Load tensorflow images and create patches - python

I am using image_dataset_from_directory to load a very large RGB imagery dataset from disk into a Dataset. For example,
dataset = tf.keras.preprocessing.image_dataset_from_directory(
<directory>,
label_mode=None,
seed=1,
subset='training',
validation_split=0.1)
The Dataset has, say, 100000 images grouped into batches of size 32 yielding a tf.data.Dataset with spec (batch=32, width=256, height=256, channels=3)
I would like to extract patches from the images to create a new tf.data.Dataset with image spatial dimensions of, say, 64x64.
Therefore, I would like to create a new Dataset with 400000 patches still in batches of 32 with a tf.data.Dataset with spec (batch=32, width=64, height=64, channels=3)
I've looked at the window method and the extract_patches function but it's not clear from the documentation how to use them to create a new Dataset I need to start training on the patches. The window seems to be geared toward 1D tensors and the extract_patches seems to work with arrays and not with Datasets.
Any suggestions on how to accomplish this?
UPDATE:
Just to clarify my needs. I am trying to avoid manually creating the patches on disk. One, that would be untenable disk wise. Two, the patch size is not fixed. The experiments will be conducted over several patch sizes. So, I do not want to manually perform the patch creation either on disk or manually load the images in memory and perform the patching. I would prefer to have tensorflow handle the patch creation as part of the pipeline workflow to minimize disk and memory usage.

What you're looking for is tf.image.extract_patches. Here's an example:
import tensorflow as tf
import tensorflow_datasets as tfds
import matplotlib.pyplot as plt
import numpy as np
data = tfds.load('mnist', split='test', as_supervised=True)
get_patches = lambda x, y: (tf.reshape(
tf.image.extract_patches(
images=tf.expand_dims(x, 0),
sizes=[1, 14, 14, 1],
strides=[1, 14, 14, 1],
rates=[1, 1, 1, 1],
padding='VALID'), (4, 14, 14, 1)), y)
data = data.map(get_patches)
fig = plt.figure()
plt.subplots_adjust(wspace=.1, hspace=.2)
images, labels = next(iter(data))
for index, image in enumerate(images):
ax = plt.subplot(2, 2, index + 1)
ax.set_xticks([])
ax.set_yticks([])
ax.imshow(image)
plt.show()

I believe you can use a python class generator. You can pass this generator to model.fit function if you want. I actually used it once for labels preprocessing.
I wrote the following dataset generator that loads a batch from your dataset, splits the images from the batch into multiple images based on the tile_shape parameter. If there are enough images, the next batch is returned.
In the example, I used a simple dataset from_tensor_slices for simplification. You can, of course, replace it with yours.
import tensorflow as tf
class TileDatasetGenerator:
def __init__(self, dataset, batch_size, tile_shape):
self.dataset_iterator = iter(dataset)
self.batch_size = batch_size
self.tile_shape = tile_shape
self.image_queue = None
def __iter__(self):
return self
def __next__(self):
if self._has_queued_enough_for_batch():
return self._dequeue_batch()
batch = next(self.dataset_iterator)
self._split_images(batch)
return self.__next__()
def _has_queued_enough_for_batch(self):
return self.image_queue is not None and tf.shape(self.image_queue)[0] >= self.batch_size
def _dequeue_batch(self):
batch, remainder = tf.split(self.image_queue, [self.batch_size, -1], axis=0)
self.image_queue = remainder
return batch
def _split_images(self, batch):
batch_shape = tf.shape(batch)
batch_splitted = tf.reshape(batch, shape=[-1, self.tile_shape[0], self.tile_shape[1], batch_shape[-1]])
if self.image_queue is None:
self.image_queue = batch_splitted
else:
self.image_queue = tf.concat([self.image_queue, batch_splitted], axis=0)
dataset = tf.data.Dataset.from_tensor_slices(tf.ones(shape=[128, 64, 64, 3]))
dataset.batch(32)
generator = TileDatasetGenerator(dataset, batch_size = 16, tile_shape = [32,32])
for batch in generator:
tf.print(tf.shape(batch))
Edit:
It is possible to convert the generator to tf.data.Dataset if you want, but it requires that you add a __call__ function to the generator returning an iterator (self in this case).
new_dataset = tf.data.Dataset.from_generator(generator, output_types=(tf.int64))

