32F401CC,"[""ARM,Cortex-M4"", ""ARM,ARMv7-M""]","[""ST,STM32-HSE"", ""fixed-clock""]",0,"[""on-chip-flash""]",0x8000000,262144,,,,"[""on-chip-ram""]",0x20000000,65536,,,,"[""ST,STM32-GPIOv2-pin-controller""]",False,False,False,,,,,False,,,
STM32F401CD,"[""ARM,Cortex-M4"", ""ARM,ARMv7-M""]","[""ST,STM32-HSE"", ""fixed-clock""]",0,"[""on-chip-flash""]",0x8000000,393216,,,,"[""on-chip-ram""]",0x20000000,98304,,,,"[""ST,STM32-GPIOv2-pin-controller""]",False,False,False,,,,,False,,,
The code used to parse the header:
import csv
with open("some-path-to-CSV-file") as csvFile:
csvReader = csv.reader(csvFile)
header = next(csvReader)
previousKeyElements = header[1].split('/')
dictionary = {}
for index, key in enumerate(header[1:]):
keyElements = key.split('/')
i = 0
while keyElements[i] == '..':
i += 1
keyElements[0:i] = previousKeyElements[0:-i]
previousKeyElements = keyElements
node = dictionary
for keyElement in keyElements[:-1]:
node = node.setdefault(keyElement, {})
node[keyElements[-1]] = '[{}]'.format(index)
What about just using the actual row index (as integer) as value in the "parsed" header, ie:
{'clocks': {'HSE': {'compatible': 1,
'frequency': 2}},
# etc
Then using recursion on a parsed header copy to populate it from the row values ?:
import csv
import sys
import copy
import pprint
def parse_header(header):
previousKeyElements = header[1].split('/')
dictionary = {}
for index, key in enumerate(header[1:]):
keyElements = key.split('/')
i = 0
while keyElements[i] == '..':
i += 1
keyElements[0:i] = previousKeyElements[0:-i]
previousKeyElements = keyElements
node = dictionary
for keyElement in keyElements[:-1]:
node = node.setdefault(keyElement, {})
node[keyElements[-1]] = index
return dictionary
def _rparse(d, k, v, row):
if isinstance(v, dict):
for subk, subv in v.items():
_rparse(v, subk, subv, row)
elif isinstance(v, int):
d[k] = row[v]
else:
raise ValueError("'v' should be either a dict or an int (got : %s(%s))" % (type(v), v))
def parse_row(header, row):
struct = copy.deepcopy(header)
for k, v in struct.items():
_rparse(struct, k, v, row)
return struct
def main(*args):
path = args[0]
with open(path) as f:
reader = csv.reader(f)
header = parse_header(next(reader))
results = [parse_row(header, row[1:]) for row in reader]
pprint.pprint(results)
if __name__ == "__main__":
main(*sys.argv[1:])
Another solution (that might actually be faster) would be to build a reverse mapping with row indices as keys and dict "path" as values ie:
{0: ("cpus", "0", "compatible"),
1: ("clocks", "HSE", "compatible"),
2: ("clocks", "HSE", "frequency"),
# etc
}
and then:
def parse_row(template, map, row):
# 'template' is your parsed header dict
struct = copy.deepcopy(template)
target = struct
for index, path in map.items():
for key in path[:-1]:
target = target[key]
target[key[-1] = row[index]
Oh and yes, as an added bonus, you may want to use ast.literal_eval() to turn your values into proper python types:
>>> import ast
>>> ast.literal_eval("False")
False
>>> ast.literal_eval('["on-chip-flash"]')
['on-chip-flash']
>>> ast.literal_eval('0x8000000')
134217728
>>> ast.literal_eval('["ARM,Cortex-M4", "ARM,ARMv7-M"]')
['ARM,Cortex-M4', 'ARM,ARMv7-M']
>>> ast.literal_eval("this should fail")
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/usr/lib/python2.7/ast.py", line 49, in literal_eval
node_or_string = parse(node_or_string, mode='eval')
File "/usr/lib/python2.7/ast.py", line 37, in parse
return compile(source, filename, mode, PyCF_ONLY_AST)
File "<unknown>", line 1
this should fail
^
SyntaxError: invalid syntax
>>> def to_python(value):
... try:
... return ast.literal_eval(value)
... except Exception as e:
... return value
...
>>> to_python('["on-chip-flash"]')
['on-chip-flash']
>>> to_python('wtf')
'wtf'
>>>

Categories