Conversion between "pandas.Series" to numpy array - python

I have a pandas.Series that every element is a numpy.array,
For example:
p = pandas.Series([numpy.array([1,2]), numpy.array([2,4])])
I try to convert the whole Series into a multi-dimensional (2,2) numpy.array, for that I use values method of Series, but this one returns a single dimension numpy array that each element in the array is a numpy.array and the dtype of the array is object:
In [18]: p = pandas.Series([numpy.array([1,2]), numpy.array([2,4])])
In [19]: p.values
Out[19]: array([array([1, 2]), array([2, 4])], dtype=object)
The result that I would like to achieve is as the series would have been created as numpy array
In [23]: a = numpy.array([numpy.array([1,2]), numpy.array([2,4])])
In [24]: a
Out[24]:
array([[1, 2],
[2, 4]])
In [25]: a.shape
Out[25]: (2, 2)
Does anyone have an idea of how to make such a conversion? to_numpy method doesn't work also for me.

I would suggest following conversion:
import numpy as np
import pandas as pd
p = pd.Series([np.array([1,2]), np.array([2,4])])
np.array(p.values.tolist()).shape

Related

Element-wise multiplication between dataframe and array [duplicate]

I use Python and NumPy and have some problems with "transpose":
import numpy as np
a = np.array([5,4])
print(a)
print(a.T)
Invoking a.T is not transposing the array. If a is for example [[],[]] then it transposes correctly, but I need the transpose of [...,...,...].
It's working exactly as it's supposed to. The transpose of a 1D array is still a 1D array! (If you're used to matlab, it fundamentally doesn't have a concept of a 1D array. Matlab's "1D" arrays are 2D.)
If you want to turn your 1D vector into a 2D array and then transpose it, just slice it with np.newaxis (or None, they're the same, newaxis is just more readable).
import numpy as np
a = np.array([5,4])[np.newaxis]
print(a)
print(a.T)
Generally speaking though, you don't ever need to worry about this. Adding the extra dimension is usually not what you want, if you're just doing it out of habit. Numpy will automatically broadcast a 1D array when doing various calculations. There's usually no need to distinguish between a row vector and a column vector (neither of which are vectors. They're both 2D!) when you just want a vector.
Use two bracket pairs instead of one. This creates a 2D array, which can be transposed, unlike the 1D array you create if you use one bracket pair.
import numpy as np
a = np.array([[5, 4]])
a.T
More thorough example:
>>> a = [3,6,9]
>>> b = np.array(a)
>>> b.T
array([3, 6, 9]) #Here it didn't transpose because 'a' is 1 dimensional
>>> b = np.array([a])
>>> b.T
array([[3], #Here it did transpose because a is 2 dimensional
[6],
[9]])
Use numpy's shape method to see what is going on here:
>>> b = np.array([10,20,30])
>>> b.shape
(3,)
>>> b = np.array([[10,20,30]])
>>> b.shape
(1, 3)
For 1D arrays:
a = np.array([1, 2, 3, 4])
a = a.reshape((-1, 1)) # <--- THIS IS IT
print a
array([[1],
[2],
[3],
[4]])
Once you understand that -1 here means "as many rows as needed", I find this to be the most readable way of "transposing" an array. If your array is of higher dimensionality simply use a.T.
You can convert an existing vector into a matrix by wrapping it in an extra set of square brackets...
from numpy import *
v=array([5,4]) ## create a numpy vector
array([v]).T ## transpose a vector into a matrix
numpy also has a matrix class (see array vs. matrix)...
matrix(v).T ## transpose a vector into a matrix
numpy 1D array --> column/row matrix:
>>> a=np.array([1,2,4])
>>> a[:, None] # col
array([[1],
[2],
[4]])
>>> a[None, :] # row, or faster `a[None]`
array([[1, 2, 4]])
