Closed. This question needs details or clarity. It is not currently accepting answers.
Want to improve this question? Add details and clarify the problem by editing this post.
Closed 2 years ago.
Improve this question
I'm a beginner in programming and I'm looking for a nice idea how to generate three integers that satisfy a condition.
Example:
We are given n = 30, and we've been asked to generate three integers a, b and c, so that 7*a + 5*b + 3*c = n.
I tried to use for loops, but it takes too much time and I have a maximum testing time of 1000 ms.
I'm using Python 3.
My attempt:
x = int(input())
c = []
k = []
w = []
for i in range(x):
for j in range(x):
for h in range(x):
if 7*i + 5*j + 3*h = x:
c.append(i)
k.append(j)
w.append(h)
if len(c) == len(k) == len(w)
print(-1)
else:
print(str(k[0]) + ' ' + str(c[0]) + ' ' + str(w[0]))
First, let me note that your task is underspecified in at least two respects:
The allowed range of the generated values is not specified. In particular, you don't specify whether the results may include negative integers.
The desired distribution of the generated values is not specified.
Normally, if not specified, one might assume that a uniform distribution on the set of possible solutions to the equation was expected (since it is, in a certain sense, the most random possible distribution on a given set). But a (discrete) uniform distribution is only possible if the solution set is finite, which it won't be if the range of results is unrestricted. (In particular, if (a, b, c) is a solution, then so is (a, b + 3k, c − 5k) for any integer k.) So if we interpret the task as asking for a uniform distribution with unlimited range, it's actually impossible!
On the other hand, if we're allowed to choose any distribution and range, the task becomes trivial: just make the generator always return a = −n, b = n, c = n. Clearly this is a solution to the equation (since −7n + 5n + 3n = (−7 + 5 + 3)n = 1n), and a degenerate distribution that assigns all probability mass to single point is still a valid probability distribution!
If you wanted a slightly less degenerate solution, you could pick a random integer k (using any distribution of your choice) and return a = −n, b = n + 3k, c = n − 5k. As noted above, this is also a solution to the equation for any k. Of course, this distribution is still somewhat degenerate, since the value of a is fixed.
If you want to let all return values be at least somewhat random, you could also pick a random h and return a = −n + h, b = n − 2h + 3k and c = n + h − 5k. Again, this is guaranteed to be a valid solution for any h and k, since it clearly satisfies the equation for h = k = 0, and it's also easy to see that increasing or decreasing either h or k will leave the value of the left-hand side of the equation unchanged.
In fact, it can be proved that this method can generate all possible solutions to the equation, and that each solution will correspond to a unique (h, k) pair! (One fairly intuitive way to see this is to plot the solutions in 3D space and observe that they form a regular lattice of points on a 2D plane, and that the vectors (+1, −2, +1) and (0, +3, −5) span this lattice.) If we pick h and k from some distribution that (at least in theory) assigns a non-zero probability to every integer, then we'll have a non-zero probability of returning any valid solution. So, at least for one somewhat reasonable interpretation of the task (unbounded range, any distribution with full support) the following code should solve the task efficiently:
from random import gauss
def random_solution(n):
h = int(gauss(0, 1000)) # any distribution with full support on the integers will do
k = int(gauss(0, 1000))
return (-n + h, n - 2*h + 3*k, n + h - 5*k)
If the range of possible values is restricted, the problem becomes a bit trickier. On the positive side, if all values are bounded below (or above), then the set of possible solutions is finite, and so a uniform distribution exists on it. On the flip side, efficiently sampling this uniform distribution is not trivial.
One possible approach, which you've used yourself, is to first generate all possible solutions (assuming there's a finite number of them) and then sample from the list of solutions. We can do the solution generation fairly efficiently like this:
find all possible values of a for which the equation might have a solution,
for each such a, find all possible values of b for which there still have a solution,
for each such (a, b) pair, solve the equation for c and check if it's valid (i.e. an integer within the specified range), and
if yes, add (a, b, c) to the set of solutions.