Related

Split images from dataloader into patches

Using the Fashion mnist dataset, I don't want to just split a single image into patches but rather all of images.
I've seen the function unfold() but I think this only works for a single image
mnist_train = torchvision.datasets.FashionMNIST(
root="../data", train=True,
transform=transforms.Compose([transforms.ToTensor()]), download=True)
x = mnist_train[0][0][-1, :, :]
x = x.unfold(0, 7, 7).unfold(1, 7, 7)
x.shape
How do I make non-overlapping patches (of any number to keep it simple) for all images?
Would appreciate any help. Thanks!
You can create a custom transform to split all images into multiple patches. Something along the lines of:
class Patch(object):
"""
Creates patches from images
"""
def __init__(self, patch_size=7):
self.patch_size = patch_size
def __call__(self, image):
patched_image = # ... your code here
return patched_image
mnist_train = torchvision.datasets.FashionMNIST(
root="../data", train=True,
transform=transforms.Compose([transforms.ToTensor(), Patch()]), download=True)

Rotate image for data augmentation using tf keras only in specific angles

In tf keras, it is possible to have a data augmentation layer that performs rotation on each given image during training, in the following way as the docs say:
tf.keras.layers.RandomRotation(
factor, fill_mode='reflect', interpolation='bilinear',
seed=None, fill_value=0.0, **kwargs
)
The factor argument indicates the value of maximum rotation if a float is given and indicates lower and upper limits if a tuple is given.
For my specific application only specific rotations are allowed, say 0°, 90°, 180° and 270°.
Is there any way I can achieve this using the RandomRotation class or a good alternative to this or should I just augment the whole dataset before training?
You can do this by creating a custom PreprocessingLayer.
import tensorflow as tf
class Rotate90Randomly(tf.keras.layers.experimental.preprocessing.PreprocessingLayer):
def __init__(self):
super(Rotate90Randomly, self).__init__()
def call(self, x, training=False):
def random_rotate():
rotation_factor = tf.random.uniform([], minval=0,
maxval=4, dtype=tf.int32)
return tf.image.rot90(x, k=rotation_factor)
training = tf.constant(training, dtype=tf.bool)
rotated = tf.cond(training, random_rotate, lambda: x)
rotated.set_shape(rotated.shape)
return rotated
One thing to consider, if the inputs' height and width are not the same, in other words they are not square you need to define input_shape as (None, None, channels) while creating the model.
Examples:
model = tf.keras.Sequential([
tf.keras.Input((180,180,3)),
Rotate90Randomly()])
import matplotlib.pyplot as plt
plt.figure(figsize=(10, 10))
for images, labels in train_ds.take(1):
for i in range(9):
ax = plt.subplot(3, 3, i + 1)
images = model(images, training = True)
plt.imshow(images[i].numpy().astype("uint8"))
plt.title(class_names[labels[i]])
plt.axis("off")
With training = False, they remain the same so this layer is not active during inference.