And as #joe-kington said, you can replace None with np.newaxis for readability.
To 'transpose' a 1d array to a 2d column, you can use numpy.vstack:
>>> numpy.vstack(numpy.array([1,2,3]))
array([[1],
[2],
[3]])
It also works for vanilla lists:
>>> numpy.vstack([1,2,3])
array([[1],
[2],
[3]])
instead use arr[:,None] to create column vector
You can only transpose a 2D array. You can use numpy.matrix to create a 2D array. This is three years late, but I am just adding to the possible set of solutions:
import numpy as np
m = np.matrix([2, 3])
m.T
Basically what the transpose function does is to swap the shape and strides of the array:
>>> a = np.ones((1,2,3))
>>> a.shape
(1, 2, 3)
>>> a.T.shape
(3, 2, 1)
>>> a.strides
(48, 24, 8)
>>> a.T.strides
(8, 24, 48)
In case of 1D numpy array (rank-1 array) the shape and strides are 1-element tuples and cannot be swapped, and the transpose of such an 1D array returns it unchanged. Instead, you can transpose a "row-vector" (numpy array of shape (1, n)) into a "column-vector" (numpy array of shape (n, 1)). To achieve this you have to first convert your 1D numpy array into row-vector and then swap the shape and strides (transpose it). Below is a function that does it:
from numpy.lib.stride_tricks import as_strided
def transpose(a):
a = np.atleast_2d(a)
return as_strided(a, shape=a.shape[::-1], strides=a.strides[::-1])
Example:
>>> a = np.arange(3)
>>> a
array([0, 1, 2])
>>> transpose(a)
array([[0],
[1],
[2]])
>>> a = np.arange(1, 7).reshape(2,3)
>>> a
array([[1, 2, 3],
[4, 5, 6]])
>>> transpose(a)
array([[1, 4],
[2, 5],
[3, 6]])
Of course you don't have to do it this way since you have a 1D array and you can directly reshape it into (n, 1) array by a.reshape((-1, 1)) or a[:, None]. I just wanted to demonstrate how transposing an array works.
Another solution.... :-)
import numpy as np
a = [1,2,4]
[1, 2, 4]
b = np.array([a]).T
array([[1],
[2],
[4]])
The name of the function in numpy is column_stack.
>>>a=np.array([5,4])
>>>np.column_stack(a)
array([[5, 4]])
I am just consolidating the above post, hope it will help others to save some time:
The below array has (2, )dimension, it's a 1-D array,
b_new = np.array([2j, 3j])
There are two ways to transpose a 1-D array:
slice it with "np.newaxis" or none.!
print(b_new[np.newaxis].T.shape)
print(b_new[None].T.shape)
other way of writing, the above without T operation.!
print(b_new[:, np.newaxis].shape)
print(b_new[:, None].shape)
Wrapping [ ] or using np.matrix, means adding a new dimension.!
print(np.array([b_new]).T.shape)
print(np.matrix(b_new).T.shape)
There is a method not described in the answers but described in the documentation for the numpy.ndarray.transpose method:
For a 1-D array this has no effect, as a transposed vector is simply the same vector. To convert a 1-D array into a 2D column vector, an additional dimension must be added. np.atleast2d(a).T achieves this, as does a[:, np.newaxis].
One can do:
import numpy as np
a = np.array([5,4])
print(a)
print(np.atleast_2d(a).T)
Which (imo) is nicer than using newaxis.
As some of the comments above mentioned, the transpose of 1D arrays are 1D arrays, so one way to transpose a 1D array would be to convert the array to a matrix like so:
np.transpose(a.reshape(len(a), 1))
To transpose a 1-D array (flat array) as you have in your example, you can use the np.expand_dims() function:
>>> a = np.expand_dims(np.array([5, 4]), axis=1)
array([[5],
[4]])
np.expand_dims() will add a dimension to the chosen axis. In this case, we use axis=1, which adds a column dimension, effectively transposing your original flat array.

Why matrix shape is not 2 by 2 after element wise matrix multiplication? [duplicate]