The tricky part is step 2, where we want to calculate the range of possible b values. For this, we can make use of the observation that, for a given a, setting c to its smallest allowed value and solving the equation gives an upper bound for b (and vice versa).
In particular, solving the equation for a, b and c respectively, we get:
a = (n − 5b − 3c) / 7
b = (n − 7a − 3c) / 5
c = (n − 7a − 5b) / 3
Given lower bounds on some of the values, we can use these solutions to compute corresponding upper bounds on the others. For example, the following code will generate all non-negative solutions efficiently (and can be easily modified to use a lower bound other than 0, if needed):
def all_nonnegative_solutions(n):
a_min = b_min = c_min = 0
a_max = (n - 5*b_min - 3*c_min) // 7
for a in range(a_min, a_max + 1):
b_max = (n - 7*a - 3*c_min) // 5
for b in range(b_min, b_max + 1):
if (n - 7*a - 5*b) % 3 == 0:
c = (n - 7*a - 5*b) // 3
yield (a, b, c)
We can then store the solutions in a list or a tuple and sample from that list:
from random import choice
solutions = tuple(all_nonnegative_solutions(30))
a, b, c = choice(solutions)
Ps. Apparently Python's random.choice is not smart enough to use reservoir sampling to sample from an arbitrary iterable, so we do need to store the full list of solutions even if we only want to sample from it once. Or, of course, we could always implement our own sampler:
def reservoir_choice(iterable):
r = None
n = 0
for x in iterable:
n += 1
if randrange(n) == 0:
r = x
return r
a, b, c = reservoir_choice(all_nonnegative_solutions(30))
BTW, we could make the all_nonnegative_solutions function above a bit more efficient by observing that the (n - 7*a - 5*b) % 3 == 0 condition (which checks whether c = (n − 7a − 5b) / 3 is an integer, and thus a valid solution) is true for every third value of b. Thus, if we first calculated the smallest value of b that satisfies the condition for a given a (which can be done with a bit of modular arithmetic), we could iterate over b with a step size of 3 starting from that minimum value and skip the divisibility check entirely. I'll leave implementing that optimization as an exercise.
import numpy as np
def generate_answer(n: int, low_limit:int, high_limit: int):
while True:
a = np.random.randint(low_limit, high_limit + 1, 1)[0]
b = np.random.randint(low_limit, high_limit + 1, 1)[0]
c = (n - 7 * a - 5 * b) / 3.0
if int(c) == c and low_limit <= c <= high_limit:
break
return a, b, int(c)
if __name__ == "__main__":
n = 30
ans = generate_answer(low_limit=-5, high_limit=50, n=n)
assert ans[0] * 7 + ans[1] * 5 + ans[2] * 3 == n
print(ans)
If you select two of the numbers a, b, c, you know the third. In this case, I randomize ints for a, b, and I find c by c = (n - 7 * a - 5 * b) / 3.0.
Make sure c is an integer, and in the allowed limits, and we are done.
If it is not, randomize again.
If you want to generate all possibilities,
def generate_all_answers(n: int, low_limit:int, high_limit: int):
results = []
for a in range(low_limit, high_limit + 1):
for b in range(low_limit, high_limit + 1):
c = (n - 7 * a - 5 * b) / 3.0
if int(c) == c and low_limit <= c <= high_limit:
results.append((a, b, int(c)))
return results
If third-party libraries are allowed, you can use SymPy's diophantine.diop_linear linear Diophantine equations solver:
from sympy.solvers.diophantine.diophantine import diop_linear
from sympy import symbols
from numpy.random import randint
n = 30
N = 8 # Number of solutions needed
# Unknowns
a, b, c = symbols('a, b, c', integer=True)
# Coefficients
x, y, z = 7, 5, 3
# Parameters of parametric equation of solution
t_0, t_1 = symbols('t_0, t_1', integer=True)
solution = diop_linear(x * a + y * b + z * c - n)
if not (None in solution):
for s in range(N):
# -10000 and 10000 (max and min for t_0 and t_1)
t_sub = [(t_0, randint(-10000, 10000)), (t_1, randint(-10000, 10000))]
a_val, b_val, c_val = map(lambda t : t.subs(t_sub), solution)
print('Solution #%d' % (s + 1))
print('a =', a_val, ', b =', b_val, ', c =', c_val)
else:
print('no solutions')
Output (random):
Solution #1
a = -141 , b = -29187 , c = 48984
Solution #2
a = -8532 , b = -68757 , c = 134513
Solution #3
a = 5034 , b = 30729 , c = -62951
Solution #4
a = 7107 , b = 76638 , c = -144303
Solution #5
a = 4587 , b = 23721 , c = -50228
Solution #6
a = -9294 , b = -106269 , c = 198811
Solution #7
a = -1572 , b = -43224 , c = 75718
Solution #8
a = 4956 , b = 68097 , c = -125049
Why your solution can't cope with large values of n
You may understand that everything in a for loop with a range of i, will run i times. So it will multiply the time taken by i.
