Best practise for "feeding" parameters to a model - python

I have a model that consists of multiple modules. This model unsurprisingly takes in some exogenous parameters as input. Finally, I have a script simulation.py that handles the simulation (duh), in which I run the model with various parameters (looping over all parameter combinations). The dataset that is created in the process is later saved in a csv.
Strangely, I cannot seem to find an answer for my straight-forward question:
What is the best-practise to "feed parameters" into a model?
Currently, I simply have those parameters stored as variables in the simulation.py script, in which I also handle the multiprocessing and setting up the model etc. So there is still a lot of stuff going on, for example I just implemented multiprocessing. Since I track my work with git, and simulation.py is prone to change, I really don't want it to track when I just run a simulation with different parameters... So I am guessing it makes more sense to store these exogenous parameters in a separate file, so that you can simply change them there. What is the best practise here?
Thank you in advance!!
EDIT:
# parameters to loop over
alphas = np.linspace(0, 0.5, 11)
gammas = np.linspace(100, 1000, 10) / 60000
repititions = 100
# parameters as input for multiprocessing
parameter_list = list(itertools.product(list(range(repititions)), gammas, alphas))
# function for single simulation
def run_simulation(parameters):
repititions = parameters[0]
gamma = parameters[1]
alpha = parameters[2]
model_setup = __set_up_model(alpha, ...)
model = Blockchain(model_setup[0], model_setup[1], model_setup[2], gamma)
while model.time < simulation_time:
model.next_event()
...
# run multiprocessed simulation with parameter_list as input variables
with concurrent.futures.ProcessPoolExecutor() as executor:
results = list(tqdm(executor.map(run_simulation, parameter_list), total=len(parameter_list)))
The exact code is obviously not relevant here, but essentially I am wondering what would be a better way to handle the parameters alphas, gammas, repititions. I am guessing best-practise is to store them outside of the script and then import them into the script. What is the best practise?

Related

In SVC from Sklearn, why is the training time not strictly linear to maximum iteration when label size is big?

I have doing an analysis trying to see the relation between training time and maximum iteration in SVC. The data I use is some randomly generated number and I plotted the training time against max_iter of SVC fit. I checked logs and each binary classifier has reached the max_iter (I output all console logs which showed detailed warning for each binary classifier and count them). However, I was assuming that the training time will be strictly linear to the iteration but actually, in the case that the training data has many labels e.g. say 40, then the plot does not show it's linear.
It seems as the maximum iteration goes up, each iteration takes slight less time than before. While if we changed label_size to be 2 (which means each fit contains only 1 binary classifier), the line is straight.
What causes that to happen?
Here is my source code:
# -*- coding: utf-8 -*-
import numpy as np
from sklearn.svm import SVC
import time
import pandas as pd
def main(row_size, label_size):
np.random.seed(2019)
y = np.array([i for i in range(label_size) for j in range(row_size
/ label_size)])
if len(y) < row_size:
y = np.append(y, [y[-1]] * (row_size - len(y)))
X = np.random.rand(row_size, 300)
print X.shape, y.shape
return (X, y)
def train_svm(X, y, max_iter):
best_params = {'C': 1}
clf = SVC(
C=best_params['C'],
kernel=str('linear'),
probability=False,
class_weight='balanced',
max_iter=max_iter,
random_state=2018,
verbose=True,
)
start = time.time()
clf.fit(X, y)
end = time.time()
return end - start
if __name__ == '__main__':
row_size = 20000
m_iter = range(10, 401, 20)
label_size = [40]
data = {
'label_size': [],
'max_iter': [],
'row_size': [],
'time': [],
}
for it in m_iter:
for l in label_size:
(X, y) = main(row_size, l)
t = train_svm(X, y, max_iter=it)
data['label_size'].append(l)
data['max_iter'].append(it)
data['row_size'].append(row_size)
data['time'].append(t)
df = pd.DataFrame(data)
df.to_csv('svc_iter.csv', index=None)
Well, there could be loads of reasons for that "very slight change". Scikit-Learn doesn't operate natively, it's built upon different libraries and it may be using loads of optimizers..etc!
