I have a sample JSON file:
"client_info": [
{
"Id": "00201",
"Information": {
"Name": "John",
"Age": 12
},
"Address": [
{
"country": USA,
"location": [
{
"ad1": "NY"
},
{
"ad1": "FL"
},
]
}
]
},
{
"Id": "00202",
"Information": {
"Name": "John",
"Age": 13
},
"Address": [
{
"country": CA,
"location": [
{
"ad1": "NY"
},
{
"ad1": "FL"
},
]
}
]
},
{
"Id": "00203",
"Information": {
"Name": "John",
"Age": 13
},
"Address": [
{
"country": CA,
"location": [
{
"ad1": "NY"
}
]
}
]
}
]
Here I need to compare Information.Name ,Location.ad1 together for each entry. For example: ID 00201 - John, NY, FL is equal with ID 00202 but ID 00203 is different as it has only "ad1": "NY" . Basically need to compare as a set.
I can create the CSV file but my problem is to make that matched result set. I tried the below code to create matched result set but wasnot able to populate the set correcrtly:
uniqueNameSet = set()
uniquelocationSet = set()
for i,client in enumerate(json_data["client_info"]):
if client["Information"]['Name'] not in uniqueNameSet :
uniqueNameSet.add(client["Information"]['Name'])
else:
for j in range(len(client["Address"][0]['location'])):
if client["Address"][0]['location'][j]['ad1'] not in uniquelocationSet :
uniquelocationSet.add(client["Address"][0]['location'][j]['ad1'])
else:
duplictae +=1
I want to generate a CSV for the matched data and removed those from the JSON file.
matched.csv
id Name ad1
00201 John NY,FL
00202 John NY,FL
updated Json file:
"client_info": [
{
"Id": "00203",
"Information": {
"Name": "John",
"Age": 13
},
"Address": [
{
"country": CA,
"location": [
{
"ad1": "NY"
}
]
}
]
}
]
Related
Lets say we have a json object in Python:
myJson = [
{
"id": "123",
"name": "alex",
"meta": {
"city": "boston"
}
},
{
"id": "234",
"name": "mike",
"meta": {
"city": "seattle"
}
},
{
"id": "345",
"name": "jess",
"meta": {
"city": "boston"
}
}
]
What is the most efficient way to group this data by city, so that we end up with a json in which we group the data by city such that we end up with a json as:
myNewJson = [
{
"city": "boston",
"people": [ ... ... ]
},
{
"city": "seattle",
"people": [ ... ]
}
]
... in which the content of the people are included in "people" key.
Thanks!
Try:
myJson = [
{"id": "123", "name": "alex", "meta": {"city": "boston"}},
{"id": "234", "name": "mike", "meta": {"city": "seattle"}},
{"id": "345", "name": "jess", "meta": {"city": "boston"}},
]
out = {}
for d in myJson:
out.setdefault(d["meta"]["city"], []).append(d["name"])
out = [{"city": k, "people": v} for k, v in out.items()]
print(out)
Prints:
[
{"city": "boston", "people": ["alex", "jess"]},
{"city": "seattle", "people": ["mike"]},
]
Seems like a dictionary could work. Use city names as the keys, and a list as the value. Then at the end, go through the dictionary and convert it to a list.
myJson = [
{
"id": "123",
"name": "alex",
"meta": {
"city": "boston"
}
},
{
"id": "234",
"name": "mike",
"meta": {
"city": "seattle"
}
},
{
"id": "345",
"name": "jess",
"meta": {
"city": "boston"
}
}
]
d = dict() # dictionary of {city: list of people}
for e in myJson:
city = e['meta']['city']
if city not in d:
d[city] = list()
d[city].append(e['name'])
# convert dictionary to list of json
result = list()
for key, val in d.items():
result.append({'city': key, 'people': val})
print(result)
I am new to python and now want to convert a csv file into json file. Basically the json file is nested with dynamic structure, the structure will be defined using the csv header.
From csv input:
ID, Name, person_id/id_type, person_id/id_value,person_id_expiry_date,additional_info/0/name,additional_info/0/value,additional_info/1/name,additional_info/1/value,salary_info/details/0/grade,salary_info/details/0/payment,salary_info/details/0/amount,salary_info/details/1/next_promotion
1,Peter,PASSPORT,A452817,1-01-2055,Age,19,Gender,M,Manager,Monthly,8956.23,unknown
2,Jane,PASSPORT,B859804,2-01-2035,Age,38,Gender,F,Worker, Monthly,125980.1,unknown
To json output:
[
{
"ID": 1,
"Name": "Peter",
"person_id": {
"id_type": "PASSPORT",
"id_value": "A452817"
},
"person_id_expiry_date": "1-01-2055",
"additional_info": [
{
"name": "Age",
"value": 19
},
{
"name": "Gender",
"value": "M"
}
],
"salary_info": {
"details": [
{
"grade": "Manager",
"payment": "Monthly",
"amount": 8956.23
},
{
"next_promotion": "unknown"
}
]
}
},
{
"ID": 2,
"Name": "Jane",
"person_id": {
"id_type": "PASSPORT",
"id_value": "B859804"
},
"person_id_expiry_date": "2-01-2035",
"additional_info": [
{
"name": "Age",
"value": 38
},
{
"name": "Gender",
"value": "F"
}
],
"salary_info": {
"details": [
{
"grade": "Worker",
"payment": " Monthly",
"amount": 125980.1
},
{
"next_promotion": "unknown"
}
]
}
}
]
Is this something can be done by the existing pandas API or I have to write lots of complex codes to dynamically construct the json object? Thanks.