For example, let's pretend (to keep things simple) that this runs in 4 milliseconds:
if 7*a + 5*b + 3*c = n:
c.append(a)
k.append(b)
w.append(c)
then this will run in 4×n milliseconds:
for c in range(n):
if 7*a + 5*b + 3*c = n:
c.append(a)
k.append(b)
w.append(c)
Approximately:
n = 100 would take 0.4 seconds
n = 250 would take 1 second
n = 15000 would take 60 seconds
If you put that inside a for loop over a range of n then the whole thing will be repeated n times. I.e.
for b in range(n):
for c in range(n):
if 7*a + 5*b + 3*c = n:
c.append(a)
k.append(b)
w.append(c)
will take 4n² milliseconds.
n = 30 would take 4 seconds
n = 50 would take 10 seconds
n = 120 would take 60 seconds
Putting it in a third for-loop will take 4n³ milliseconds.
n = 10 would take 4 seconds
n = 14 would take 10 seconds.
n = 24 would take 60 seconds.
Now, what if you halved the original if to 2 milliseconds? n would be able to increase by 15000 in the first case... and 23 in the last case. The lesson here is that fewer for-loops is usually much more important than speeding up what's inside them. As you can see in Gulzar's answer part 2, there are only two for loops which makes a big difference. (This only applies if the loops are inside each other; if they are just one after another you don't have the multiplication problem.)
from my perspective, the last number of the three is never a random number. let say you generate a and b first then c is never a random because it should be calculated from the equation
n = 7*a + 5*b + 3*c
c = (7*a + 5*b - n) / -3
this means that we need to generate two random values (a,b)
that 7*a + 5*b - n is divisible by 3
import random
n = 30;
max = 1000000;
min = -1000000;
while True:
a = random.randint(min , max);
b = random.randint(min , max);
t = (7*a) + (5*b) - n;
if (t % 3 == 0) :
break;
c = (t/-3);
print("A = " + str(a));
print("B = " + str(b));
print("C = " + str(c));
print("7A + 5B + 3C =>")
print("(7 * " + str(a) + ") + (5 * " + str(b) + ") + (3 * " + str(c) + ") = ")
print((7*a) + (5*b) + (3*c));
REPL
I am trying to solve the arithmetic progression problem from USACO. Here is the problem statement.
An arithmetic progression is a sequence of the form a, a+b, a+2b, ..., a+nb where n=0, 1, 2, 3, ... . For this problem, a is a non-negative integer and b is a positive integer.
Write a program that finds all arithmetic progressions of length n in the set S of bisquares. The set of bisquares is defined as the set of all integers of the form p2 + q2 (where p and q are non-negative integers).
The two lines of input are n and m, which are the length of each sequence, and the upper bound to limit the search of the bi squares respectively.
I have implemented an algorithm which correctly solves the problem, yet it takes too long. With the max constraints of n = 25 and m = 250, my program does not solve the problem in the 5 second time limit.