Besides, your first graph is very close to linear!
Nevertheless, a big noticeable reasonable factor that contributed in those tiny changes is the Decomposition Method in Support Vector Machine.
The idea of decomposition methodology for classification tasks is to break down a complex classification task into several simpler and more manageable sub-tasks that are solvable by using existing induction methods, then joining their solutions together in order to solve the original problem.
This method is an iterative process and in each iteration only few variables are updated.
For more details about the mathematical approach, please refer to this paper, section 6.2 The Decomposition Method..
Moreover and specifically speaking, SVM implements two tricks called shrinking and caching for the decomposition method.
The Shrinking idea is that an optimal solution α of the SVM dual problem may contain some bounded elements (i.e., αi = 0 or C). These elements may have already been bounded in the middle of the decomposition iterations. To save the training time, the shrinking technique tries to identify and remove some bounded elements, so a smaller optimization problem is solved.
The Caching idea is an effective technique for reducing the computational time of the decomposition method, so elements are calculated as needed. We can use available memory (called kernel cache) to store some recently used permutation of the matrix Qij. Then, some kernel elements may not need to be recalculate.
For more details about the mathematical approach, please refer to this paper, section 5 Shrinking and Caching.
Technical Proof:
I repeated your experiment (that's way I asked for your code to follow the same exact approach), with and without using the shrinking and caching optimization.
Using Shrinking and Caching
The default value of the parameter shrinking in sklearn SVC is set to True, keeping that as it is, produced the following output:
Plotting it gives:
Note how at some point, the time drops noticeably reflecting the effect of shrinking and caching.
Without Using Shrinking and Caching
Using the same exact approach but this time, setting the parameter shrinking explicitly to False as follows:
clf = SVC(
C=best_params['C'],
kernel=str('linear'),
probability=False,
class_weight='balanced',
max_iter=max_iter,
random_state=2018,
verbose=True,
shrinking=False
)
Produced the following output:
Plotting it gives:
Note how unlike previous plot, there is no noticeable drop in time at some point, it's rather just a very tiny fluctuations along with the entire plot.
Comparing Pearson Correlations
In conclusion:
Without using the Shrinking and Caching (updated later with caching), the linearity improved, although it's not 100% linear, but if you take into account that Scikit-Learn internally uses libsvm library to handle all computations. And this library is wrapped using C and Cython, you would have a higher tolerance to your definition about 'Linear' of the relationship between maximum iterations and time. Also, here is a cool discussion about why algorithms may not give the exact same precise definite running time every time.
And that would be even clearer to you if you plot the interval times, so you can see clearly how the drops happen suddenly noticeably in more than one place.
While it keeps almost the same flow without using the optimization tricks.
Important Update
It turned out that the aforementioned reason for this issue (i.e. Shrinking and Caching) is correct, or more precisely, it's a very big factor of that phenomenon.
But the thing I missed is the following:
I was talking about Shrinking and Caching but I missed the later parameter for caching which is set by default to 200 MB.
Repeating the same simulations more than one time and setting the cache_size parameter to a very small number (because zero is not acceptable and throws an error) in addition to shrinking=False, resulted in an extremely-close-to linear pattern between max_iter and time:
clf = SVC(
C=best_params['C'],
kernel=str('linear'),
probability=False,
class_weight='balanced',
max_iter=max_iter,
random_state=2018,
verbose=False,
shrinking=False,
cache_size = 0.000000001
)
By the way, you don't need to set verbose=True, you can check if it reached the maximum iteration via the ConvergenceWarning, so you can redirect those warnings to a file and it'll be million times easier to follow, just add this code:
import warnings, sys
def customwarn(message, category, filename, lineno, file=None, line=None):
with open('warnings.txt', 'a') as the_file:
the_file.write(warnings.formatwarning(message, category, filename, lineno))
warnings.showwarning = customwarn
Also you don't need to re-generate the dataset after each iteration, so take it out the loop like this:
(X, y) = main(row_size, 40)
for it in m_iter:
....