Wrong shape Dataset Tensorflow

Im new to tensorflow and Im trying to feed some data with tensorflow.Dataset. Im using Cityscape dataset with 8 different classes. Here is my code:
import os
import cv2
import numpy as np
import tensorflow as tf
H = 256
W = 256
id2cat = np.array([0,0,0,0,0,0,0, 1,1,1,1, 2,2,2,2,2,2, 3,3,3,3, 4,4, 5, 6,6, 7,7,7,7,7,7,7,7,7])
def readImage(x):
x = cv2.imread(x, cv2.IMREAD_COLOR)
x = cv2.resize(x, (W, H))
x = x / 255.0
x = x.astype(np.float32)
return x
def readMask(path):
mask = cv2.imread(path, 0)
mask = cv2.resize(mask, (W, H))
mask = id2cat[mask]
return mask.astype(np.int32)
def preprocess(x, y):
def f(x, y):
image = readImage(x)
mask = readMask(y)
return image, mask
image, mask = tf.numpy_function(f, [x, y], [tf.float32, tf.int32])
mask = tf.one_hot(mask, 3, dtype=tf.int32)
image.set_shape([H, W, 3])
mask.set_shape([H, W, 3])
return image, mask
def tf_dataset(x, y, batch=8):
dataset = tf.data.Dataset.from_tensor_slices((x, y))
dataset = dataset.shuffle(buffer_size=5000)
dataset = dataset.map(preprocess)
dataset = dataset.batch(batch)
dataset = dataset.repeat()
dataset = dataset.prefetch(2)
return dataset
def loadCityscape():
trainPath = os.path.join(os.path.dirname(os.path.realpath(__file__)), 'datasets\\Cityscape\\train')
imagesPath = os.path.join(trainPath, 'images')
maskPath = os.path.join(trainPath, 'masks')
images = []
masks = []
print('Loading images and masks for Cityscape dataset...')
for image in os.listdir(imagesPath):
images.append(readImage(os.path.join(imagesPath, image)))
for mask in os.listdir(maskPath):
if 'label' in mask:
masks.append(readMask(os.path.join(maskPath, mask)))
print('Loaded {} images\n'.format(len(images)))
return images, masks
images, masks = loadCityscape()
dataset = tf_dataset(images, masks, batch=8)
print(dataset)
That last print(dataset) shows:
<PrefetchDataset shapes: ((None, 256, 256, 3), (None, 256, 256, 3)), types: (tf.float32, tf.int32)>
Why am I obtaining (None, 256, 256, 3) instead of (8, 256, 256, 3)? I also have some doubts about how to iterate over this dataset.
Thanks a lot.
Tensorflow is a graph based mathematical framework that abstracts for you all of those complex vectorial or matricial operations you face, particularly in machine learning.
What the developers though is that it would be unconfortable to specify every single time how many input vectors you need to pass in your model for the training, so they decided to abstract it for you.
You will not interested if your model is fed with one single or thousands samples as long as the output matches with the input dimension (but also any internal operation should match in dimensions!).
So the None size is a placeholder for a possible changing shape, that is usually the batch size of the input.
We need a placeholder because (None, 2) is a different shape with respect of just (2,), because in the first case we know we will face 2 dimensions.
Even if the None dimension is unknown when you "compile" your model, it will be evaluated only when it is strictly needed, in other words when you run it. In this way your model will be happy to run on a batch size of 64 as like as 128 samples.
For the rest a (non-scalar) Tensor behaves like a normal numpy array:
tensor1 = tf.constant([ 0, 1, 2, 3]) # shape (4, )
tensor2 = tf.constant([ [0], [1], [2], [3]]) # shape (4, 1)
for x in tensor1:
print(x) # 0, 1, 2, 3
for x in tensor2:
print(x) # Tensor([0]), Tensor([1]), Tensor([2]), Tensor([3])
The only difference is that it can be allocated into any supported device memory (CPU / Cuda GPU).
Iterating through the dataset is just like slicing it at (usually) constant sizes, where that constant is your batch size, which will fill that empty None dimension.
This line of code will be responsible of slicing your dataset into "sub-tensors" ("sub-arrays") composed by its samples:
dataset = dataset.batch(N)
# iterating over it:
for batch in dataset: # I'm taking N samples here
...
Your "runtime" shape will be (N, 256, 256, 3), but if you will try to take an element from the dataset it could still have None in the shape... That's because we can't guarantee, for example, that the dimension of the dataset is exactly divisible by the batch size, so some trailing samples of a variable shape could still be possible. You will hardly get rid off that None dimension, but in some custom methods of your model you could achieve that.
If you are still unconfortable with tensors there is the tensor.numpy() method that gives you back a numpy array, but at the cost of copying it (usually to your CPU). This is not available in every step of the process.
There are many way to define a dataset in tensorflow, I suggest to read how they think you should build an input pipeline, because it will make your life easier if you understand how much tensorflow takes your code at higher levels of abstraction.

