I want to turn a DataFrame (or a numpy array):
df1:
0 1 2
0 1. 5. 9.
1 2. 6. 10.
2 3. 7. 11.
3 4. 8. 12.
into a DataFrame like this:
df1
0 1 2 3 4 5 6
0 NaN NaN NaN NaN NaN NaN NaN
1 NaN 1. NaN 5. NaN 9. NaN
2 NaN NaN NaN NaN NaN NaN NaN
3 NaN 2. NaN 6. NaN 10. NaN
4 NaN NaN NaN NaN NaN NaN NaN
5 NaN 3. NaN 7. NaN 11. NaN
6 NaN NaN NaN NaN NaN NaN NaN
7 NaN 4. NaN 8. NaN 12. NaN
8 NaN NaN NaN NaN NaN NaN NaN
, i.e., I want to insert NaN rows and columns on df1 (as many as I want)
Could you make this work even for a large DataFrame, where you cannot do this manually?
So far, I have this:
import numpy as np
import pandas as pd
p = np.arange(1,13).reshape(4,3)
p1 = pd.DataFrame(p)
#Add a row of NaN's on p1
p1.index = range(1, 2*len(p1)+1, 2)
p1 = p1.reindex(index=range(2*len(p1)))
#Repeat for rows...I know its a lil bit st*pid
p1 = pd.DataFrame(p1)
p1.index = range(1, 2*len(p1)+1, 2)
p1 = p1.reindex(index=range(2*len(p1)))
#etc...
p1 = pd.DataFrame(p1)
p1.index = range(1, 2*len(p1)+1, 2)
p1 = p1.reindex(index=range(2*len(p1)))
It seems to work, but only for rows until now...
e.g., see this
Based on this answer you can interleave two dataframes on a particular axis.
pd.concat([df1, df2]).sort_index().reset_index(drop=True)
You can start by interleaving by rows (axis=0) df1 with a dataframe containing nan values. And do the same on the columns (axis=1) with another dataframe of nan values.
df1 = pd.DataFrame([[1., 5., 9.], [2., 6., 10.], [3., 7., 11.], [4., 8., 12.]])
rows, cols = df1.shape
Tricky part is getting the sizes right:
nan1 = pd.DataFrame([[np.nan]*cols]*(rows+1))
nan2 = pd.DataFrame([[np.nan]*(cols + 1)]*(2*rows + 1))
Then perform two consecutives concatenations, on axis=0 (default one) and axis=1:
df2_r = pd.concat([nan1, df1]).sort_index().reset_index(drop=True)
df2 = pd.concat([nan2, df2_r], axis=1).sort_index(axis=1).T.reset_index(drop=True).T
Edit: it seems there's is no built-in method to reset the columns indexing. However this will do:
df.T.reset_index(drop=True).T
Here are the results for each operation:
df1
0 1 2
0 1.0 5.0 9.0
1 2.0 6.0 10.0
2 3.0 7.0 11.0
3 4.0 8.0 12.0
nan1
0 1 2
0 NaN NaN NaN
1 NaN NaN NaN
2 NaN NaN NaN
3 NaN NaN NaN
4 NaN NaN NaN
concat on axis=0
0 1 2
0 NaN NaN NaN
1 1.0 5.0 9.0
2 NaN NaN NaN
3 2.0 6.0 10.0
4 NaN NaN NaN
5 3.0 7.0 11.0
6 NaN NaN NaN
7 4.0 8.0 12.0
8 NaN NaN NaN
nan2
0 1 2 3
0 NaN NaN NaN NaN
1 NaN NaN NaN NaN
2 NaN NaN NaN NaN
3 NaN NaN NaN NaN
4 NaN NaN NaN NaN
5 NaN NaN NaN NaN
6 NaN NaN NaN NaN
7 NaN NaN NaN NaN
8 NaN NaN NaN NaN
concat on axis=1
0 1 2 3 4 5 6
0 NaN NaN NaN NaN NaN NaN NaN
1 NaN 1.0 NaN 5.0 NaN 9.0 NaN
2 NaN NaN NaN NaN NaN NaN NaN
3 NaN 2.0 NaN 6.0 NaN 10.0 NaN
4 NaN NaN NaN NaN NaN NaN NaN
5 NaN 3.0 NaN 7.0 NaN 11.0 NaN
6 NaN NaN NaN NaN NaN NaN NaN
7 NaN 4.0 NaN 8.0 NaN 12.0 NaN
8 NaN NaN NaN NaN NaN NaN NaN
I am curious to see what you have tried so far, but here is an easy "quick and dirty" way to do it for your example. This is not a definitive answer: I'll let you figure out how to generalize it to any dataframe sizes/content you might have.