....
Final Conclusion
Shrinking and Caching tricks coming from Decomposition Method in SVM play a big significant role in improving the execution time as the number of iterations increases. Besides, there are other small players that may be contributing in this matter such as internal usage of libsvm library to handle all computations which is wrapped using C and Cython.

TensorFlow: restoring model in a MonitoredSession

I have a model that contains multiple variables including a global step. I've been able to successfully use a MonitoredSession to save checkpoints and summaries every 100 steps. I was expecting the MonitoredSession to automatically restore all my variables when the session is run in multiple passes (based on this documentation), however this does not happen. If I take a look at the global step after running the training session again, I find that it starts back from zero. This is a simplified version of my code without the actual model. Let me know if more code is needed to solve this problem
train_graph = tf.Graph()
with train_graph.as_default():
# I create some datasets using the Dataset API
# ...
global_step = tf.train.create_global_step()
# Create all the other variables and the model here
# ...
saver_hook = tf.train.CheckpointSaverHook(
checkpoint_dir='checkpoint/',
save_secs=None,
save_steps=100,
saver=tf.train.Saver(),
checkpoint_basename='model.ckpt',
scaffold=None)
summary_hook = tf.train.SummarySaverHook(
save_steps=100,
save_secs=None,
output_dir='summaries/',
summary_writer=None,
scaffold=None,
summary_op=train_step_summary)
num_steps_hook = tf.train.StopAtStepHook(num_steps=500) # Just for testing
with tf.train.MonitoredSession(
hooks=[saver_hook, summary_hook, num_steps_hook]) as sess:
while not sess.should_stop():
step = sess.run(global_step)
if (step % 100 == 0):
print(step)
sess.run(optimizer)
When I run this code the first time, I get this output
0
100
200
300
400
The checkpoint folder at this point has checkpoints for every hundredth step up to 500. If I run the program again I would expect to see the counter start at 500 and the increase up to 900, but instead I just get the same thing and all of my checkpoints get overwritten. Any ideas?
Alright, I figured it out. It was actually really simple. First, it's easier to use a MonitoredTraningSession() instead of a MonitoredSession(). This wrapper session takes as an argument 'checkpoint_dir'. I thought that the saver_hook would take care of restoring, but that's not the case. In order to fix my problem I just had to change the line where I define the session like so:
with tf.train.MonitoredTrainingSession(hooks=[saver_hook, summary_hook], checkpoint_dir='checkpoint'):
It can also be done with the MonitoredSession directly, but you need to set up a session_creator instead.

How does one train multiple models in a single script in TensorFlow when there are GPUs present?

Say I have access to a number of GPUs in a single machine (for the sake of argument assume 8GPUs each with max memory of 8GB each in one single machine with some amount of RAM and disk). I wanted to run in one single script and in one single machine a program that evaluates multiple models (say 50 or 200) in TensorFlow, each with a different hyper parameter setting (say, step-size, decay rate, batch size, epochs/iterations, etc). At the end of training assume we just record its accuracy and get rid of the model (if you want assume the model is being check pointed every so often, so its fine to just throw away the model and start training from scratch. You may also assume some other data may be recorded like the specific hyper params, train, validation, train errors are recorded as we train etc).
Currently I have a (pseudo-)script that looks as follow:
def train_multiple_modles_in_one_script_with_gpu(arg):
'''
trains multiple NN models in one session using GPUs correctly.
arg = some obj/struct with the params for trianing each of the models.