Keras custom data generator for large hdf5 file which does not fit into memory

I'm trying to use the pretrained InceptionV3 model to classify the food-101 dataset, which containts food images for 101 categories, 1000 per category. I've preprocessed this dataset into a single hdf5 file (I assumed this is beneficial compared to loading images on the go when training) so far, which has the following tables inside:
The data split is the standard 70% train, 20% validation, 10% test, so for example the valid_img has a size of 20200*299*299*3. The labels are onehotencoded for Keras, so valid_labels has a size of 20200*101.
This hdf5 file has a size of 27.1 GB, so it will not fit into my memory. (Have 8 GB of it, although effectively only probably 4-5 gigs is usable while running Ubuntu. Also my GPU is GTX 960 with 2 GB of VRAM, and so far it looked like 1.5 GB is available for python when I try to start the training script). I'm using Tensorflow backend.
The first idea I had is to use model.train_on_batch() with a double nested for loop like this:
#Loading InceptionV3, adding my fully connected layers, compiling model...
dataset = h5py.File('/home/uzoltan/PycharmProjects/food-101/food-101_299x299.hdf5', 'r')
epoch = 50
for i in range(epoch):
for i in range(100): #1000 images can fit in the memory easily, this could probably be range(10) too
train_images = dataset["train_img"][i * 706:(i + 1) * 706, ...]
train_labels = dataset["train_labels"][i * 706:(i + 1) * 706, ...]
val_images = dataset["valid_img"][i * 202:(i + 1) * 202, ...]
val_labels = dataset["valid_labels"][i * 202:(i + 1) * 202, ...]
model.train_on_batch(x=train_images, y=train_labels, class_weight=None,
sample_weight=None, )
My problem with this approach is that train_on_batch provides 0 support for validation or batch shuffling, so that the batches are not in the same order every epoch.
So I looked towards model.fit_generator() which has the nice property of providing all the same functionality as fit(), plus with the built in ImageDataGenerator you can do image augmentations (rotations, horizontal flips, etc.) at the same time with the CPU, so that your model can be more robust. My problem here is, that if I understand it correctly, the ImageDataGenerator.flow(x,y) method needs all the samples and labels at once, but my training/validation data wont fit into my RAM.
Here is where I think custom data generators come into the picture, but after looking extensively at some examples I could find on the Keras GitHub/Issues page, I still dont really get how should I implement a custom generator, which would read in batches of data from my hdf5 file. Can someone provide me with a good example or pointers? How could I couple the custom batch generator with the image augmentations? Or maybe is it easier to implement some kind of manual validation and batch shuffling for train_on_batch()? If so, I could use some pointer there too.
For anyone still looking for an answer, I made the following "crude wrapper" around ImageDataGeneator's apply_transform method.
from numpy.random import uniform, randint
from tensorflow.python.keras.preprocessing.image import ImageDataGenerator
import numpy as np
class CustomImagesGenerator:
def __init__(self, x, zoom_range, shear_range, rescale, horizontal_flip, batch_size):
self.x = x
self.zoom_range = zoom_range
self.shear_range = shear_range
self.rescale = rescale
self.horizontal_flip = horizontal_flip
self.batch_size = batch_size
self.__img_gen = ImageDataGenerator()
