I have a dataset between 2002 - 2018 which contains 1 value per month, 198 rows in total.
I want to know how I can average all the values from the same month (e.g. January/2003 + ... + January/2018)
dateparse = lambda dates: pd.datetime.strptime(dates, '%Y-%m-%d')
df = pd.read_csv('turbidez.csv', parse_dates=['date'], index_col='date',date_parser=dateparse)
data = df['x']
data.head()
date
2002-07-31 8.466111
2002-08-31 6.234259
2002-09-30 8.160763
2002-10-31 4.927685
2002-11-30 8.125012
Searching a bit I visit this solution, but couldn't apply it properly to my data.
Thank you in advance for any assistance.
Use pandas.to_datetime and pandas.Series.dt.month:
# Sample data
date x
0 2002-07-31 8.466111
1 2003-07-31 6.234259
2 2002-09-30 8.160763
3 2003-09-30 4.927685
4 2002-11-30 8.125012
df["date"] = pd.to_datetime(df["date"] )
new_df = df.groupby(df["date"].dt.month).sum()
print(new_df)
Output:
x
date
7 14.700370
9 13.088448
11 8.125012
Related
I have a table like below containing values for multiple IDs:
ID
value
date
1
20
2022-01-01 12:20
2
25
2022-01-04 18:20
1
10
2022-01-04 11:20
1
150
2022-01-06 16:20
2
200
2022-01-08 13:20
3
40
2022-01-04 21:20
1
75
2022-01-09 08:20
I would like to calculate week wise sum of values for all IDs:
The start date is given (for example, 01-01-2022).
Weeks are calculated based on range:
every Saturday 00:00 to next Friday 23:59 (i.e. Week 1 is from 01-01-2022 00:00 to 07-01-2022 23:59)
ID
Week 1 sum
Week 2 sum
Week 3 sum
...
1
180
75
--
--
2
25
200
--
--
3
40
--
--
--
There's a pandas function (pd.Grouper) that allows you to specify a groupby instruction.1 In this case, that specification is to "resample" date by a weekly frequency that starts on Fridays.2 Since you also need to group by ID as well, add it to the grouper.
# convert to datetime
df['date'] = pd.to_datetime(df['date'])
# pivot the dataframe
df1 = (
df.groupby(['ID', pd.Grouper(key='date', freq='W-FRI')])['value'].sum()
.unstack(fill_value=0)
)
# rename columns
df1.columns = [f"Week {c} sum" for c in range(1, df1.shape[1]+1)]
df1 = df1.reset_index()
1 What you actually need is a pivot_table result but groupby + unstack is equivalent to pivot_table and groupby + unstack is more convenient here.
2 Because Jan 1, 2022 is a Saturday, you need to specify the anchor on Friday.
You can compute a week column. In case you've data for same year, you can extract just week number, which is less likely in real-time scenarios. In case you've data from multiple years, it might be wise to derive a combination of Year & week number.
df['Year-Week'] = df['Date'].dt.strftime('%Y-%U')
In your case the dates 2022-01-01 & 2022-01-04 18:2 should be convert to 2022-01 as per the scenario you considered.
To calculate your pivot table, you can use the pandas pivot_table. Example code:
pd.pivot_table(df, values='value', index=['ID'], columns=['year_weeknumber'], aggfunc=np.sum)
Let's define a formatting helper.
def fmt(row):
return f"{row.year}-{row.week:02d}" # We ignore row.day
Now it's easy.
>>> df = pd.DataFrame([dict(id=1, value=20, date="2022-01-01 12:20"),
dict(id=2, value=25, date="2022-01-04 18:20")])
>>> df['date'] = pd.to_datetime(df.date)
>>> df['iso'] = df.date.dt.isocalendar().apply(fmt, axis='columns')
>>> df
id value date iso
0 1 20 2022-01-01 12:20:00 2021-52
1 2 25 2022-01-04 18:20:00 2022-01
Just groupby
the ISO week.
I have a dataframe like the following:
df.head(4)
timestamp user_id category
0 2017-09-23 15:00:00+00:00 A Bar
1 2017-09-14 18:00:00+00:00 B Restaurant
2 2017-09-30 00:00:00+00:00 B Museum
3 2017-09-11 17:00:00+00:00 C Museum
I would like to count for each hour for each the number of visitors for each category and have a dataframe like the following
df
year month day hour category count
0 2017 9 11 0 Bar 2
1 2017 9 11 1 Bar 1
2 2017 9 11 2 Bar 0
3 2017 9 11 3 Bar 1
Assuming you want to groupby date and hour, you can use the following code if the timestamp column is a datetime column
df.year = df.timestamp.dt.year
df.month = df.timestamp.dt.month
df.day = df.timestamp.dt.day
df.hour = df.timestamp.dt.hour
grouped_data = df.groupby(['year','month','day','hour','category']).count()
For getting the count of user_id per hour per category you can use groupby with your datetime:
df.timestamp = pd.to_datetime(df['timestamp'])
df_new = df.groupby([df.timestamp.dt.year,
df.timestamp.dt.month,
df.timestamp.dt.day,
df.timestamp.dt.hour,
'category']).count()['user_id']
df_new.index.names = ['year', 'month', 'day', 'hour', 'category']
df_new = df_new.reset_index()
When you have a datetime in dataframe, you can use the dt accessor which allows you to access different parts of the datetime, i.e. year.