'''
#### try mutliple models
for mdl_id in range(100):
#### define/create graph
graph = tf.Graph()
with graph.as_default():
### get mdl
x = tf.placeholder(float_type, get_x_shape(arg), name='x-input')
y_ = tf.placeholder(float_type, get_y_shape(arg))
y = get_mdl(arg,x)
### get loss and accuracy
loss, accuracy = get_accuracy_loss(arg,x,y,y_)
### get optimizer variables
opt = get_optimizer(arg)
train_step = opt.minimize(loss, global_step=global_step)
#### run session
with tf.Session(graph=graph) as sess:
# train
for i in range(nb_iterations):
batch_xs, batch_ys = get_batch_feed(X_train, Y_train, batch_size)
sess.run(fetches=train_step, feed_dict={x: batch_xs, y_: batch_ys})
# check_point mdl
if i % report_error_freq == 0:
sess.run(step.assign(i))
#
train_error = sess.run(fetches=loss, feed_dict={x: X_train, y_: Y_train})
test_error = sess.run(fetches=loss, feed_dict={x: X_test, y_: Y_test})
print( 'step %d, train error: %s test_error %s'%(i,train_error,test_error) )
essentially it tries lots of models in one single run but it builds each model in a separate graph and runs each one in a separate session.
I guess my main worry is that its unclear to me how tensorflow under the hood allocates resources for the GPUs to be used. For example, does it load the (part of the) data set only when a session is ran? When I create a graph and a model, is it brought in the GPU immediately or when is it inserted in the GPU? Do I need to clear/free the GPU each time it tries a new model? I don't actually care too much if the models are ran in parallel in multiple GPU (which can be a nice addition), but I want it to first run everything serially without crashing. Is there anything special I need to do for this to work?
Currently I am getting an error that starts as follow:
I tensorflow/core/common_runtime/bfc_allocator.cc:702] Stats:
Limit: 340000768
InUse: 336114944
MaxInUse: 339954944
NumAllocs: 78
MaxAllocSize: 335665152
W tensorflow/core/common_runtime/bfc_allocator.cc:274] ***************************************************xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
W tensorflow/core/common_runtime/bfc_allocator.cc:275] Ran out of memory trying to allocate 160.22MiB. See logs for memory state.
W tensorflow/core/framework/op_kernel.cc:975] Resource exhausted: OOM when allocating tensor with shape[60000,700]
and further down the line it says:
ResourceExhaustedError (see above for traceback): OOM when allocating tensor with shape[60000,700]
[[Node: standardNN/NNLayer1/Z1/add = Add[T=DT_FLOAT, _device="/job:localhost/replica:0/task:0/gpu:0"](standardNN/NNLayer1/Z1/MatMul, b1/read)]]
I tensorflow/core/common_runtime/gpu/gpu_device.cc:975] Creating TensorFlow device (/gpu:0) -> (device: 0, name: Tesla P100-SXM2-16GB, pci bus id: 0000:06:00.0)
however further down the output file (where it prints) it seems to print fine the errors/messages that should show as training proceeds. Does this mean that it didn't run out of resources? Or was it actually able to use the GPU? If it was able to use the CPU instead of the CPU, when why is this an error only happening when GPU are about to be used?
The weird thing is that the data set is really not that big (all 60K points are 24.5M) and when I run a single model locally in my own computer it seems that the process uses less than 5GB. The GPUs have at least 8GB and the computer with them has plenty of RAM and disk (at least 16GB). Thus, the errors that tensorflow is throwing at me are quite puzzling. What is it trying to do and why are they occurring? Any ideas?
After reading the answer that suggests to use the multiprocessing library I came up with the following script:
def train_mdl(args):
train(mdl,args)
if __name__ == '__main__':
for mdl_id in range(100):
# train one model with some specific hyperparms (assume they are chosen randomly inside the funciton bellow or read from a config file or they could just be passed or something)
p = Process(target=train_mdl, args=(args,))
p.start()
p.join()
print('Done training all models!')
honestly I am not sure why his answer suggests to use pool, or why there are weird tuple brackets but this is what would make sense for me. Would the resources for tensorflow be re-allocated every time a new process is created in the above loop?