Goal: To create a script that will take in nested JSON object as input and output a CSV file with all keys as rows in the CSV?
Example:
{
"Document": {
"DocumentType": 945,
"Version": "V007",
"ClientCode": "WI",
"Shipment": [
{
"ShipmentHeader": {
"ShipmentID": 123456789,
"OrderChannel": "Shopify",
"CustomerNumber": 234234,
"VendorID": "2343SDF",
"ShipViaCode": "FEDX2D",
"AsnDate": "2018-01-27",
"AsnTime": "09:30:47-08:00",
"ShipmentDate": "2018-01-23",
"ShipmentTime": "09:30:47-08:00",
"MBOL": 12345678901234568,
"BOL": 12345678901234566,
"ShippingNumber": "1ZTESTTEST",
"LoadID": 321456987,
"ShipmentWeight": 10,
"ShipmentCost": 2.3,
"CartonsTotal": 2,
"CartonPackagingCode": "CTN25",
"OrdersTotal": 2
},
"References": [
{
"Reference": {
"ReferenceQualifier": "TST",
"ReferenceText": "Testing text"
}
}
],
"Addresses": {
"Address": [
{
"AddressLocationQualifier": "ST",
"LocationNumber": 23234234,
"Name": "John Smith",
"Address1": "123 Main St",
"Address2": "Suite 12",
"City": "Hometown",
"State": "WA",
"Zip": 92345,
"Country": "USA"
},
{
"AddressLocationQualifier": "BT",
"LocationNumber": 2342342,
"Name": "Jane Smith",
"Address1": "345 Second Ave",
"Address2": "Building 32",
"City": "Sometown",
"State": "CA",
"Zip": "23665-0987",
"Country": "USA"
}
]
},
"Orders": {
"Order": [
{
"OrderHeader": {
"PurchaseOrderNumber": 23456342,
"RetailerPurchaseOrderNumber": 234234234,
"RetailerOrderNumber": 23423423,
"CustomerOrderNumber": 234234234,
"Department": 3333,
"Division": 23423,
"OrderWeight": 10.23,
"CartonsTotal": 2,
"QTYOrdered": 12,
"QTYShipped": 23
},
"Cartons": {
"Carton": [
{
"SSCC18": 12345678901234567000,
"TrackingNumber": "1ZTESTTESTTEST",
"CartonContentsQty": 10,
"CartonWeight": 10.23,
"LineItems": {
"LineItem": [
{
"LineNumber": 1,
"ItemNumber": 1234567890,
"UPC": 9876543212,
"QTYOrdered": 34,
"QTYShipped": 32,
"QTYUOM": "EA",
"Description": "Shoes",
"Style": "Tall",
"Size": 9.5,
"Color": "Bllack",
"RetailerItemNumber": 2342333,
"OuterPack": 10
},
{
"LineNumber": 2,
"ItemNumber": 987654321,
"UPC": 7654324567,
"QTYOrdered": 12,
"QTYShipped": 23,
"QTYUOM": "EA",
"Description": "Sunglasses",
"Style": "Short",
"Size": 10,
"Color": "White",
"RetailerItemNumber": 565465456,
"OuterPack": 12
}
]
}
}
]
}
}
]
}
}
]
}
}
In the above JSON Object, I want all the keys (nested included) in a List (Duplicates can be removed by using a set Data Structure). If Nested Key Occurs like in actual JSON they can be keys multiple times in the CSV !
I personally feel that recursion is a perfect application for this type of problem if the amount of nests you will encounter is unpredictable. Here I have written an example in Python of how you can utilise recursion to extract all keys. Cheers.