I have a dataframe with a Date column as an index as DateTime type, and a value attached to each entry.
The dates are split into yyyy-mm-dd, with each row being the next day.
Example:
Date: x:
2012-01-01 44
2012-01-02 75
2012-01-03 62
How would I split the Date column into Year and Month columns, using those two as indexes while also summing the values of all the days in a month?
Example of expected output:
Year: Month: x:
2012 1 745
2 402
3 453
...
2013 1 4353
Use Series.dt.year
Series.dt.month with aggregate sum by GroupBy.sum and rename for new columns names:
df['Date'] = pd.to_datetime(df['Date'])
df1 = df.groupby([df['Date'].dt.year.rename('Year'),
df['Date'].dt.month.rename('Month')])['x'].sum().reset_index()
print (df1)
Year Month x
0 2012 1 181
Use groupby and sum:
(df.groupby([df.Date.dt.year.rename('Year'), df.Date.dt.month.rename('Month')])['x']
.sum())
Year Month
2012 1 181
Name: x, dtype: int64
Note that if "Date" isn't a datetime dtype column, use
df.Date = pd.to_datetime(df.Date, errors='coerce')
To convert it first.
(df.groupby([df.Date.dt.year.rename('Year'), df.Date.dt.month.rename('Month')])['x']
.sum()
.reset_index())
Year Month x
0 2012 1 181
I want to add a number of months to the end of my dataframe.
What is the best way to append another six (or 12) months to such a dataframe using dates?
0 2013-07-31
1 2013-08-31
2 2013-09-30
3 2013-10-31
4 2013-11-30
Thanks
Edit: I think you might want pd.date_range
df = pd.DataFrame({'date':['2010-01-31', '2010-02-28'], 'x':[1,2]})
df['date'] = pd.to_datetime(df.date)
date x
0 2010-01-31 1
1 2010-02-28 2
Then
df.append(pd.DataFrame({'date': pd.date_range(start=df.date.iloc[-1], periods=6, freq='M', closed='right')}))
date x
0 2010-01-31 1.0
1 2010-02-28 2.0
0 2010-03-31 NaN
1 2010-04-30 NaN
2 2010-05-31 NaN
3 2010-06-30 NaN
4 2010-07-31 NaN
After looking into append and other loop sort of options I created this:
length = df.shape [ 0 ]
add = 12
start = df [ 'month' ].iloc [ 0 ]
count = int ( length + add )
dt = pd.date_range ( start, periods = count, freq = 'M' )
this is the dt I get. It gives the proper ending month days.
DatetimeIndex(['2013-07-31', '2013-08-31', '2013-09-30', '2013-10-31',
'2013-11-30', '2013-12-31', '2014-01-31', '2014-02-28',
'2014-03-31', '2014-04-30', '2014-05-31', '2014-06-30'],
dtype='datetime64[ns]', freq='M')
now I just have to change from the DatetimeIndex.
I hope this is good code. Cheers.
My dataset has dates in the European format, and I'm struggling to convert it into the correct format before I pass it through a pd.to_datetime, so for all day < 12, my month and day switch.
Is there an easy solution to this?
import pandas as pd
import datetime as dt
df = pd.read_csv(loc,dayfirst=True)
df['Date']=pd.to_datetime(df['Date'])
Is there a way to force datetime to acknowledge that the input is formatted at dd/mm/yy?
Thanks for the help!
Edit, a sample from my dates:
renewal["Date"].head()
Out[235]:
0 31/03/2018
2 30/04/2018
3 28/02/2018
4 30/04/2018
5 31/03/2018
Name: Earliest renewal date, dtype: object
After running the following:
renewal['Date']=pd.to_datetime(renewal['Date'],dayfirst=True)
I get:
Out[241]:
0 2018-03-31 #Correct
2 2018-04-01 #<-- this number is wrong and should be 01-04 instad
3 2018-02-28 #Correct
Add format.
df['Date'] = pd.to_datetime(df['Date'], format='%d/%m/%Y')
You can control the date construction directly if you define separate columns for 'year', 'month' and 'day', like this:
import pandas as pd
df = pd.DataFrame(
{'Date': ['01/03/2018', '06/08/2018', '31/03/2018', '30/04/2018']}
)
date_parts = df['Date'].apply(lambda d: pd.Series(int(n) for n in d.split('/')))
date_parts.columns = ['day', 'month', 'year']
df['Date'] = pd.to_datetime(date_parts)
date_parts
# day month year
# 0 1 3 2018
# 1 6 8 2018
# 2 31 3 2018
# 3 30 4 2018
df
# Date
# 0 2018-03-01
# 1 2018-08-06
# 2 2018-03-31
# 3 2018-04-30