I think that running all models in one single script can be bad practice in the long term (see my suggestion below for a better alternative). However, if you would like to do it, here is a solution: You can encapsulate your TF session into a process with the multiprocessing module, this will make sure TF releases the session memory once the process is done. Here is a code snippet:
from multiprocessing import Pool
import contextlib
def my_model((param1, param2, param3)): # Note the extra (), required by the pool syntax
< your code >
num_pool_worker=1 # can be bigger than 1, to enable parallel execution
with contextlib.closing(Pool(num_pool_workers)) as po: # This ensures that the processes get closed once they are done
pool_results = po.map_async(my_model,
((param1, param2, param3)
for param1, param2, param3 in params_list))
results_list = pool_results.get()
Note from OP: The random number generator seed does not reset automatically with the multi-processing library if you choose to use it. Details here: Using python multiprocessing with different random seed for each process
About TF resource allocation: Usually TF allocates much more resources than it needs. Many times you can restrict each process to use a fraction of the total GPU memory, and discover through trial and error the fraction your script requires.
You can do it with the following snippet
gpu_memory_fraction = 0.3 # Choose this number through trial and error
gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=gpu_memory_fraction,)
session_config = tf.ConfigProto(gpu_options=gpu_options)
sess = tf.Session(config=session_config, graph=graph)
Note that sometimes TF increases the memory usage in order to accelerate the execution. Therefore, reducing the memory usage might make your model run slower.
Answers to the new questions in your edit/comments:
Yes, Tensorflow will be re-allocated every time a new process is created, and cleared once a process ends.
The for-loop in your edit should also do the job. I suggest to use Pool instead, because it will enable you to run several models concurrently on a single GPU. See my notes about setting gpu_memory_fraction and "choosing the maximal number of processes". Also note that: (1) The Pool map runs the loop for you, so you don't need an outer for-loop once you use it. (2) In your example, you should have something like mdl=get_model(args) before calling train()
Weird tuple parenthesis: Pool only accepts a single argument, therefore we use a tuple to pass multiple arguments. See multiprocessing.pool.map and function with two arguments for more details. As suggested in one answer, you can make it more readable with
def train_mdl(params):
(x,y)=params
< your code >
As #Seven suggested, you can use CUDA_VISIBLE_DEVICES environment variable to choose which GPU to use for your process. You can do it from within your python script using the following on the beginning of the process function (train_mdl).
import os # the import can be on the top of the python script
os.environ["CUDA_VISIBLE_DEVICES"] = "{}".format(gpu_id)
A better practice for executing your experiments would be to isolate your training/evaluation code from the hyper parameters/ model search code.
E.g. have a script named train.py, which accepts a specific combination of hyper parameters and references to your data as arguments, and executes training for a single model.
Then, to iterate through the all the possible combinations of parameters you can use a simple task (jobs) queue, and submit all the possible combinations of hyper-parametrs as separate jobs. The task queue will feed your jobs one at a time to your machine. Usually, you can also set the queue to execute number of processes concurrently (see details below).
Specifically, I use task spooler, which is super easy to install and handful (doesn't requires admin privileges, details below).
Basic usage is (see notes below about task spooler usage):
ts <your-command>
In practice, I have a separate python script that manages my experiments, set all the arguments per specific experiment and send the jobs to the ts queue.