I am providing this code for your example so you have an idea which pandas functions/properties to use.
import pandas as pd
import numpy as np
# Making your base DataFrame
df = pd.DataFrame([[1,5,9], [2,6,8], [3,7,4]])
df:
0 1 2
0 1 5 9
1 2 6 8
2 3 7 4
spacing out your columns existing columns numbers and adding filling the left columns numbers with NaN:
df.columns = [1,3,5]
for i in range(0, 8, 2):
df[i] = np.NaN
df:
1 3 5 0 2 4 6
0 1 5 9 NaN NaN NaN NaN
1 2 6 8 NaN NaN NaN NaN
2 3 7 4 NaN NaN NaN NaN
Now adding extra rows, with NaN data (we need 4 more with 7 columns)
df2 = pd.DataFrame([[np.NaN] * 7] * 4)
df = pd.concat([df, df2])
df3:
0 1 2 3 4 5 6
0 NaN 1.0 NaN 5.0 NaN 9.0 NaN
1 NaN 2.0 NaN 6.0 NaN 8.0 NaN
2 NaN 3.0 NaN 7.0 NaN 4.0 NaN
0 NaN NaN NaN NaN NaN NaN NaN
1 NaN NaN NaN NaN NaN NaN NaN
2 NaN NaN NaN NaN NaN NaN NaN
3 NaN NaN NaN NaN NaN NaN NaN
As you can see: we have the right data, and it is now only a matter of ordering your rows.
df3.index = [1,3,5,0,2,4,6]
df3 = df3.sort_index()
df3:
0 1 2 3 4 5 6
0 NaN NaN NaN NaN NaN NaN NaN
1 NaN 1.0 NaN 5.0 NaN 9.0 NaN
2 NaN NaN NaN NaN NaN NaN NaN
3 NaN 2.0 NaN 6.0 NaN 8.0 NaN
4 NaN NaN NaN NaN NaN NaN NaN
5 NaN 3.0 NaN 7.0 NaN 4.0 NaN
6 NaN NaN NaN NaN NaN NaN NaN
I think this is a very elegant way to solve this.
array=np.array([[1,5,9],[2,6,10],[3,7,11],[4,8,12]])
Data=pd.DataFrame(array)
Data.index=Data.index*2+1
Data.columns=Data.columns*2+1
Data=Data.reindex(list(range(0,9)))
Data=Data.T.reindex(list(range(0,9)))
A fast way using numpy (work with dataframe as well):
# Sample data
a = np.arange(1,13).reshape(4,3)
df = pd.DataFrame(a)
# New data with empty values
a2 = np.empty([i*2+1 for i in a.shape])
a2[:] = np.nan
a2[1::2, 1::2] = a
Output of pd.DataFrame(a2):
0 1 2 3 4 5 6
0 NaN NaN NaN NaN NaN NaN NaN
1 NaN 1.0 NaN 2.0 NaN 3.0 NaN
2 NaN NaN NaN NaN NaN NaN NaN
3 NaN 4.0 NaN 5.0 NaN 6.0 NaN
4 NaN NaN NaN NaN NaN NaN NaN
5 NaN 7.0 NaN 8.0 NaN 9.0 NaN
6 NaN NaN NaN NaN NaN NaN NaN
7 NaN 10.0 NaN 11.0 NaN 12.0 NaN
8 NaN NaN NaN NaN NaN NaN NaN
Note: If you have a DataFrame, just replace a.shape by df.shape, and a by df.values.