I use Python and NumPy and have some problems with "transpose":
import numpy as np
a = np.array([5,4])
print(a)
print(a.T)
Invoking a.T is not transposing the array. If a is for example [[],[]] then it transposes correctly, but I need the transpose of [...,...,...].
It's working exactly as it's supposed to. The transpose of a 1D array is still a 1D array! (If you're used to matlab, it fundamentally doesn't have a concept of a 1D array. Matlab's "1D" arrays are 2D.)
If you want to turn your 1D vector into a 2D array and then transpose it, just slice it with np.newaxis (or None, they're the same, newaxis is just more readable).
import numpy as np
a = np.array([5,4])[np.newaxis]
print(a)
print(a.T)
Generally speaking though, you don't ever need to worry about this. Adding the extra dimension is usually not what you want, if you're just doing it out of habit. Numpy will automatically broadcast a 1D array when doing various calculations. There's usually no need to distinguish between a row vector and a column vector (neither of which are vectors. They're both 2D!) when you just want a vector.
Use two bracket pairs instead of one. This creates a 2D array, which can be transposed, unlike the 1D array you create if you use one bracket pair.
import numpy as np
a = np.array([[5, 4]])
a.T
More thorough example:
>>> a = [3,6,9]
>>> b = np.array(a)
>>> b.T
array([3, 6, 9]) #Here it didn't transpose because 'a' is 1 dimensional
>>> b = np.array([a])
>>> b.T
array([[3], #Here it did transpose because a is 2 dimensional
[6],
[9]])
Use numpy's shape method to see what is going on here:
>>> b = np.array([10,20,30])
>>> b.shape
(3,)
>>> b = np.array([[10,20,30]])
>>> b.shape
(1, 3)
For 1D arrays:
a = np.array([1, 2, 3, 4])
a = a.reshape((-1, 1)) # <--- THIS IS IT
print a
array([[1],
[2],
[3],
[4]])
Once you understand that -1 here means "as many rows as needed", I find this to be the most readable way of "transposing" an array. If your array is of higher dimensionality simply use a.T.
You can convert an existing vector into a matrix by wrapping it in an extra set of square brackets...
from numpy import *
v=array([5,4]) ## create a numpy vector
array([v]).T ## transpose a vector into a matrix
numpy also has a matrix class (see array vs. matrix)...
matrix(v).T ## transpose a vector into a matrix
numpy 1D array --> column/row matrix:
>>> a=np.array([1,2,4])
>>> a[:, None] # col
array([[1],
[2],
[4]])
>>> a[None, :] # row, or faster `a[None]`
array([[1, 2, 4]])
And as #joe-kington said, you can replace None with np.newaxis for readability.
To 'transpose' a 1d array to a 2d column, you can use numpy.vstack:
>>> numpy.vstack(numpy.array([1,2,3]))
array([[1],
[2],
[3]])
It also works for vanilla lists:
>>> numpy.vstack([1,2,3])
array([[1],
[2],
[3]])
instead use arr[:,None] to create column vector
You can only transpose a 2D array. You can use numpy.matrix to create a 2D array. This is three years late, but I am just adding to the possible set of solutions:
import numpy as np
m = np.matrix([2, 3])
m.T
Basically what the transpose function does is to swap the shape and strides of the array:
>>> a = np.ones((1,2,3))
>>> a.shape
(1, 2, 3)
>>> a.T.shape
(3, 2, 1)
>>> a.strides
(48, 24, 8)
>>> a.T.strides
(8, 24, 48)
In case of 1D numpy array (rank-1 array) the shape and strides are 1-element tuples and cannot be swapped, and the transpose of such an 1D array returns it unchanged. Instead, you can transpose a "row-vector" (numpy array of shape (1, n)) into a "column-vector" (numpy array of shape (n, 1)). To achieve this you have to first convert your 1D numpy array into row-vector and then swap the shape and strides (transpose it). Below is a function that does it:
from numpy.lib.stride_tricks import as_strided
def transpose(a):
a = np.atleast_2d(a)
return as_strided(a, shape=a.shape[::-1], strides=a.strides[::-1])
Example:
>>> a = np.arange(3)
>>> a
array([0, 1, 2])
>>> transpose(a)
array([[0],
[1],
[2]])
>>> a = np.arange(1, 7).reshape(2,3)
>>> a
array([[1, 2, 3],
[4, 5, 6]])
>>> transpose(a)
array([[1, 4],
[2, 5],
[3, 6]])
Of course you don't have to do it this way since you have a 1D array and you can directly reshape it into (n, 1) array by a.reshape((-1, 1)) or a[:, None]. I just wanted to demonstrate how transposing an array works.
Another solution.... :-)
import numpy as np
a = [1,2,4]
[1, 2, 4]
b = np.array([a]).T
array([[1],
[2],
[4]])
The name of the function in numpy is column_stack.
>>>a=np.array([5,4])
>>>np.column_stack(a)
array([[5, 4]])
I am just consolidating the above post, hope it will help others to save some time:
The below array has (2, )dimension, it's a 1-D array,
b_new = np.array([2j, 3j])
There are two ways to transpose a 1-D array:
slice it with "np.newaxis" or none.!
print(b_new[np.newaxis].T.shape)
print(b_new[None].T.shape)
other way of writing, the above without T operation.!
print(b_new[:, np.newaxis].shape)
print(b_new[:, None].shape)
Wrapping [ ] or using np.matrix, means adding a new dimension.!
print(np.array([b_new]).T.shape)
print(np.matrix(b_new).T.shape)
There is a method not described in the answers but described in the documentation for the numpy.ndarray.transpose method:
For a 1-D array this has no effect, as a transposed vector is simply the same vector. To convert a 1-D array into a 2D column vector, an additional dimension must be added. np.atleast2d(a).T achieves this, as does a[:, np.newaxis].
One can do:
import numpy as np
a = np.array([5,4])
print(a)
print(np.atleast_2d(a).T)
Which (imo) is nicer than using newaxis.
As some of the comments above mentioned, the transpose of 1D arrays are 1D arrays, so one way to transpose a 1D array would be to convert the array to a matrix like so:
np.transpose(a.reshape(len(a), 1))
To transpose a 1-D array (flat array) as you have in your example, you can use the np.expand_dims() function:
>>> a = np.expand_dims(np.array([5, 4]), axis=1)
array([[5],
[4]])
np.expand_dims() will add a dimension to the chosen axis. In this case, we use axis=1, which adds a column dimension, effectively transposing your original flat array.