Here are some relevant snippets of python code from my experiments manager:
run_bash executes a bash command
def run_bash(cmd):
p = subprocess.Popen(cmd, shell=True, stdout=subprocess.PIPE, executable='/bin/bash')
out = p.stdout.read().strip()
return out # This is the stdout from the shell command
The next snippet sets the number of concurrent processes to be run (see note below about choosing the maximal number of processes):
max_job_num_per_gpu = 2
run_bash('ts -S %d'%max_job_num_per_gpu)
The next snippet iterates through a list of all combinations of hyper params / model params. Each element of the list is a dictionary, where the keys are the command line arguments for the train.py script
for combination_dict in combinations_list:
job_cmd = 'python train.py ' + ' '.join(
['--{}={}'.format(flag, value) for flag, value in combination_dict.iteritems()])
submit_cmd = "ts bash -c '%s'" % job_cmd
run_bash(submit_cmd)
A note about about choosing the maximal number of processes:
If you are short on GPUs, you can use gpu_memory_fraction you found, to set the number of processes as max_job_num_per_gpu=int(1/gpu_memory_fraction)
Notes about task spooler (ts):
You could set the number of concurrent processes to run ("slots") with:
ts -S <number-of-slots>
Installing ts doesn't requires admin privileges. You can download and compile it from source with a simple make, add it to your path and you're done.
You can set up multiple queues (I use it for multiple GPUs), with
TS_SOCKET=<path_to_queue_name> ts <your-command>
e.g.
TS_SOCKET=/tmp/socket-ts.gpu_queue_1 ts <your-command>
TS_SOCKET=/tmp/socket-ts.gpu_queue_2 ts <your-command>
See here for further usage example
A note about automatically setting the path names and file names:
Once you separate your main code from the experiment manager, you will need an efficient way to generate file names and directory names, given the hyper-params. I usually keep my important hyper params in a dictionary and use the following function to generate a single chained string from the dictionary key-value pairs.
Here are the functions I use for doing it:
def build_string_from_dict(d, sep='%'):
"""
Builds a string from a dictionary.
Mainly used for formatting hyper-params to file names.
Key-value pairs are sorted by the key name.
Args:
d: dictionary
Returns: string
:param d: input dictionary
:param sep: key-value separator
"""
return sep.join(['{}={}'.format(k, _value2str(d[k])) for k in sorted(d.keys())])
def _value2str(val):
if isinstance(val, float):
# %g means: "Floating point format.
# Uses lowercase exponential format if exponent is less than -4 or not less than precision,
# decimal format otherwise."
val = '%g' % val
else:
val = '{}'.format(val)
val = re.sub('\.', '_', val)
return val
As I understand, firstly tensorflow constructs a symbolic graph and infers the derivatives based on chain rule. Then allocates memory for all (necessary) tensors, including some inputs and outputs of layers for efficiency. When running a session, data will be loaded into the graph but in general, memory use will not change any more.
The error you met, I guess, may be caused by constructing several models in one GPU.
Isolating your training/evaluation code from the hyper parameters is a good choice, as #user2476373 proposed. But I am using bash script directly, not task spooler (may be it's more convenient), e.g.
CUDA_VISIBLE_DEVICES=0 python train.py --lrn_rate 0.01 --weight_decay_rate 0.001 --momentum 0.9 --batch_size 8 --max_iter 60000 --snapshot 5000
CUDA_VISIBLE_DEVICES=0 python eval.py
Or you can write a 'for' loop in the bash script, not necessarily in python script. Noting that I used CUDA_VISIBLE_DEVICES=0 at beginning of the script (the index could be 7 if you have 8 GPUs in one machine). Because based on my experience, I've found that tensorflow uses all GPUs in one machine if I didn't specify operations use which GPU with the code like this
with tf.device('/gpu:0'):
If you want to try multi-GPU implementation, there is some example.
Hope this could help you.
An easy solution: Give each model a unique session and graph.
It works for this platform: TensorFlow 1.12.0, Keras 2.1.6-tf, Python 3.6.7, Jupyter Notebook.