self.__batch_index = 0
def __len__(self):
# steps_per_epoch, if unspecified, will use the len(generator) as a number of steps.
# hence this
return np.floor(self.x.shape[0]/self.batch_size)
def next(self):
return self.__next__()
def __next__(self):
start = self.__batch_index*self.batch_size
stop = start + self.batch_size
self.__batch_index += 1
if stop > len(self.x):
raise StopIteration
transformed = np.array(self.x[start:stop]) # loads from hdf5
for i in range(len(transformed)):
zoom = uniform(self.zoom_range[0], self.zoom_range[1])
transformations = {
'zx': zoom,
'zy': zoom,
'shear': uniform(-self.shear_range, self.shear_range),
'flip_horizontal': self.horizontal_flip and bool(randint(0,2))
}
transformed[i] = self.__img_gen.apply_transform(transformed[i], transformations)
return transformed * self.rescale
It can be called like so:
import h5py
f = h5py.File("my_heavy_dataset_file.hdf5", 'r')
images = f['mydatasets/images']
my_gen = CustomImagesGenerator(
images,
zoom_range=[0.8, 1],
shear_range=6,
rescale=1./255,
horizontal_flip=True,
batch_size=64
)
model.fit_generator(my_gen)
If I understood you correctly, you want to use the data (which does not fit in the memory) from HDF5 and at the same time use data augmentation on it.
I'm in the same situation as you, and I found this code that maybe can be helpful with some few modifications:
https://gist.github.com/wassname/74f02bc9134897e3fe4e60784f5aaa15
this is my solution for shuffle data per epoch with h5 file.
indices means train or val index list.
def generator(h5path, indices, batchSize=128, is_train=True, aug=None):
db = h5py.File(h5path, "r")
with open("mean.json") as f:
mean = json.load(f)
meanV = np.array([mean["R"], mean["G"], mean["B"]])
while True:
np.random.shuffle(indices)
for i in range(0, len(indices), batchSize):
t0 = time()
batch_indices = indices[i:i+batchSize]
batch_indices.sort()
by = db["labels"][batch_indices,:]
bx = db["images"][batch_indices,:,:,:]
bx[:,:,:,0] -= meanV[0]
bx[:,:,:,1] -= meanV[1]
bx[:,:,:,2] -= meanV[2]
t1=time()
if is_train:
#bx = random_crop(bx, (224,224))
if aug is not None:
bx,by = next(aug.flow(bx,by,batchSize))
yield (bx,by)
h5path='all_224.hdf5'
model.fit_generator(generator(h5path, train_indices, batchSize=batchSize, is_train=True, aug=aug),
steps_per_epoch = 20000//batchSize,
validation_data= generator(h5path, test_indices, is_train=False, batchSize=batchSize),
validation_steps = 2424//batchSize,
epochs=args.epoch,
max_queue_size=100,
callbacks=[checkpoint, early_stop])
You want to write a function which loads images from the HDF5 and then yields (not returns) them as a numpy array. Here is a simple example which uses OpenCV to load images directly from .png/.jpg files in a given directory:
def generate_data(directory, batch_size):
"""Replaces Keras' native ImageDataGenerator."""
i = 0
file_list = os.listdir(directory)
while True:
image_batch = []
for b in range(batch_size):
if i == len(file_list):
i = 0
random.shuffle(file_list)
sample = file_list[i]
i += 1
image = cv2.resize(cv2.imread(sample[0]), INPUT_SHAPE)
image_batch.append((image.astype(float) - 128) / 128)
yield np.array(image_batch)
Obviously you will have to modify it to read from the HDF5 instead.
Once you have written your function, the usage is simply:
model.fit_generator(
generate_data('~/my_data', batch_size),
steps_per_epoch=len(os.listdir('~/my_data')) // batch_size)
Again modified to reflect the fact that you are reading from an HDF5 and not a directory.