I want to turn my dataframe with non-distinct values underneath each column header into a dataframe with distinct values underneath each column header with next to it their occurrence in their particular column. An example:
My initial dataframe is visible underneath:
A B C D
0 CEN T2 56
2 DECEN T2 45
3 ONBEK T2 84
NaN CEN T1 59
3 NaN T1 87
NaN NaN T2 NaN
0 NaN NaN 98
NaN CEN NaN 23
NaN CEN T1 65
where A, B, C and D are the column headers with each 9 values underneath it (blanks included).
My preferred output dataframe should look like: (first a column of unique values for each column in the original dataframe and next to it their occurrence in that particular column)
A B C D A B C D
0 CEN T2 56 2 4 4 1
2 DECEN T1 45 1 1 3 1
3 ONBEK NaN 84 2 1 NaN 1
Nan NaN NaN 59 NaN NaN NaN 1
NaN NaN NaN 87 NaN NaN NaN 1
NaN NaN NaN 98 NaN NaN NaN 1
NaN NaN NaN 23 NaN NaN NaN 1
NaN NaN NaN 65 NaN NaN NaN 1
where A, B, C and D are the column headers with underneath them first the distinct values for each column from the original .csv-file and next to it the occurence of each element in their particular column.
Anybody ideas?
The code below is used to get the unique values out of each column into a new dataframe. I tried to do something with .value_counts to get the occurrence in each column but there I failed to get it into one dataframe again with the unique values..
df
new_df=pd.concat([pd.Series(df[i].unique()) for i in df.columns], axis=1)
new_df.columns=df.columns
new_df
The difficult part is keeping values of columns in each row aligned. To do this, you need to construct a new dataframe from unique, and pd.concat on with value_counts map to each column of this new dataframe.
new_df = (pd.DataFrame([df[c].unique() for c in df], index=df.columns).T
.dropna(how='all'))
df_final = pd.concat([new_df, *[new_df[c].map(df[c].value_counts()).rename(f'{c}_Count')
for c in df]], axis=1).reset_index(drop=True)
Out[1580]:
A B C D A_Count B_Count C_Count D_Count
0 0 CEN T2 56 2.0 4.0 4.0 1
1 2 DECEN T1 45 1.0 1.0 3.0 1
2 3 ONBEK NaN 84 2.0 1.0 NaN 1
3 NaN NaN NaN 59 NaN NaN NaN 1
4 NaN NaN NaN 87 NaN NaN NaN 1
5 NaN NaN NaN 98 NaN NaN NaN 1
6 NaN NaN NaN 23 NaN NaN NaN 1
7 NaN NaN NaN 65 NaN NaN NaN 1
If you only need to keep alignment between each pair of column and its count such as A - A_Count, B - B_Count..., it simply just use value_counts with reset_index some commands to change axis names
cols = df.columns.tolist() + (df.columns + '_Count').tolist()
new_df = pd.concat([df[col].value_counts(sort=False).rename_axis(col).reset_index(name=f'{col}_Count')
for col in df], axis=1).reindex(new_cols, axis=1)
Out[1501]:
A B C D A_Count B_Count C_Count D_Count
0 0.0 ONBEK T2 56.0 2.0 1.0 4.0 1
1 2.0 CEN T1 45.0 1.0 4.0 3.0 1
2 3.0 DECEN NaN 84.0 2.0 1.0 NaN 1
3 NaN NaN NaN 59.0 NaN NaN NaN 1
4 NaN NaN NaN 87.0 NaN NaN NaN 1
5 NaN NaN NaN 98.0 NaN NaN NaN 1
6 NaN NaN NaN 23.0 NaN NaN NaN 1
7 NaN NaN NaN 65.0 NaN NaN NaN 1
Here is what I have tried and what error I received:
>>> import pandas as pd
>>> df = pd.DataFrame({"A":[1,2,3,4,5],"B":[5,4,3,2,1],"C":[0,0,0,0,0],"D":[1,1,1,1,1]})
>>> df
A B C D
0 1 5 0 1
1 2 4 0 1
2 3 3 0 1
3 4 2 0 1
4 5 1 0 1
>>> import pandas as pd
>>> df = pd.DataFrame({"A":[1,2,3,4,5],"B":[5,4,3,2,1],"C":[0,0,0,0,0],"D":[1,1,1,1,1]})
>>> first = [2,2,2,2,2,2,2,2,2,2,2,2]
>>> first = pd.DataFrame(first).T
>>> first.index = [2]
>>> df = df.join(first)
>>> df
A B C D 0 1 2 3 4 5 6 7 8 9 10 11
0 1 5 0 1 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
1 2 4 0 1 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
2 3 3 0 1 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0
3 4 2 0 1 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
4 5 1 0 1 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