import json
row = ""
def extract_keys(data):
global row
if isinstance(data, dict):
for key, value in data.items():
row += key + "\n"
extract_keys(value)
elif isinstance(data, list):
for element in data:
extract_keys(element)
# MAIN
with open("input.json", "r") as rfile:
dicts = json.load(rfile)
extract_keys(dicts)
with open("output.csv", "w") as wfile:
wfile.write(row)
I have a json file where I need to read it in a structured way to insert in a database each value in its respective column, but in the tag "customFields" the fields change index, example: "Tribe / Customer" can be index 0 (row['customFields'][0]) in a json block, and in the other one be index 3 (row['customFields'][3]), so I tried to read the data using the name of the row field ['customFields'] ['Tribe / Customer'], but I got the error below:
TypeError: list indices must be integers or slices, not str
Script:
def getCustomField(ModelData):
for row in ModelData["data"]["squads"][0]["cards"]:
print(row['identifier'],
row['customFields']['Tribe / Customer'],
row['customFields']['Stopped with'],
row['customFields']['Sub-Activity'],
row['customFields']['Activity'],
row['customFields']['Complexity'],
row['customFields']['Effort'])
if __name__ == "__main__":
f = open('test.json')
json_file = json.load(f)
getCustomField(json_file)
JSON:
{
"data": {
"squads": [
{
"name": "TESTE",
"cards": [
{
"identifier": "0102",
"title": "TESTE",
"description": " TESTE ",
"status": "on_track",
"priority": null,
"assignees": [
{
"fullname": "TESTE",
"email": "TESTE"
}
],
"createdAt": "2020-04-16T15:00:31-03:00",
"secondaryLabel": null,
"primaryLabels": [
"TESTE",
"TESTE"
],
"swimlane": "TESTE",
"workstate": "Active",
"customFields": [
{
"name": "Tribe / Customer",
"value": "TESTE 1"
},
{
"name": "Checkpoint",
"value": "GNN"
},
{
"name": "Stopped with",
"value": null
},
{
"name": "Sub-Activity",
"value": "DEPLOY"
},
{
"name": "Activity",
"value": "TOOL"
},
{
"name": "Complexity",
"value": "HIGH"
},
{
"name": "Effort",
"value": "20"
}
]
},
{
"identifier": "0103",
"title": "TESTE",
"description": " TESTE ",
"status": "on_track",
"priority": null,
"assignees": [
{
"fullname": "TESTE",
"email": "TESTE"
}
],
"createdAt": "2020-04-16T15:00:31-03:00",
"secondaryLabel": null,
"primaryLabels": [
"TESTE",
"TESTE"
],
"swimlane": "TESTE",
"workstate": "Active",
"customFields": [
{
"name": "Tribe / Customer",
"value": "TESTE 1"
},
{
"name": "Stopped with",
"value": null
},
{
"name": "Checkpoint",
"value": "GNN"
},
{
"name": "Sub-Activity",
"value": "DEPLOY"
},
{
"name": "Activity",
"value": "TOOL"
},
{
"name": "Complexity",
"value": "HIGH"
},
{
"name": "Effort",
"value": "20"
}
]
}
]
}
]
}
}
You'll have to parse the list of custom fields into something you can access by name. Since you're accessing multiple entries from the same list, a dictionary is the most appropriate choice.
for row in ModelData["data"]["squads"][0]["cards"]:
custom_fields_dict = {field['name']: field['value'] for field in row['customFields']}
print(row['identifier'],
custom_fields_dict['Tribe / Customer'],
...
)
If you only wanted a single field you could traverse the list looking for a match, but it would be less efficient to do that repeatedly.
I'm skipping over dealing with missing fields - you'd probably want to use get('Tribe / Customer', some_reasonable_default) if there's any possibility of the field not being present in the json list.
I have a csv file with 4 columns data as below.
type,MetalType,Date,Acknowledge
Metal,abc123451,2018-05-26,Success
Metal,abc123452,2018-05-27,Success
Metal,abc123454,2018-05-28,Failure
Iron,abc123455,2018-05-29,Success
Iron,abc123456,2018-05-30,Failure
( I just provided header in the above example data but in my case i dont have header in the data)
how can i convert above csv file to Json in the below format...
1st Column : belongs to --> "type": "Metal"
2nd Column : MetalType: "values" : "value": "abc123451"
3rd column : "Date": "values":"value": "2018-05-26"
4th Column : "Acknowledge": "values":"value": "Success"
and remaining all columns are default values.
As per below format ,
{
"entities": [
{
"id": "XXXXXXX",
"type": "Metal",
"data": {
"attributes": {
"MetalType": {
"values": [
{
"source": "XYZ",
"locale": "Australia",
"value": "abc123451"
}
]
},
"Date": {
"values": [
{
"source": "XYZ",
"locale": "Australia",
"value": "2018-05-26"
}
]
},
"Acknowledge": {
"values": [
{
"source": "XYZ",
"locale": "Australia",
"value": "Success"
}
]
}
}
}
}
]
}
Even though jww is right, I built something for you:
I import the csv using pandas:
df = pd.read_csv('data.csv')
then I create a template for the dictionaries you want to add:
d_json = {"entities": []}
template = {
"id": "XXXXXXX",
"type": "",
"data": {
"attributes": {
"MetalType": {
"values": [
{
"source": "XYZ",
"locale": "Australia",
"value": ""
}
]
},
"Date": {
"values": [
{
"source": "XYZ",
"locale": "Australia",
"value": ""
}
]
},
"Acknowledge": {
"values": [
{
"source": "XYZ",
"locale": "Australia",
"value": ""
}
]
}
}
}
}
Now you just need to fill in the dictionary:
for i in range(len(df)):
d = template
d['type'] = df['type'][i]
d['data']['attributes']['MetalType']['values'][0]['value'] = df['MetalType'][i]
d['data']['attributes']['Date']['values'][0]['value'] = df['Date'][i]
d['data']['attributes']['Acknowledge']['values'][0]['value'] = df['Acknowledge'][i]
d_json['entities'].append(d)
I know my way of iterating over the df is kind of ugly, maybe someone knows a cleaner way.
Cheers!