I have some data in the following format, thousands of rows.
I want to transpose the data and also change the format to 1 and 0's
Name Codes
Dave DSFFS
Dave SDFDF
stu SDFDS
stu DSGDSG
I want to retain the Name column in row format, but have the codes column go into Column format instead and have 1 and 0's
u can use df.transpose() in pandas!
pd.get_dummies() should help here.
df = pd.DataFrame({'Name': ['Dave','Dave','stu','stu'],
'Codes': ['DSFFS','SDFDF','SDFDS','DSGDSG']})
print(df)
Codes Name
0 DSFFS Dave
1 SDFDF Dave
2 SDFDS stu
3 DSGDSG stu
print(pd.get_dummies(df, columns=['Codes']))
Name Codes_DSFFS Codes_DSGDSG Codes_SDFDF Codes_SDFDS
0 Dave 1 0 0 0
1 Dave 0 0 1 0
2 stu 0 0 0 1
3 stu 0 1 0 0
Related
I am working on IPL dataset which has many categorical variables one such variable is toss_winner. I have created dummy variable for this and now I have 15 columns with binary values. I want to merge all these column into single column with numbers 0-14 each number representing IPL team.
IIUC, Use:
df['Team No.'] = dummies.cumsum(axis=1).ne(1).sum(axis=1)
Example,
df = pd.DataFrame({'Toss winner': ['Chennai', 'Mumbai', 'Rajasthan', 'Banglore', 'Hyderabad']})
dummies = pd.get_dummies(df['Toss winner'])
df['Team No.'] = dummies.cumsum(axis=1).ne(1).sum(axis=1)
Result:
# print(dummies)
Banglore Chennai Hyderabad Mumbai Rajasthan
0 0 1 0 0 0
1 0 0 0 1 0
2 0 0 0 0 1
3 1 0 0 0 0
4 0 0 1 0 0
# print (df)
Toss winner Team No.
0 Chennai 1
1 Mumbai 3
2 Rajasthan 4
3 Banglore 0
4 Hyderabad 2
I have a data frame (df) in Python with 4 columns (ID, Status, Person, Output). Each ID is repeated 6 times and the Output is the same for each ID. For each ID, the Status will be On/Off (3 of each).
I need to generate a new column with a list of people for each unique ID/Status combination. I also need a second new column with a group ID for each unique list of people.
This is my current code which works but is very slow when working with a large data frame due to the apply(list) function. Is there a more efficient way to do this?
people = df.groupby(['ID','Status'])['Person'].apply(list).reset_index(name='Names_ID')
people['Group_ID'] = people['Names_ID'].rank(method='dense')
df = df.drop_duplicates(subset=['ID','Status'])
df = df.merge(people, on = ('ID', 'Status'))
Here is an example input data frame:
df=
ID Status Person Output
0 On John 1
0 On Mark 1
0 On Michael 1
0 Off Peter 1
0 Off Tim 1
0 Off Jake 1
1 On Peter 0.5
1 On Dennis 0.5
1 On Jasper 0.5
1 Off John 0.5
1 Off Mark 0.5
1 Off Michael 0.5
2 On John 2
2 On Mark 2
2 On Larry 2
2 Off Peter 2
2 Off Dennis 2
2 Off Jasper 2
The desired output is:
df =
ID Status People Group_ID Output
0 On [John, Mark, Michael ] 0 1
0 Off [Peter, Tim, Jake ] 1 1
1 On [Peter, Dennis, Jasper ] 2 0.5
1 Off [John, Mark, Michael ] 0 0.5
2 On [John, Mark, Larry ] 3 2
2 Off [Peter, Dennis, Jasper ] 2 2
Try this:
df_out = df.groupby(['ID', 'Status'])['Person'].apply(list).reset_index()
df_out['Group_ID'] = pd.factorize(df_out['Person'].apply(tuple))[0]
df_out
Output:
ID Status Person Group_ID
0 0 Off [Peter, Tim, Jake] 0
1 0 On [John, Mark, Michael] 1
2 1 Off [John, Mark, Michael] 1
3 1 On [Peter, Dennis, Jasper] 2
4 2 Off [Peter, Dennis, Jasper] 2
5 2 On [John, Mark, Larry] 3
OR
df_out = df.groupby(['ID', 'Status'])['Person'].apply(', '.join).reset_index()
df_out['Group_ID'] = pd.factorize(df_out['Person'])[0]
df_out
import pandas as pd
df = pd.read_clipboard()
df
One method is to use shift twice and join the three columns into a list. Then use groupby to figure out the Group_ID and merge it back into the dataframe.
df['Person1'] = df['Person'].shift(-1)
df['Person2'] = df['Person'].shift(-2)
df['People'] = '[' + df['Person'] + ',' + df['Person1'] + ',' + df['Person2'] + ']'
mult_3 = []
for i in df.index:
if i==0 or i%3 == 0:
mult_3.append(i)
df = df.loc[df.index.isin(mult_3)].drop(['Person', 'Person1', 'Person2'], axis=1)
df_people = df.groupby('People').Status.count().reset_index().drop(['Status'], axis=1).reset_index()
df = df.merge(df_people, how='left', on='People').rename(columns={'index':'Group_ID'})
df = df[['ID', 'Status', 'People', 'Group_ID', 'Output']]
df
Python 3.7.6 and Pandas 1.0.3: The bottleneck here are probably the apply calls.