Here is the code:
n = 25
m = 250
bisq = set()
for i in range(m+1):
for j in range(i,m+1):
bisq.add(i**2+j**2)
seq = []
for b in range(1, max(bisq)):
for a in bisq:
x = a
for i in range(n):
if x not in bisq:
break
x += b
else:
seq.append((a,b))
The program outputs the correct answer, but it takes too long. I tried running the program with the max n/m values, and after 30 seconds, it was still going.
Disclaimer: this is not a full answer. This is more of a general direction where to look for.
For each member of a sequence, you're looking for four parameters: two numbers to be squared and summed (q_i and p_i), and two differences to be used in the next step (x and y) such that
q_i**2 + p_i**2 + b = (q_i + x)**2 + (p_i + y)**2
Subject to:
0 <= q_i <= m
0 <= p_i <= m
0 <= q_i + x <= m
0 <= p_i + y <= m
There are too many unknowns so we can't get a closed form solution.
let's fix b: (still too many unknowns)
let's fix q_i, and also state that this is the first member of the sequence. I.e., let's start searching from q_1 = 0, extend as much as possible and then extract all sequences of length n. Still, there are too many unknowns.
let's fix x: we only have p_i and y to solve for. At this point, note that the range of possible values to satisfy the equation is much smaller than full range of 0..m. After some calculus, b = x*(2*q_i + x) + y*(2*p_i + y), and there are really not many values to check.
This last step prune is what distinguishes it from the full search. If you write down this condition explicitly, you can get the range of possible p_i values and from that find the length of possible sequence with step b as a function of q_i and x. Rejecting sequences smaller than n should further prune the search.
This should get you from O(m**4) complexity to ~O(m**2). It should be enough to get into the time limit.
A couple more things that might help prune the search space:
b <= 2*m*m//n
a <= 2*m*m - b*n
An answer on math.stackexchange says that for a number x to be a bisquare, any prime factor of x of the form 3 + 4k (e.g., 3, 7, 11, 19, ...) must have an even power. I think this means that for any n > 3, b has to be even. The first item in the sequence a is a bisquare, so it has an even number of factors of 3. If b is odd, then one of a+1b or a+2b will have an odd number of factors of 3 and therefore isn't a bisquare.
So I stumbled upon this thread on here with this script and it returns a negative d value and my p and q values are both prime. Any reason for this? Possibly just a faulty script?
def egcd(a, b):
x,y, u,v = 0,1, 1,0
while a != 0:
q, r = b//a, b%a
m, n = x-u*q, y-v*q
b,a, x,y, u,v = a,r, u,v, m,n
gcd = b
return gcd, x, y
def main():
p = 153143042272527868798412612417204434156935146874282990942386694020462861918068684561281763577034706600608387699148071015194725533394126069826857182428660427818277378724977554365910231524827258160904493774748749088477328204812171935987088715261127321911849092207070653272176072509933245978935455542420691737433
q = 156408916769576372285319235535320446340733908943564048157238512311891352879208957302116527435165097143521156600690562005797819820759620198602417583539668686152735534648541252847927334505648478214810780526425005943955838623325525300844493280040860604499838598837599791480284496210333200247148213274376422459183
e = 65537
ct = 313988037963374298820978547334691775209030794488153797919908078268748481143989264914905339615142922814128844328634563572589348152033399603422391976806881268233227257794938078078328711322137471700521343697410517378556947578179313088971194144321604618116160929667545497531855177496472117286033893354292910116962836092382600437895778451279347150269487601855438439995904578842465409043702035314087803621608887259671021452664437398875243519136039772309162874333619819693154364159330510837267059503793075233800618970190874388025990206963764588045741047395830966876247164745591863323438401959588889139372816750244127256609
# compute n
n = p * q
# Compute phi(n)
phi = (p - 1) * (q - 1)
# Compute modular inverse of e
gcd, a, b = egcd(e, phi)
d = a
print( "n: " + str(d) );
# Decrypt ciphertext
pt = pow(ct,d,n)
print( "pt: " + str(pt) )
if __name__ == "__main__":
main()
This can happen, I'll explain why below, but for practical purposes you'll want to know how to fix it. The answer to that is to add phi to d and use that value instead: everything will work as RSA should.