Tensorflow mixes up images and labels when making batch

So I've been stuck on this problem for weeks. I want to make an image batch from a list of image filenames. I insert the filename list into a queue and use a reader to get the file. The reader then returns the filename and the read image file.
My problem is that when I make a batch using the decoded jpg and the labels from the reader, tf.train.shuffle_batch() mixes up the images and the filenames so that now the labels are in the wrong order for the image files. Is there something I am doing wrong with the queue/shuffle_batch and how can I fix it such that the batch comes out with the right labels for the right files?
Much thanks!
import tensorflow as tf
from tensorflow.python.framework import ops
def preprocess_image_tensor(image_tf):
image = tf.image.convert_image_dtype(image_tf, dtype=tf.float32)
image = tf.image.resize_image_with_crop_or_pad(image, 300, 300)
image = tf.image.per_image_standardization(image)
return image
# original image names and labels
image_paths = ["image_0.jpg", "image_1.jpg", "image_2.jpg", "image_3.jpg", "image_4.jpg", "image_5.jpg", "image_6.jpg", "image_7.jpg", "image_8.jpg"]
labels = [0, 1, 2, 3, 4, 5, 6, 7, 8]
# converting arrays to tensors
image_paths_tf = ops.convert_to_tensor(image_paths, dtype=tf.string, name="image_paths_tf")
labels_tf = ops.convert_to_tensor(labels, dtype=tf.int32, name="labels_tf")
# getting tensor slices
image_path_tf, label_tf = tf.train.slice_input_producer([image_paths_tf, labels_tf], shuffle=False)
# getting image tensors from jpeg and performing preprocessing
image_buffer_tf = tf.read_file(image_path_tf, name="image_buffer")
image_tf = tf.image.decode_jpeg(image_buffer_tf, channels=3, name="image")
image_tf = preprocess_image_tensor(image_tf)
# creating a batch of images and labels
batch_size = 5
num_threads = 4
images_batch_tf, labels_batch_tf = tf.train.batch([image_tf, label_tf], batch_size=batch_size, num_threads=num_threads)
# running testing session to check order of images and labels
init = tf.global_variables_initializer()
with tf.Session() as sess:
sess.run(init)
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(coord=coord)
print image_path_tf.eval()
print label_tf.eval()
coord.request_stop()
coord.join(threads)
Wait.... Isn't your tf usage a little weird?
You are basically running the graph twice by calling:
print image_path_tf.eval()
print label_tf.eval()
And since you are only asking for image_path_tf and label_tf, anything below this line is not even run:
image_path_tf, label_tf = tf.train.slice_input_producer([image_paths_tf, labels_tf], shuffle=False)
Maybe try this?
image_paths, labels = sess.run([images_batch_tf, labels_batch_tf])
print(image_paths)
print(labels)
From your code I'm unsure how your labels are encoded/extracted from the jpeg images. I used to encode everything in the same file, but have since found a much more elegant solution. Assuming you can get a list of filenames, image_paths and a numpy array of labels labels, you can bind them together and operate on individual examples with tf.train.slice_input_producer then batch them together using tf.train.batch.
import tensorflow as tf
from tensorflow.python.framework import ops
shuffle = True
batch_size = 128
num_threads = 8
def get_data():
"""
Return image_paths, labels such that label[i] corresponds to image_paths[i].
image_paths: list of strings
labels: list/np array of labels
"""
raise NotImplementedError()
def preprocess_image_tensor(image_tf):
"""Preprocess a single image."""
image = tf.image.convert_image_dtype(image_tf, dtype=tf.float32)
image = tf.image.resize_image_with_crop_or_pad(image, 300, 300)
image = tf.image.per_image_standardization(image)
return image
image_paths, labels = get_data()
image_paths_tf = ops.convert_to_tensor(image_paths, dtype=tf.string, name='image_paths')
labels_tf = ops.convert_to_tensor(image_paths, dtype=tf.int32, name='labels')
image_path_tf, label_tf = tf.train.slice_input_producer([image_paths_tf, labels_tf], shuffle=shuffle)
# preprocess single image paths
image_buffer_tf = tf.read_file(image_path_tf, name='image_buffer')
image_tf = tf.image.decode_jpeg(image_buffer_tf, channels=3, name='image')
image_tf = preprocess_image_tensor(image_tf)
# batch the results
image_batch_tf, labels_batch_tf = tf.train.batch([image_tf, label_tf], batch_size=batch_size, num_threads=num_threads)

Categories