>>> second = [3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3]
>>> second = pd.DataFrame(second).T
>>> second.index = [1]
>>> df = df.join(second)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "C:\Python35\lib\site-packages\pandas\core\frame.py", line 6815, in join
rsuffix=rsuffix, sort=sort)
File "C:\Python35\lib\site-packages\pandas\core\frame.py", line 6830, in _join_compat
suffixes=(lsuffix, rsuffix), sort=sort)
File "C:\Python35\lib\site-packages\pandas\core\reshape\merge.py", line 48, in merge
return op.get_result()
File "C:\Python35\lib\site-packages\pandas\core\reshape\merge.py", line 552, in get_result
rdata.items, rsuf)
File "C:\Python35\lib\site-packages\pandas\core\internals\managers.py", line 1972, in items_overlap_with_suffix
'{rename}'.format(rename=to_rename))
ValueError: columns overlap but no suffix specified: Index([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11], dtype='object')
I am trying to create new list with the extra columns which I have to add at specific indexes of the main dataframe df.
When i tried the first it worked and you can see the output. But when I tried the same way with second I received the above mentioned error.
Kindly, let me know what I can do in this situation and achieve the goal I am expecting.
Use DataFrame.combine_first instead join if need assign to same columns created before, last DataFrame.reindex by list of columns for expected ordering:
df = pd.DataFrame({"A":[1,2,3,4,5],"B":[5,4,3,2,1],"C":[0,0,0,0,0],"D":[1,1,1,1,1]})
orig = df.columns.tolist()
first = [2,2,2,2,2,2,2,2,2,2,2,2]
first = pd.DataFrame(first).T
first.index = [2]
df = df.combine_first(first)
second = [3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3]
second = pd.DataFrame(second).T
second.index = [1]
df = df.combine_first(second)
df = df.reindex(orig + first.columns.tolist(), axis=1)
print (df)
A B C D 0 1 2 3 4 5 6 7 8 9 10 11
0 1 5 0 1 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
1 2 4 0 1 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0
2 3 3 0 1 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0
3 4 2 0 1 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
4 5 1 0 1 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
Yes this is expected behaviour because join works much like an SQL join, meaning that it will join on the provided index and concatenate all the columns together. The problem arises from the fact that pandas does not accept two columns to have the same name. Hence, if you have 2 columns in each dataframe with the same name, it will first look for a suffix to add to those columns to avoid name clashes. This is controlled with the lsuffix and rsuffix arguments in the join method.
Conclusion: 2 ways to solve this:
Either provide a suffix so that pandas is able to resolve the name clashes; or
Make sure that you don't have overlapping columns
You have to specify the suffixes since the column names are the same. Assuming you are trying to add the second values as new columns horizontally:
df = df.join(second, lsuffix='first', rsuffix='second')
A B C D 0first 1first 2first 3first 4first 5first ... 10second 11second 12 13 14 15 16 17 18 19
0 1 5 0 1 NaN NaN NaN NaN NaN NaN ... NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
1 2 4 0 1 NaN NaN NaN NaN NaN NaN ... 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0
2 3 3 0 1 2.0 2.0 2.0 2.0 2.0 2.0 ... NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
3 4 2 0 1 NaN NaN NaN NaN NaN NaN ... NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
4 5 1 0 1 NaN NaN NaN NaN NaN NaN ... NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
I have a long list of columns and I want to subtract the previous column from the current column and replace the current column with the difference.