Key code:
with session.as_default():
with session.graph.as_default():
# do something about an ANN model
Full code:
import tensorflow as tf
from tensorflow import keras
import gc
def limit_memory():
""" Release unused memory resources. Force garbage collection """
keras.backend.clear_session()
keras.backend.get_session().close()
tf.reset_default_graph()
gc.collect()
#cfg = tf.ConfigProto()
#cfg.gpu_options.allow_growth = True
#keras.backend.set_session(tf.Session(config=cfg))
keras.backend.set_session(tf.Session())
gc.collect()
def create_and_train_ANN_model(hyper_parameter):
print('create and train my ANN model')
info = { 'result about this ANN model' }
return info
for i in range(10):
limit_memory()
session = tf.Session()
keras.backend.set_session(session)
with session.as_default():
with session.graph.as_default():
hyper_parameter = { 'A set of hyper-parameters' }
info = create_and_train_ANN_model(hyper_parameter)
limit_memory()
Inspired by this link: Keras (Tensorflow backend) Error - Tensor input_1:0, specified in either feed_devices or fetch_devices was not found in the Graph
I have the same issue. My solution is to run from another script doing the following as many times and in as many hyperparameter configurations as you want.
cmd = "python3 ./model_train.py hyperparameters"
os.system(cmd)
You probably don't want to do this.
If you run thousands and thousands of models on your data, and pick the one that evaluates best, you are not doing machine learning; instead you are memorizing your data set, and there is no guarantee that the model you pick will perform at all outside that data set.
In other words, that approach is similar to having a single model, which has thousands of degrees of liberty. Having a model with such high order of complexity is problematic, since it will be able to fit your data better than is actually warranted; such a model is annoyingly able to memorize any noise (outliers, measurement errors, and such) in your training data, which causes the model to perform poorly when the noise is even slightly different.
(Apologies for posting this as an answer, the site wouldn't let me add a comment.)

Python something resets my random seed

My question is the exact opposite of this one.
This is an excerpt from my test file
f1 = open('seed1234','r')
f2 = open('seed7883','r')
s1 = eval(f1.read())
s2 = eval(f2.read())
f1.close()
f2.close()
####
test_sampler1.random_inst.setstate(s1)
out1 = test_sampler1.run()
self.assertEqual(out1,self.out1_regress) # this is fine and passes
test_sampler2.random_inst.setstate(s2)
out2 = test_sampler2.run()
self.assertEqual(out2,self.out2_regress) # this FAILS
Some info -
test_sampler1 and test_sampler2 are 2 object from a class that performs some stochastic sampling. The class has an attribute random_inst which is an object of type random.Random(). The file seed1234 contains a TestSampler's random_inst's state as returned by random.getstate() when it was given a seed of 1234 and you can guess what seed7883 is. What I did was I created a TestSampler in the terminal, gave it a random seed of 1234, acquired the state with rand_inst.getstate() and save it to a file. I then recreate the regression test and I always get the same output.
HOWEVER
The same procedure as above doesn't work for test_sampler2 - whatever I do not get the same random sequence of numbers. I am using python's random module and I am not importing it anywhere else, but I do use numpy in some places (but not numpy.random).
The only difference between test_sampler1 and test_sampler2 is that they are created from 2 different files. I know this is a big deal and it is totally dependent on the code I wrote but I also can't simply paste ~800 lines of code here, I am merely looking for some general idea of what I might be messing up...
What might be scrambling the state of test_sampler2's random number generator?
Solution
There were 2 separate issues with my code:
1
My script is a command line script and after I refactored it to use python's optparse library I found out that I was setting the seed for my sampler using something like seed = sys.argv[1] which meant that I was setting the seed to be a str, not an int - seed can take any hashable object and I found it the hard way. This explains why I would get 2 different sequences if I used the same seed - one if I run my script from the command line with sth like python sample 1234 #seed is 1234 and from my unit_tests.py file when I would create an object instance like test_sampler1 = TestSampler(seed=1234).
2
I have a function for discrete distribution sampling which I borrowed from here (look at the accepted answer). The code there was missing something fundamental: it was still non-deterministic in the sense that if you give it the same values and probabilities array, but transformed by a permutation (say values ['a','b'] and probs [0.1,0.9] and values ['b','a'] and probabilities [0.9,0.1]) and the seed is set and you will get the same random sample, say 0.3, by the PRNG, but since the intervals for your probabilities are different, in one case you'll get a b and in one an a. To fix it, I just zipped the values and probabilities together, sorted by probability and tadaa - I now always get the same probability intervals.