Can I prevent numpy.array from casting the elements as numpy arrays?

I am using trying to convert the following to a 2x2 numpy array of interval objects:
from interval import interval # from the "pyinterval" package
import numpy as np
np.array([
[interval([1.0, 2.0]), interval([1.0, 2.0])],
[interval([1.0, 2.0]), interval([1.0, 2.0])]
])
Unfortunately, this operation casts the intervals as numpy arrays, and gives me a 2x2x1x2 matrix. Is there any way I can prevent this from happening with numpy arrays or matrices?
I was able to get the desired result by populating an empty array first, where jac is a list of lists of intervals:
arr = np.empty(shape=(2,2), dtype=interval)
for i in range(len(arr)):
for j in range(len(arr)):
arr[i][j] = jac[i][j]
That being said, I suspect there's a more elegant way to achieve this. Is there a more "pythonic" way to do this?
It seems like numpy will coerce anything Sequence-like into a new dimension, even if np.array is called with dtype=object. You can work around this by directly making an empty array with dtype=object and then filling it manually.
interval_list = get_intervals()
interval_array = np.ndarray(len(interval_list), dtype=object)
for i, interv in enumerate(interval_list):
interval_array[i] = interv
You don't need the explicit loop when populating the empty array, you can just assign with [:]:
class interval(list):
"""I don't have any real interval but this should work."""
def __repr__(self):
return 'interval({})'.format(super().__repr__())
import numpy as np
>>> a = np.empty((2, 2), dtype=object)
>>> a[:] = [[interval([1.0, 2.0]), interval([1.0, 2.0])],
... [interval([1.0, 2.0]), interval([1.0, 2.0])]]
>>> a
array([[interval([1.0, 2.0]), interval([1.0, 2.0])],
[interval([1.0, 2.0]), interval([1.0, 2.0])]], dtype=object)
>>> a.shape
(2, 2)
>>> a[0, 0]
interval([1.0, 2.0])
Unfortunatly there is no way to explicitly tell numpy.array which classes shouldn't be unpacked so you probably need to create the empty array first.
On a side note: There is not "interval" dtype for numpy arrays, if it's an unrecognized dtype it will use object. Using dtype=interval may be confusing for other readers because they might expect an efficient dtype.
With the assign and fill approach it is often possible to assign multiple items from a list. I have a vague memory that sometimes that doesn't work, but it does work for lists:
In [84]: jac = [[[1,2],[1,2]],[[1,2],[1,2]]]
In [85]: arr = np.empty((2,2),dtype=object)
In [86]: arr[...] = jac
In [87]: arr
Out[87]:
array([[[1, 2], [1, 2]],
[[1, 2], [1, 2]]], dtype=object)
In [88]: arr[1,0]
Out[88]: [1, 2]
p.s. it also works for jac = [[[[1,2]],[[1,2]]],[[[1,2]],[[1,2]]]], which would produce a (2,2,1,2) is used as np.array(jac).