people = df.groupby(['ID','Status', "Output"])['Person'].apply(list).reset_index(name = 'People')
people['Group_ID'] = people["People"].apply(str).astype('category').cat.codes
Output:
ID Status Output People Group_ID
0 0 Off 1 [Peter, Tim, Jake] 3
1 0 On 1 [John, Mark, Michael] 1
2 1 Off 0.5 [John, Mark, Michael] 1
3 1 On 0.5 [Peter, Dennis, Jasper] 2
4 2 Off 2 [Peter, Dennis, Jasper] 2
5 2 On 2 [John, Mark, Larry] 0
I have a dataframe that looks like this:
Supervisor Score
Bill Pass
Bill Pass
Susan Fail
Susan Fail
Susan Fail
I would like to do some aggregates (such as getting the % of pass by supervisor) and would like to split up the Score column so all the Pass are in one column and all the Fail are in another column. Like this:
Supervisor Pass Fail
Bill 0 1
Bill 0 1
Susan 1 0
Susan 1 0
Susan 1 0
Any ideas? Would a simple groupby work by grouping both the supervisor and score columns and getting a count of Score?
pd.get_dummies
Removes any columns you specify from your DataFrame in favor of N dummy columns with the default naming convention 'OrigName_UniqueVal'. Specifying empty strings for the prefix and separator gives you column headers of only the unique values.
pd.get_dummies(df, columns=['Score'], prefix_sep='', prefix='')
Supervisor Fail Pass
0 Bill 0 1
1 Bill 0 1
2 Susan 1 0
3 Susan 1 0
4 Susan 1 0
If in the end you just want % of each category by supervisor then you don't really need the dummies. You can groupby. I use a reindex to ensure the resulting DataFrame has each category represented for each Supervisor.
(df.groupby(['Supervisor']).Score.value_counts(normalize=True)
.reindex(pd.MultiIndex.from_product([df.Supervisor.unique(), df.Score.unique()]))
.fillna(0))
#Bill Pass 1.0
# Fail 0.0
#Susan Pass 0.0
# Fail 1.0
#Name: Score, dtype: float64
IIUC, you want DataFrame.pivot_table + DataFrmae.join
new_df = df[['Supervisor']].join(df.pivot_table(columns = 'Score',
index = df.index,
values ='Supervisor',
aggfunc='count',
fill_value=0))
print(new_df)
Supervisor Fail Pass
0 Bill 0 1
1 Bill 0 1
2 Susan 1 0
3 Susan 1 0
4 Susan 1 0
For the output expect:
new_df = df[['Supervisor']].join(df.pivot_table(columns = 'Score',
index = df.index,
values ='Supervisor',
aggfunc='count',
fill_value=0)
.eq(0)
.astype(int))
print(new_df)
Supervisor Fail Pass
0 Bill 1 0
1 Bill 1 0
2 Susan 0 1
3 Susan 0 1
4 Susan 0 1
**Let's try this one**
df=pd.DataFrame({'Supervisor':['Bill','Bill','Susan','Susan','Susan'],
'Score':['Pass','Pass','Fail','Fail','Fail']}).set_index('Supervisor')
pd.get_dummies(df['Score'])
PANDAS 100 tricks
For More Pandas trick refer following : https://www.kaggle.com/python10pm/pandas-100-tricks
To get the df you want you can do it like this:
df["Pass"] = df["Score"].apply(lambda x: 0 if x == "Pass" else 1)
df["Fail"] = df["Score"].apply(lambda x: 0 if x == "Fail" else 1)
I have 2 dataframes.
Df1 = pd.DataFrame({'name': ['Marc', 'Jake', 'Sam', 'Brad']
Df2 = pd.DataFrame({'IDs': ['Jake', 'John', 'Marc', 'Tony', 'Bob']
I want to loop over every row in Df1['name'] and check if each name is somewhere in Df2['IDs'].
The result should return 1 if the name is in there, 0 if it is not like so:
Marc 1
Jake 1
Sam 0
Brad 0
Thank you.
Use isin
Df1.name.isin(Df2.IDs).astype(int)
0 1
1 1
2 0
3 0
Name: name, dtype: int32
Show result in data frame
Df1.assign(InDf2=Df1.name.isin(Df2.IDs).astype(int))
name InDf2
0 Marc 1
1 Jake 1
2 Sam 0
3 Brad 0
In a Series object
pd.Series(Df1.name.isin(Df2.IDs).values.astype(int), Df1.name.values)
Marc 1
Jake 1
Sam 0
Brad 0
dtype: int32
This should do it:
Df1 = Df1.assign(result=Df1['name'].isin(Df2['IDs']).astype(int))
By using merge
s=Df1.merge(Df2,left_on='name',right_on='IDs',how='left')
s.IDs=s.IDs.notnull().astype(int)
s
Out[68]:
name IDs
0 Marc 1
1 Jake 1
2 Sam 0
3 Brad 0
This is one way. Convert to set for O(1) lookup and use astype(int) to represent Boolean values as integers.
values = set(Df2['IDs'])
Df1['Match'] = Df1['name'].isin(values).astype(int)
I have Two data frames df and df1. Both have a column called description(which may not be unique). I wanted to get the index no of df where the description matches description of df1.
df
Name des
0 xyz1 abc
1 xyz2 bcd
2 xyz3 nna
3 xyz4 mmm
4 xyz5 man
df1
des
0 abc
1 nna
2 bcd
3 man
O/P required
df1
des index_df
0 abc 0
1 nna 2
2 bcd 1
3 man 4
This is possible with .loc accessor and using reset_index to elevate index to column:
res = df.loc[df['des'].isin(set(df1['des'])), 'des'].reset_index()
# index des
# 0 0 abc
# 1 1 bcd
# 2 2 nna
# 3 4 man
Use map by Series with swapped index and values created by column des:
s = pd.Series(df.index, index=df['des'])
df1['index_df'] = df1['des'].map(s)
print (df1)
des index_df
0 abc 0
1 nna 2
2 bcd 1
3 man 4