So why does it happen? The algorithm computes the extended gcd. The result of egcd is a*e + b*phi = gcd, and in the case of RSA, we have gcd = 1 so a*e + b*phi = 1.
If you look at this equation modulo phi (which is the order of the multiplicative group), then a*e == 1 mod phi which is what you need to make RSA work. In fact, by the same congruence, you can add or subtract any multiple of phi to a and the congruence still holds.
Now look at the equation again: a*e + b*phi = 1. We know e and phi are positive integers. You can't have all positive integers in this equation or else no way would it add up to 1 (it would be much larger than 1). So that means either a or b is going to be negative. Sometimes it will be a that is negative, other times it will be b. When it is b, then your a comes out as you would expect: a positive integer that you then assign to the value d. But the other times, you get a negative value for a. We don't want that, so simply add phi to it and make that your value of d.
This is for an assignment I'm doing through school. I am having trouble generating a private key. My main problem is understanding the relation of my equations to each other. To set everything up, we have:
p = 61
q = 53
n = p * q (which equals 3233)
From here we have the totient of n (phi(n)) which equals 3120, now we can choose prime e; where 1 < e < 3120
e = 17
Okay easy enough.
For my assignment we've been made aware that d = 2753, however I still need to be able to arbitrarily generate this value.
Now here is where I am having trouble. I've been perusing wikipedia to understand and somewhere something isn't connecting. I know that I need to find the modular multiplicative inverse of e (mod phi(n)) which will be d, our private exponent.
Reading though wikipedia tells us to find the mmi we need to use the Extended Euclidian Algorithm. I've implemented the algorithm in python as follows:
def egcd(a, b):
x, lastX = 0, 1
y, lastY = 1, 0
while (b != 0):
q = a // b
a, b = b, a % b
x, lastX = lastX - q * x, x
y, lastY = lastY - q * y, y
return (lastX, lastY)
This is where I am lost. To my understanding now, the equation ax + bx = gcd(a, b) = 1 is the same e*x + phi(n)*y = gcd(e, phi(n)) = 1.
So we call egcd(e, phi(n)), and now I get [-367, 2] for my x and y.
From here I honestly don't know where to go. I've read this similar question and I see that there are some substitutions that happen, but I don't understand how those number relate to the answer that I got or the values I have started out with. Can someone explain to me pragmatically what I need to do from here? (When I say pragmatically, I mean without actual code. Pseudo code is fine, but if I get actual code I won't be able to learn without plagiarism on my assignment which is a big no-no).
As always, any help is genuinely appreciated. Thanks everyone!
(And yes, I have seen these:RSA: Private key calculation with Extended Euclidean Algorithm and In RSA encryption, how do I find d, given p, q, e and c?)
The implementation of the Extended Euclidean algorithm you have is not complete, since it is generating a negative number for the private key. Use this code instead:
https://en.wikibooks.org/wiki/Algorithm_Implementation/Mathematics/Extended_Euclidean_algorithm
For your example the private key, d, is 2753.
p=61
q=53
n = 3233
phi(n)=3120
e=17
d=modinv(17,3120)=2753
Try it out:
message m m=65
encryption: m^e mod n = c (65**17) % 3120 = 65
decryption: c^d mod n = m (65**2753) % 3120 = 65
Its all explained here:
http://southernpacificreview.com/2014/01/06/rsa-key-generation-example/
def egcd(a,b):
s1, s2 = 1, 0
t1, t2 = 0, 1
while b!=0:
q = a//b
r = a%b
a, b = b, r
s = s1-q*s2
s1, s2 = s2, s
t = t1-q*t2
t1, t2 = t2, t
return (s1, t1)
try comparing above.
i will tell you where was your mistake:
a, b = b, a % b
a has the value of b now
(b=a%b)==(b=b%b)
and similar reason for proceeding two lines