Python Numpy - Reading elements of a Vector Numpy Array as numerical values rather than as Numpy Arrays

Suppose I have a Numpy Array that has dimensions of nx1 (n rows, 1 column). My usage of this is for implementing 3D vectors as 3x1 Matrices using Numpy, but the application can be extended for nx1 Vector Matrices:
In [0]: import numpy as np
In [1]: foo = np.array([ ['a11'], ['a21'], ['a31'], ..., ['an1'] ])
I want to be able to access the values of the array by dereferencing one value.
In [2]: foo[0]
Out[2]: 'a11'
In [3]: foo[n]
Out[3]: 'an1'
However, by the general formatting of Numpy Arrays, a Vector array would be considered a 2D Array and would require 2 values to dereference it: I would have to use foo[0][0] or foo[0][n] to get the same values. I could use np.transpose to Transpose the Vector into one row, but the syntax continues to produce a 2D Numpy Array that requires 2 values to dereference: hence
In [4]: np.transpose(foo)[0] == foo[0][0]
Out[4]: array([ True, False, False], dtype=bool)
In [5]: np.transpose(foo)[0][0] == foo[0][0]
Out[5]: True
This would nullify any advantage that transposing would provide. How can I access the elements of a Vector Numpy Array using only one Dereferencing Value?
You could use the numpy.ndarray.tolist() function:
In [1]: foo = np.array([ ['a11'], ['a21'], ['a31'] ])
In [2]: foo.tolist()
Out[2]: [['an1'], ['a2n'], ['a3n']]
In [3]: foo.tolist()[0]
Out[3]: ['an1']
Your foo is a 2d array of strings:
In [354]: foo = np.array([ ['a11'], ['a21'], ['a31'], ['an1'] ])
In [355]: foo.shape
Out[355]: (4, 1)
In [356]: foo[0] # selects a 'row'
Out[356]:
array(['a11'],
dtype='<U3')
In [357]: foo[0,:] # or more explicitly with the column :
Out[357]:
array(['a11'],
dtype='<U3')
In [358]: foo[:,0] # selects a column, results in a 1d array
Out[358]:
array(['a11', 'a21', 'a31', 'an1'],
dtype='<U3')
In [359]: foo[0,0] # select an element
Out[359]: 'a11'
Transpose is still 2d, just switching rows and columns:
In [360]: foo.T
Out[360]:
array([['a11', 'a21', 'a31', 'an1']],
dtype='<U3')
In [361]: _.shape
Out[361]: (1, 4)
Ravel (or flatten) turns it into a 1d array, which can be accessed with just one index.
In [362]: foo.ravel()[1]
Out[362]: 'a21'
Your talk about matrix multiplication and such suggests that your array really isn't of strings, but that 'a21' represents an array, or is number. So is it really a 2d numeric array, or maybe a 3d array?