So if I have:
A B C D
1 NaN 3 7
3 NaN 8 10
2 NaN 6 11
I want the output to be:
A B C D
1 NaN 2 4
3 NaN 5 2
2 NaN 4 5
I have been trying to use this code:
df2 = df1.diff(axis=1)
but this does not produce the desired output
Thanks in advance.
You can do this with df.where and then update to bring back the first non-null entry for each row of your DataFrame.
Sample Data: df
A B C D
0 1.0 NaN 3.0 7.0
1 1.0 4.0 5.0 9.0
2 NaN 4.0 NaN 4.0
3 NaN 4.0 NaN NaN
4 NaN NaN 3.0 7.0
5 3.0 NaN NaN 7.0
6 6.0 NaN NaN NaN
Code:
df_d = df.where(df.isnull(),
df.fillna(method='ffill', axis=1).diff(axis=1))
df_d.update(df.where(df.notnull().cumsum(1).cumsum(1) == 1))
Output: df_d
A B C D
0 1.0 NaN 2.0 4.0
1 1.0 3.0 1.0 4.0
2 NaN 4.0 NaN 0.0
3 NaN 4.0 NaN NaN
4 NaN NaN 3.0 4.0
5 3.0 NaN NaN 4.0
6 6.0 NaN NaN NaN
Actually, it is producing the desired result but you are trying to calculate diff on nan values which will be nan so diff is working as expected.
For your case just fetch the first column from original dataframe and you should be fine
df2=df1.diff(axis=1)
df2.A=df1.A
print(df2)
Output
A B C D
1 NaN 2.0 4.0
I'm preparing data for machine learning where data is in pandas DataFrame which looks like this:
Column v1 v2
first 1 2
second 3 4
third 5 6
now i want to transform it into:
Column v1 v2 first-v1 first-v2 second-v1 econd-v2 third-v1 third-v2
first 1 2 1 2 Nan Nan Nan Nan
second 3 4 Nan Nan 3 4 Nan Nan
third 5 6 Nan Nan Nan Nan 5 6
what i've tried is to do something like this:
# we know how many values there are but
# length can be changed into length of [1, 2, 3, ...] values
values = ['v1', 'v2']
# data with description from above is saved in data
for value in values:
data[ str(data['Column'] + '-' + value)] = data[ value]
Results are a columns with name:
['first-v1' 'second-v1'..], ['first-v2' 'second-v2'..]
where there are correct values. What i'm doing wrong? Is there a more optimal way to do this because my data is big?
Thank you for your time!
You can use unstack with swaping and sorting MultiIndex in columns:
df = data.set_index('Column', append=True)[values].unstack()
.swaplevel(0,1, axis=1).sort_index(1)
df.columns = df.columns.map('-'.join)
print (df)
first-v1 first-v2 second-v1 second-v2 third-v1 third-v2
0 1.0 2.0 NaN NaN NaN NaN
1 NaN NaN 3.0 4.0 NaN NaN
2 NaN NaN NaN NaN 5.0 6.0
Or stack + unstack:
df = data.set_index('Column', append=True).stack().unstack([1,2])
df.columns = df.columns.map('-'.join)
print (df)
first-v1 first-v2 second-v1 second-v2 third-v1 third-v2
0 1.0 2.0 NaN NaN NaN NaN
1 NaN NaN 3.0 4.0 NaN NaN
2 NaN NaN NaN NaN 5.0 6.0
Last join to original:
df = data.join(df)
print (df)
Column v1 v2 first-v1 first-v2 second-v1 second-v2 third-v1 \
0 first 1 2 1.0 2.0 NaN NaN NaN
1 second 3 4 NaN NaN 3.0 4.0 NaN
2 third 5 6 NaN NaN NaN NaN 5.0
third-v2
0 NaN
1 NaN
2 6.0