After fixing both issues the code worked as expected i.e. out2 started behaving deterministically.
The only thing (apart from an internal Python bug) that can change the state of a random.Random instance is calling methods on that instance. So the problem lies in something you haven't shown us. Here's a little test program:
from random import Random
r1 = Random()
r2 = Random()
for _ in range(100):
r1.random()
for _ in range(200):
r2.random()
r1state = r1.getstate()
r2state = r2.getstate()
with open("r1state", "w") as f:
print >> f, r1state
with open("r2state", "w") as f:
print >> f, r2state
for _ in range(100):
with open("r1state") as f:
r1.setstate(eval(f.read()))
with open("r2state") as f:
r2.setstate(eval(f.read()))
assert r1state == r1.getstate()
assert r2state == r2.getstate()
I haven't run that all day, but I bet I could and never see a failing assert ;-)
BTW, it's certainly more common to use pickle for this kind of thing, but it's not going to solve your real problem. The problem is not in getting or setting the state. The problem is that something you haven't yet found is calling methods on your random.Random instance(s).
While it's a major pain in the butt to do so, you could try adding print statements to random.py to find out what's doing it. There are cleverer ways to do that, but better to keep it dirt simple so that you don't end up actually debugging the debugging code.

Cache a constant value

I am developing an application for color blind people to enable them smoothly surf the Internet. I have a set of colors, lets say A , which consists of all the colors seen by a color blind person. Set A is calculated using a big calculation involving millions of colors. Set A is independent of inputs taken in my application i.e set A is like a 'constant' to me (just like 'pi' in mathematics). Now I want to store set A so that whenever I run my application, it is available without any added computational cost i.e i don't have to calculate A every time I run my application.
My Try:
I think this can be done by building a class having one constant but can it be done without creating any special class for just a constant?
I am using Python!
No need for a class. You want to store the calculated values on disk and load them back again on startup: for that you will want to look into the shelve or pickle libraries.
Yes, you can certainly do this with Python
If your constant was just a number -- say, you had just discovered tau -- then you would just declare it in a module, and import that module in all of your other source files:
constants.py:
# Define my new super-useful number
TAU = 6.28318530718
everywhere else:
from constants import TAU # Look, no calculations!
Expanding a bit, if you had a more complicated structure, like a dictionary, that took you a long time to compute, then you could just declare that in your module instead:
constants.py:
# Verified results of the national survey
PEPSI_CHALLENGE = {
'Pepsi': 0.57,
'Coke': 0.43,
}
And you can do this for more and more complicated data. The problem, eventually, is that just writing your constants module gets harder and harder, the more complex your data is, and it can be especially hard to update if you occasionally recompute the value you want to cache. In that case, you want to look at pickling the data, possibly as the final step of a python script which calculates it, and then load that data in a module that you import.
To do that, import pickle, and dump a single object out to a disk file:
recalculate.py:
# Here is the script that computes a small value from the hugely complicated domain:
import random
from itertools import groupby
import pickle
# Collect all of the random numbers
random_numbers = [random.randint(0,10) for r in xrange(1000000)]
# TODO: Check this -- this should definitely be 7
most_popular = max(groupby(sorted(random_numbers)),
key=lambda(x, v):(len(list(v)),-L.index(x)))[0]
# Now save the most common random number to disk, using pickle
# Almost any object is picklable like this, but check the docs for the exact details
pickle.dump(most_popular, open('data_cache','w'))
Now, in your constants file, you can simply read the pickled data from the file on disk, and have it available without recalculating it:
constants.py:
import pickle
most_popular = pickle.load(open('data_cache'))
everywhere else:
from constants import most_popular

Categories