Transposing a 1D NumPy array

I use Python and NumPy and have some problems with "transpose":
import numpy as np
a = np.array([5,4])
print(a)
print(a.T)
Invoking a.T is not transposing the array. If a is for example [[],[]] then it transposes correctly, but I need the transpose of [...,...,...].
It's working exactly as it's supposed to. The transpose of a 1D array is still a 1D array! (If you're used to matlab, it fundamentally doesn't have a concept of a 1D array. Matlab's "1D" arrays are 2D.)
If you want to turn your 1D vector into a 2D array and then transpose it, just slice it with np.newaxis (or None, they're the same, newaxis is just more readable).
import numpy as np
a = np.array([5,4])[np.newaxis]
print(a)
print(a.T)
Generally speaking though, you don't ever need to worry about this. Adding the extra dimension is usually not what you want, if you're just doing it out of habit. Numpy will automatically broadcast a 1D array when doing various calculations. There's usually no need to distinguish between a row vector and a column vector (neither of which are vectors. They're both 2D!) when you just want a vector.
Use two bracket pairs instead of one. This creates a 2D array, which can be transposed, unlike the 1D array you create if you use one bracket pair.
import numpy as np
a = np.array([[5, 4]])
a.T
More thorough example:
>>> a = [3,6,9]
>>> b = np.array(a)
>>> b.T
array([3, 6, 9]) #Here it didn't transpose because 'a' is 1 dimensional
>>> b = np.array([a])
>>> b.T
array([[3], #Here it did transpose because a is 2 dimensional
[6],
[9]])
Use numpy's shape method to see what is going on here:
>>> b = np.array([10,20,30])
>>> b.shape
(3,)
>>> b = np.array([[10,20,30]])
>>> b.shape
(1, 3)
For 1D arrays:
a = np.array([1, 2, 3, 4])
a = a.reshape((-1, 1)) # <--- THIS IS IT
print a
array([[1],
[2],
[3],
[4]])
Once you understand that -1 here means "as many rows as needed", I find this to be the most readable way of "transposing" an array. If your array is of higher dimensionality simply use a.T.
You can convert an existing vector into a matrix by wrapping it in an extra set of square brackets...
from numpy import *
v=array([5,4]) ## create a numpy vector
array([v]).T ## transpose a vector into a matrix
numpy also has a matrix class (see array vs. matrix)...
matrix(v).T ## transpose a vector into a matrix
numpy 1D array --> column/row matrix:
>>> a=np.array([1,2,4])
>>> a[:, None] # col
array([[1],
[2],
[4]])
>>> a[None, :] # row, or faster `a[None]`
array([[1, 2, 4]])
And as #joe-kington said, you can replace None with np.newaxis for readability.
To 'transpose' a 1d array to a 2d column, you can use numpy.vstack:
>>> numpy.vstack(numpy.array([1,2,3]))
array([[1],
[2],
[3]])
It also works for vanilla lists:
>>> numpy.vstack([1,2,3])
array([[1],
[2],
[3]])
instead use arr[:,None] to create column vector
You can only transpose a 2D array. You can use numpy.matrix to create a 2D array. This is three years late, but I am just adding to the possible set of solutions:
import numpy as np
m = np.matrix([2, 3])
m.T
Basically what the transpose function does is to swap the shape and strides of the array:
>>> a = np.ones((1,2,3))
>>> a.shape
(1, 2, 3)
>>> a.T.shape
(3, 2, 1)
>>> a.strides
(48, 24, 8)
>>> a.T.strides
(8, 24, 48)
In case of 1D numpy array (rank-1 array) the shape and strides are 1-element tuples and cannot be swapped, and the transpose of such an 1D array returns it unchanged. Instead, you can transpose a "row-vector" (numpy array of shape (1, n)) into a "column-vector" (numpy array of shape (n, 1)). To achieve this you have to first convert your 1D numpy array into row-vector and then swap the shape and strides (transpose it). Below is a function that does it:
from numpy.lib.stride_tricks import as_strided
def transpose(a):
a = np.atleast_2d(a)
return as_strided(a, shape=a.shape[::-1], strides=a.strides[::-1])
Example:
>>> a = np.arange(3)
>>> a
array([0, 1, 2])
>>> transpose(a)
array([[0],
[1],
[2]])
>>> a = np.arange(1, 7).reshape(2,3)
>>> a
array([[1, 2, 3],
[4, 5, 6]])
>>> transpose(a)
array([[1, 4],
[2, 5],
[3, 6]])
Of course you don't have to do it this way since you have a 1D array and you can directly reshape it into (n, 1) array by a.reshape((-1, 1)) or a[:, None]. I just wanted to demonstrate how transposing an array works.
Another solution.... :-)
import numpy as np
a = [1,2,4]
[1, 2, 4]
b = np.array([a]).T
array([[1],
[2],
[4]])
The name of the function in numpy is column_stack.
>>>a=np.array([5,4])
>>>np.column_stack(a)
array([[5, 4]])
I am just consolidating the above post, hope it will help others to save some time:
The below array has (2, )dimension, it's a 1-D array,
b_new = np.array([2j, 3j])
There are two ways to transpose a 1-D array:
slice it with "np.newaxis" or none.!
print(b_new[np.newaxis].T.shape)
print(b_new[None].T.shape)
other way of writing, the above without T operation.!
print(b_new[:, np.newaxis].shape)
print(b_new[:, None].shape)
Wrapping [ ] or using np.matrix, means adding a new dimension.!
print(np.array([b_new]).T.shape)
print(np.matrix(b_new).T.shape)
There is a method not described in the answers but described in the documentation for the numpy.ndarray.transpose method:
For a 1-D array this has no effect, as a transposed vector is simply the same vector. To convert a 1-D array into a 2D column vector, an additional dimension must be added. np.atleast2d(a).T achieves this, as does a[:, np.newaxis].
One can do:
import numpy as np
a = np.array([5,4])
print(a)
print(np.atleast_2d(a).T)
Which (imo) is nicer than using newaxis.
As some of the comments above mentioned, the transpose of 1D arrays are 1D arrays, so one way to transpose a 1D array would be to convert the array to a matrix like so:
np.transpose(a.reshape(len(a), 1))
To transpose a 1-D array (flat array) as you have in your example, you can use the np.expand_dims() function:
>>> a = np.expand_dims(np.array([5, 4]), axis=1)
array([[5],
[4]])
np.expand_dims() will add a dimension to the chosen axis. In this case, we use axis=1, which adds a column dimension, effectively transposing your original flat array.

Categories